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ON APPLICATION OF SLOWLY VARYING FUNCTIONS WITH REMAINDER
IN THE THEORY OF MARKOV BRANCHING PROCESSES WITH MEAN ONE
AND INFINITE VARIANCE

PO 3ACTOCYBAHHS MOBLIBHO 3MIHHUX ®YHKIIH 13 3AJIMIIIKOM
Y TEOPII MAPKOBCBKHUX PO3TAJTIY)KEHUX IMPOLECIB 3 OAMHUYHUM
MATEMATUYHUM OYIKYBAHHAM TA HECKIHYEHHOIO JUCHEPCIEIO

We investigate an application of slowly varying functions (in sense of Karamata) in the theory of Markov branching
processes. We treat the critical case so that the infinitesimal generating function of the process has the infinite second
moment, but it regularly varies with the remainder. We improve the basic lemma of the theory of critical Markov branching
processes and refine known limit results.

Jlocmipky€eThesl 3aCTOCYBaHHS MOBUTBHO 3MiHHUX (yHKHiH (y ceHci Kapamarn) B Teopii MapKOBCHKHX PO3Tay>KCHUX
npoueciB. KpuTHuHuid BUNIaIoK TPaKTyeThCS TaK, IO iH(iHITe3uMalbHa reHepyoda (PYHKIIIS MpoLecy Ma€ HeCKIHYeHHUN
JIpYTHil MOMEHT, ajle PeryisipHO 3MIHIOETHCS 3 3aiMIIKoM. [TokpalieHo OCHOBHY JieMy Teopii KPUTHYHHX MapKOBCHKHX
po3ramyXeHHX NPOLECiB Ta YTOYHEHO BiJIOMIi TPaHUYHI PE3YJIBTaTH.

1. Introduction and main results. 1.1. Preliminaries. We consider the Markov branching process
(MBP) to be the homogeneous continuous-time Markov process {Z(t),t > 0} with the state space
So={0} US, where S C Nand N = {1,2,...}. The transition probabilities of the process

Pij(t) :==P{Z(t) = j | 2(0) =i}
satisfy the following branching property:
P;(t)=P{5(t) forall i,j€S, (1.1)
where the asterisk denotes convolution. Here transition probabilities P, ;(t) are expressed by relation
Pij(e) =01 +aje+o(e) as €10, (1.2)

where J;; is Kronecker’s delta function and {a;} are intensities of individuals transformation such
that a; > 0 for j € Sp\{1} and

0<ag < —a; = Z a;j < o0.
JE€So\ {1}

The MBP was defined first by Kolmogorov and Dmitriev [8] (for more detailed information see [2]
(Ch. IIT) and [5] (Ch. V)). |

Defining the generating function (GF) F'(¢; s) = Z s Py;(t)s’ it follows from (1.1) and (1.2)

J<o0
that the process {Z(t)} is determined by the infinitesimal GF f(s) = Z s a;s’ for s € [0,1).
J€So
Moreover, it follows from (1.2) that GF F'(¢;s) is unique solution of the backward Kolmogorov
equation 0F /0t = f(F) with the boundary condition F'(0;s) = s (see [2, p. 106]). If m :=
= Z s ja; = f'(1—) is finite, then F(¢;1) = 1 and due to Kolmogorov equation it can be
j
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calculated that E[Z(t)[Z(0) = i] = Z'e s jP;j(t) = ie™. Last formula shows that long-term
j

properties of MBP are various depending on value of parameter m. Hence, the MBP is classified as
critical if m = 0 and sub-critical or supercritical if m < 0 or m > 0, respectively. Monographs
[1-3, 5] are general references for mentioned and other classical facts on theory of MBP.

In the paper we consider the critical case. Let R(¢;s) = 1 — F(t;s) and

q(t) == R(t;0) = P{H > t},

where the variable # = inf{t: Z(¢f) = 0} denotes an extinction time of MBP. Then ¢(¢) is the
survival probability of the process. Sevastyanov [11] proved that if f/(1—) < oo, then the following
asymptotic representation holds:

1 1L a-)

R(t;s) 1—s 2

t+O(Int) as t— o0 (1.3)

forall s € [0,1) (see [11, p. 72]).

Later on Zolotarev [12] has found a principally new result on asymptotic representation of ¢(t)
without the assumption of f”(1—) < oo. Namely, providing that g(z) = f(1 — z) is a regularly
varying function at zero that is

/
i 29(@) _
z0  g(x)
with index 1 < v =14 «a < 2, he has proved that
q(t)
—————~~at as t— 00. (1.4)
f(1—q(t))
Further, we assume that the infinitesimal GF f(s) has the following representation:
14+v 1
fls) =0 =)L (1.5)

forall s € [0,1), where 0 < v < 1 and L(z) is slowly varying (SV) function at infinity (in sense of
Karamata, see [10]).
Pakes [9], in connection with the proof of limit theorems has established, that if the condition

(1.5) holds, then
1 1
m =0 (v (55)): (-0

where V(z) = M(1 — 1/z) and M(s) is GF of invariant measure of MBP that is M(s) =
= Zjes pis’ and Zies wiPij(t) = pj, 5 € S. Function U(y) is the inverse of V(z). The
formula (1.6) gives an alternative relation to (1.4):

The following lemma is a version of more recent result that was proved in [6] (second part
statement of Lemma 1), in which the character of asymptotical decreasing of the function R(t;s)
seems to be more explicit rather than in (1.6).
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1058 A. IMOMOV, A. MEYLIYEV

Lemma 1.1. [f the condition (1.5) holds, then

o N@® M(t; s)
R(t;s) = (o)1 [1 E— ] , (1.7)
where
NV L <(/V\7/§')(1;V> —1 as t— oo. (1.8)

Here M (t;0) =0 for all t > 0 and M(t;s) — M(s) as t — oo, where M(s) is GF of invariant
measures of MBP and

1/(1-s)
dzx

M(s) = L)

1

1.2. Aim and basic assumptions. The representation (1.5) implies that the second moment
2b := f’(1-) = oo. If b < oo, then it takes place with v = 1 and L(t) — b as t — oo and we
can write asymptotic formula in type of (1.3). This circumstance suggests that we can look for some
sufficient condition such that an asymptotic relation similar to (1.3) will be true provided that (1.5)
holds. So the aim of the paper is to improve the Lemma 1.1 and thereafter to refine (1.4) and to
improve some earlier well-known results by imposing an additional condition on the function £(s).

Let
Aly) =y"L (;)

for y € (0,1] and rewrite (1.5) as

[f]: fF(A—y) = yA(y).

Note that the function yA(y) is positive, tends to zero and has a monotone derivative so that
yN (y)/A(y) — v as y | 0 (see [3, p. 401]). Thence it is natural to write

yAN'(y)
Asl: =v+ d(y),
A L )
where §(y) is continuous and d(y) — 0 as y | 0.
Throughout the paper [f,,] and [As] are our basic assumptions.
Since L(A\x)/L (x) — 1 as x — oo for each A > 0, we can write

=1+ o(x), (1.9)

where o(x) — 0 as x — oo. If there is some positive function g(x) so that g(z) — 0 and
o(x) = O(g(x)) as x — oo, then L(x) is said to be SV-function with remainder at infinity (see [3,
p. 185], condition SR1). As we can see below, if the function §(y) is known, it will be possible to
estimate a decreasing rate of the remainder o(x).

Using that A(1) = £(1) = ag integration [As] yields
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Therefore, we have
Y

£(3) o [ %

Changing variable as « = 1/t in the integrand gives

x

)

L(x) =ag exp/(tt)dt, (1.10)
1

where ¢(t) = —0(1/t) and £(t) — 0 as t — oo. It follows from (1.9) and (1.10) that

AT
L(Az) :exp/g(tt)dtzl—i—g(a:) as x — 00

xT

for each A > 0, where g(z) — 0 as z — oo. Thus,

Az

/ESﬁﬂdt:ln[lJrQ(x)]:Q(x)JFO(Q?(UC)) as x — oo.

xT

Applying the mean value theorem to the left-hand side of the last equality, we can assert that
e(z) =O(p(x)) as =z — oo. (1.11)

Thus, the assumption [Ag] provides that £(s) to be an SV-function at infinity with the remainder
in the form of o(z) = O(6(1/x)) as x — oo.

1.3. Results. Our results appear due to an improvement of the Lemma 1.1 under the basic
assumptions. Let

Ot s) = / S(R(u: s))du, U(#) := B(£:0).
0

Needless to say R(t;s) — 0 as t — oo, due to (1.7). Therefore, since §(y) — 0 as y | 0, we make
sure of

O(t;s)
=

| =

/5(R(u; du = o(1) as - oc.
0

Thus, U(t; s) = o(t) as t — co. Herewith a more important interest represents the special case when

o(y) = Ay). (1.12)
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1060 A. IMOMOV, A. MEYLIYEV

Remark. The case (1.12) implies that £(z) be an SV-function at infinity with the remainder in

the form of r
o(x) :O< (x)) as T — oo.

a:.l/

So, under the condition (1.12) our results appear for all SV-functions at infinity with remainder o(z)
in the form above.
Theorem 1.1. Under the basic assumptions

N(t) O(t) 6(t)
q(t) = OLC 1_ﬁ+0 5 as t— oo, (1.13)
here and everywhere N (t) is the SV-function satisfying (1.8). In addition, if (1.12) holds, then
N(t) In [agrt + 1] Int
q(t) = (yt)l/V 1—T+O T as t— oo. (114)
Theorem 1.2. Under the basic assumptions
N(t) 14 v U(t) O(t)
Py () = 1— - 1.15
(vt) 11(2) 2 o ol (1.15)
as t — oo. In addition, if (1.12) holds, then
In [agvt + 1] Int
iy ) = MO (1 - Lt vInfa e 1.1
(vt) 11(%) 20 3 ; tol~ (1.16)
as t — oo.
Let P;j{*} :=P{x | Z(0) =i} and consider a conditional distribution
}P’Z'[(Hu){*} =P {¥[t +u < H < o0}.
It was shown in [7] that the probability measure
Qi(t) = lim P2 () = j} = 2P0 (1.17)

defines the continuous-time Markov chain {W (t),t > 0} with states space £ C N, called the Markov
O-process (MQP). According to the definition

Qij(t) =Pi{Z(t) =j | H = oo},

so MQP can be interpreted as MBP with non degenerating trajectory in remote future.
In a term of GF the equality (1.17) can be written as following:

Giltys) ==Y Qij(D)s? = [F(t;s)] ' G(t; 9), (1.18)

JjEE
where GF G(t;s) := Gi(t;s) = E [SW(t) | W(0) =1] and

OR(t;s)
s

G(t;s) = —s forall ¢>0.
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Combining the backward and the forward Kolmogorov equation we write it in the next form
f(F(t;5))
f(s)
Since F(t;s) — 1 as t — oo uniformly for all s € [0,1) according to (1.18) it is suffice to

consider the case i = 1.
Theorem 1.3. Under the basic assumptions

(W) VGt 5) = 7 (SN (E)(1 + plt; 5)), (1.20)

G(t;s) =s forall ¢t>0. (1.19)

where the function m(s) has an expansion in powers of s with nonnegative coefficients so that
m(s) = Z - m;s) and {7, € E} is an invariant measure for MOP. Moreover, it has a form of
J

s 1
- L, , 1.21
) = ATy (1 = s> (1.21)
where L (x) = L7(%). Furthermore, p(t;s) = o(1) as t — oo. In addition, if (1.12) holds, then
1 In[A(1 — 1 1
plt;s) = — +3” n [A( ts)”H ] —l—o(I;t> as t — oo. (1.22)
v

Note that in accordance with Tauberian theorem for the power series (see [4, p. 513], Ch. XIII,
§ 5, Theorem 5) the relation (1.21) implies

n
1 1
jzzlﬂ'j ~ mn +V£7|—(n) as n — o9,

where I'(x) is Euler’s gamma function and (L, L)(*) = 1.
Let D(t;z) := P{q(t)W(t) < z}. In [6] (Theorem 21) it was proved, that if [f,] holds, then

Jim D(t;) = D(x),

where -
1
v (6 :—/eede r)=——""—"+.
=, )= g
Theorem 1.4. Let
A(t:0) = / e dD(t: 2) — U(0)] .
0
If the basic assumptions and (1.12) hold, then
1 Int
sup A(t;0) = t}yi(l +o(1)) as t— oo. (1.23)
0€(0,00) v 13

Theorem 1.4 yields that from Berry—Esseen type inequality (see [4, p. 616], Ch. XVI, §3,
Lemma 2) follows the following corollary.
Corollary 1.1. Under the conditions of Theorem 1.4
Int
sup |D(t;z) —D(z)|=0(— ) as t— .
z€(0,00) 3
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2. Auxiliaries. The following lemma improves the statement of the Lemma 1.1.
Lemma 2.1. Under the basic assumptions

1 1 t
ANR(Es) Ad—s T 0/5(R(u, s))du.

If, in addition, (1.12) holds, then

1 _ 1
A(R(t;s))  A(l—s)

1
=vt+ —Inv(t;s) + o(lnv(t;s))
v
as t — oo, where v(t;s) = A(1 — s)vt + 1.
Proof. From [As] we write

RA'(R)
A(R)

=v+I(R),

@.1)

(2.2)

(2.3)

since R = R(t;s) — 0 as t — oo. By the backward Kolmogorov equation 0F /0t = f(F) and

considering representation [f,] the relation (2.3) becomes

dA(R)  A(R) _
=g =R +(R) = ~A*(R)(v + 6(R)).

Therefore,

1
d|——= —vt| = d(R)dt.
hm)”] "
Integrating (2.4) from 0O to ¢, we obtain (2.1).
To prove (2.2) we should calculate integral in (2.1) putting §(y) = A(y). Write

1 1 t
Ammm‘Aa—@—”+/MMwwm.

(2.4)

(2.5)

Since A(y) = y”L(1/y) and R(t;s) — 0 as t — oo for s € [0,1), the integral in the right-hand

side of (2.5) is o(t). Hence

A(R(t;s)) = Au(zt_sf) + O<A152t'_s;)> as t— oo,

where v(t;s) = A(1 — s)vt + 1. Therefore,

U(t;s) = /A(R(u; s))du = %ln v(t;s) +o(lnv(t;s)) as t— co.
0

This together with (2.5) implies (2.2).
Lemma 2.1 is proved.
In the proof of our results we also will essentially use the following lemma.

(2.6)
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Lemma 2.2. Let
o(y) =y —yK(y),
where K(y) — 0 as y | 0. If, in addition, to the basic assumptions (1.12) holds, then

1 1
Ll—|=L|-]1+0OA as 4+ 0. 2.7
(507) =2 (5) arome) a @)
Proof. Since the function L(x) = z¥A (1/z) is differentiable, by virtue of the mean value
theorem we have
T B (1K K
L(l—K) E(x)—ﬁ(l_K:U)l_Kx, (2.8)

where K := K (1/z) and 0 < v < 1. Since o(z) = O(L(z)/x"), from (1.10) and (1.11) it follows
that

2(u
L'(u) =L(u)— =0 <il(+’/)> as  u — 00. (2.9

Denote u = (1 —vK)x/(1 — K). Since K (1/x) — 0, then u ~ = and L(u) ~ L(x) as x — oo.
Therefore after using (2.9) in the equality (2.8) and some elementary transformations the assertion
(2.7) readily follows.

Lemma 2.2 is proved.

3. Proofs of results. Proof of Theorem 1.1. Putting s = 0 in (2.1), we have

1 1
— =vt+ —F+O(¢ (3.1)
Aa@) e O
and by elementary arguments we get to assertion (1.13). Similarly putting s = 0 in (2.2), we
obtain (1.14).
Theorem 1.1 is proved.
Proof of Theorem 1.2. Considering together the backward and the forward Kolmogorov equa-
tions and seeing [f,], we write
OF(t;s) _ f(1—R(t;s)) _ R(t;s)A(R(; s))

gs  f(s) - f(s)

Thence at s = 0 we deduce

a(DA (a(t))

ao

P (t) =

Hence using (1.13) and (1.14) the relations (1.15) and (1.16) easily follow.
Theorem 1.2 is proved.
Proof of Theorem 1.3. 1t follows from (1.19) and [f, ] that

)= R (t; 5) 1
Gltis) ==y £ (R(t; s>>' G2

On the other hand, (2.1) entails

N(t;s U(t; s
R(t;s):(yi)l/g <1_ (o)

(1+ 0(1))> as t— oo, (3.3)
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where N (t;5) :== L~V (1/R(t;s)) and U(t;s) = /t5(R(u;s))du = o(t) as t = oo. From (3.3)
0

we conclude that

R(t;s) = q(t)N(t; s) <1 B U(t; s)

N(t) V2t

Since R(t;s)/q(t) — 1 uniformly for s € [0,1), then N(¢;s)/N(t) — 1 for all s € [0,1). But in
accordance with (1.9) and (1.12)

(14 0(1))) as t — oo.

L (R_l(t; s)) B 1
L) ”O<t>

and, therefore,

N(t; s)
N(t)

Combining [f,] and (3.2)-(3.4), we obtain
()N (¢) <1 1+ vU(ts)

(vt)1+1/v 2 +

—1+(’)<1> as t— oo. (3.4)

G(t;s) = 1+ o(l))) as t— oo. (3.5)
The representation (1.20) with evanescent (1.22) follows from (2.6) and (3.5).

To show that 7(s) is GF of invariant measure, from (1.19) we obtain the following functional
equation:

Q

(t;s
E(t; )
since F'(t + 7;8) = F(1;F(t;s)) (see [11]). Then taking limit as 7 — oo it follows from this
equation that

~—

Gt+T1;s)=

G(t; F(t;s)) forall 7 >0,

w(F(t;8)).

This is equivalent to the equation

T = Zinj(t).
€€
Thus, {r;,j € £} is an invariant measure for MQP.
Theorem 1.3 is proved.
Proof of Theorem 1.4. Consider the Laplace transform

(t;0) := Ee OO = q(¢:0(¢)),

where 0(t) = exp{—0q(t)}. From [f,] and (1.19) we write

RO\ L (R 0(1)
L(t:6) = 6(0) ( o) ) L/ 00) (36)
It follows from (2.2) that
1 1 1
AR 00)) — AI=00) vt + - In[A(1 —6(t))vt + 1] 4+ o(Int) (3.7)
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—X

as t — o0o. Since 1 —e™® ~ x — 22/2 as x — 0, then according to our designation

A= 000) =002 (g ) (1= joa)a+ o))

as t — co. By Lemma 2.2 with K (y) = y/2
(=) =< (i) (+05)) = 1o

A1 —0(t)) =0"A(q(t)) (1 + (’)(1)) as 1t — oo,
since ¢(t) = (’)(N(t)/tl/l’) and v < 1. Thence considering (3.1)

A(1—0(t)):gy<1—V12h;t(1+o(1))> as t— oo

Then

vt
By using (3.9), we can write (3.7) in the following form:
1 1+0" (1 1 Int

— ut - ="
v 1+ 6v 2t

ARG e L+ 0“”)

and, therefore,

R~ No® 0 <1 1 Int

(Vt)l/u( 01/)1/1/ 1+06v 3t
as t — oo, where Ny(t) := L/ (1/R(t; 0(t))).

(1+o(1)

Since R(t;s)/q(t) — 1 forall s € [0, 1), then by force of (3.10) it is necessary that

R(t:0(t)
W
where |¢(0)| < oo at any fixed 6 € (0, 00). Therefore, according to (1.9)
L (R (t:0(1)))
L(g*(t))

as t — oo,

=1+ O(A(q(t))) as t— oo

or the same

Thus, (3.10) becomes

R(t;0(t)) =

OB 1t
(Vt)l/u (1+0V)1/1/ 1+06v V3t

(1+o(1)

as t — oo.
Further, by using (3.8) and (3.11), we can rewrite (3.6) as

R(t;0(t)\"" 1
VU(t;0)=| ——= 1 — t
(t;60) <1—0(t) +0 ; as t— oo,
and by using (3.12), after some transformation we obtain

0¥ 14+vint
U(t; ) =W (0) (1 + — 5o 5 1 —1+ 0(1))) as t — oo.
The assertion (1.23) follows from (3.13).

Theorem 1.4 is proved.

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 8

1065

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)



1066 A. IMOMOV, A. MEYLIYEV

References

1. S. Asmussen, H. Hering, Branching processes, Birkhéuser, Boston (1983).

2. K. B. Athreya, P. E. Ney, Branching processes, Springer, New York (1972).

3. N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Univ. Press, Cambridge (1987).

4. W. Feller, An introduction to probability theory and its applications, vol. 2. Mir, Moscow (1967).

5. T. E. Harris, The theory of branching processes, Springer-Verlag, Berlin (1963).

6. A.A.Imomov, On conditioned limit structure of the Markov branching process without finite second moment, Malays.

J. Math. Sci., 11, Ne 3, 393-422 (2017).
7. A. A. Imomov, On Markov analogue of QQ-processes with continuous time, Theory Probab. and Math. Statist., 84,
57-64 (2012).
8. A. N. Kolmogorov, N. A. Dmitriev, Branching stochastic process, Rep. Acad. Sci. USSR, 61, 55-62 (1947).
A. G. Pakes, Critical Markov branching process limit theorems allowing infinite variance, Adv. Appl. Probab., 42,
460488 (2010).
10. E. Seneta, Regularly varying functions, Springer, Berlin (1976).
11. B. A. Sevastyanov, The theory of branching stochastic processes (in Russian), Uspekhi Math. Nauk, 6(46), 47-99
(1951).
12. V. M. Zolotarev, More exact statements of several theorems in the theory of branching processes, Theory Probab.
and Appl., 2, 245-253 (1957).

Received 31.01.19

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 8



