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DIRECT AND INVERSE APPROXIMATION THEOREMS
IN THE BESICOVITCH -MUSIELAK -ORLICZ SPACES
OF ALMOST PERIODIC FUNCTIONS

IPSIMI TA OBEPHEHI TEOPEMM HABJINKEHHSI
Y IMIPOCTOPAX BE3UKOBUYA - MYCEJIAKA - OPTTUYA
MAWMXKE NEPIOJJUYHUX ®YHKIIA

In terms of the best approximations of functions and generalized moduli of smoothness, direct and inverse approximation
theorems are proved for Besicovitch almost periodic functions whose Fourier exponent sequences have a single limit point
at infinity and their Orlicz norms are finite. Special attention is paid to the study of cases where the constants in these
theorems are unimprovable.

V TepmiHax Halkpanmx HaOmKeHb QYHKIIH Ta y3araJbHEHUX MOIYJIB IIaAKOCTI TOBEJCHO MPsAMi Ta 0OSpHEHI alpoKCH-
MamiidHi TeopeMu Uil Maibke mepionuuHux 3a besmkoBndeM (YHKIH, MOCHimoBHOCTI KoedilieHTIB Pyp’e SKHUX MarOTh
€IMHYy TPaHUYHY TOYKY B HECKIHUEHHOCTI, a ixHi Hopmu Opinya € ckinueHHHMH. OCOONIHBY yBary NpHUIiICHO BUBYCHHIO
BUIIA/IKIB, KOJIM CTaJi y LUX TeopeMax HElOKpallyBaHi.

1. Introduction. The establishment of connections between the difference and differential properties
of the function being approximated and the value of the error of its approximation by some methods
was originated in the well-known works of Jackson (1911) and Bernstein (1912), in which the first
direct and inverse approximation theorems were obtained. Subsequently, similar studies were carried
out by many authors for various functional classes and for various approximating aggregates, and
their results constitute the classics of modern approximation theory. Moreover, the exact results
(in particular, in the sense of unimprovable constants) deserve special attention. A fairly complete
description of the results on obtaining direct and inverse approximation theorems is contained in the
monographs [14, 28, 30, 31].

In spaces of almost periodic functions, direct approximation theorems were established in the
papers [8, 12, 23, 24, 26]. In particular, Prytula [23] obtained direct approximation theorem for
Besicovitch almost periodic functions of the order 2 (B2-a.p. functions) in terms of the best approx-
imations of functions and their moduli of continuity. In [24] and [8], such theorems were obtained,
respectively, with moduli of smoothness of B2-a.p. functions of arbitrary positive integer order and
with generalized moduli of smoothness. In [26], direct and inverse approximation theorems were
obtained in the Besicovitch— Stepanets spaces BSP. The main goal of this article is to obtain such
theorems in the Besicovitch—Musielak — Orlicz spaces BSnp. These spaces are natural generaliza-
tions of the all spaces mentioned above, and the results obtained can be viewed as an extension of
these results to the spaces BSnm.

2. Preliminaries. 2.1. Definition of the spaces BS\;. Let B®, 1 < s < o0, be the space
of all functions Lebesgue summable with the sth degrees in each finite interval of the real axis, in
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which the distance is defined by the equality

T 1/s
1
Dy (f9) = | Jim o [ 17(0) = g(@)l*da
7

Further, let 7 be the set of all trigonometric sums of the form 7y (z) = Z:ll age™® N € N,
where \;, and ay, are arbitrary real and complex numbers (A, € R, a; € C).

An arbitrary function f is called a Besicovitch almost periodic function of order s (or B*-a.p.
function) and is denoted by f € B*-a.p. [20] (Ch. 5, § 10), [10] (Ch. 2, § 7), if there exists a sequence
of trigonometric sums 7y, 7o, . .. from the set T such that

lim D, (f,7n) = 0.

N—oo

If s > s > 1, then (see, for example, [12, 13]) B®'-a.p.C B®-a.p.C B-a.p., where B-
a.p.:= Bl-a.p. For any B-a.p. function f, there exists the average value

T

A} = Jim . [ fa)da.

0

The value of the function A{f(-)e”*'}, A € R, can be nonzero at most on a countable set. As a
result of numbering the values of this set in an arbitrary order, we obtain a set S(f) = {\g}ren of
Fourier exponents, which is called the spectrum of the function f. The numbers Ay, = A, (f) =
= A{f(-)e" '} are called the Fourier coefficients of the function f. To each function f € B-a.p.

with spectrum S8(f) there corresponds a Fourier series of the form Zk A,\kei)‘km . If, in addition,
f € B%-ap., then the Parseval equality holds (see, for example, [10], Ch. 2, §9)

AP =D 1A

keN

Further, we will consider only those B-a.p. functions from the spaces BSP, the sequences of
Fourier exponents of which have a single limit point at infinity. For such functions f, the Fourier
series are written in the symmetric form

S[fl(x) =D Ape™,  where Ay = Ag(f) = A{f(-)e M}, (2.1)

kEZ

Ao =0, A = =g, |Ak‘ + ’A_k| > 0, >\k+1 > M. >0 for k > 0.

Let M = {M(t) }rez, t > 0, be a sequence of Orlicz functions. In other words, for every k € Z,
the function My (t) is a nondecreasing convex function for which M (0) = 0 and M (t) — oo as
t — oo. Let M* = { M} (v) }rez be the sequence of functions defined by the relations

My (v) :=sup{uv — My(u) : u >0}, keZ.

Consider the set I' = TI'(M*) of sequences of positive numbers v = {7;}rez such that
Zkez M () < 1. The modular space (or Musielak—Orlicz space) BSy is the space of all
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functions f (f € B-a.p.) such that the following quantity (which is also called the Orlicz norm of
f) is finite:

£l = A kezll, ) = sup {ZmAm - ye r<M*>}. 22)

kEZ

By definition, B-a.p. functions are considered identical in BSy if they have the same Fourier series.

The spaces BSn defined in this way are Banach spaces. Functional spaces of this type have
been studied by mathematicians since the 1940s (see, for example, the monographs [21, 22, 25]). In
particular, the subspaces Sy of all 27-periodic functions from BSy; were considered in [3, 5]. If
all the functions M}, are identical (namely, My (t) = M (t), k € Z), the spaces Sy coincide with
the ordinary Orlicz type spaces Syy [15]. If My (t) = prtP*, pr > 1, ux > 0, then Snp coincide
with the weighted spaces S, ,, with variable exponents [2].

If all functions My (u) = uP (p_l/pq_l/p/>p, p > 1, 1/p+1/p = 1, then BS\ are the
Besicovitch — Stepanets spaces BSP [26] of functions f € B-a.p. with the norm

1/p
HfHM = Hf”BSP = H{AAk(f)}kEN”lp(N) = (Z ‘A)\k(fﬂp) : (2.3)

keN

The subspaces of all 27-periodic Lebesgue summable functions from BSP coincide with the
well-known spaces SP (see, for example, [28], Ch. XI). For p = 2, the sets BSP? = BS? coincide
with the sets of B?-a.p. functions and the spaces SP with the ordinary Lebesgue spases of 27-
periodic square-summable functions, i.e., S? = Ls.

By G, we denote the set of all B-a.p. functions whose Fourier exponents belong to the interval
(=An, A\n) and define the value of the best approximation of f € BSy by the equality

Ex,(f)m = Ex,(f) s, = o 1f = glm- (2.4)

2.2. Generalized moduli of smoothness. Let @ be the set of all continuous bounded nonnegative
pair functions ¢(¢) such that ©(0) = 0 and the Lebesgue measure of the set {t € R: ¢(t) = 0} is
equal to zero. For an arbitrary fixed ¢ € ®, consider the generalized modulus of smoothness of a
function f € BSum

we(f,0)y = sup sup {nykcp()\kh)]flk(fﬂ Dy E F} , 0>0. (2.5)

Consider the connection between the modulus (2.5) and some well-known moduli of smoothness.
m

Let © = {6;} be a nonzero collection of complex numbers such that Z o 0; = 0. We associate
J:

the collection © with the difference operator AQ(f) = AQ(f,t) = Zm Oﬁj f(t — jh) and the
J:

modulus of smoothness

wo(f:6)pp = sup AR (f)lly-
|h|<&
Note that the collection O(m) = {Qj = (—1)/ (7;), ji=0,1,... ,m} , m € N, corresponds to the
classical modulus of smoothness of order m, i.e.,
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w@(m)(f7 5)M = win(f, 5)1\/[
For any k € Z, the Fourier coefficients of the function A (f) satisfy the equality

m

[AR(AR (] = AN D e
§=0
Therefore, taking into account (2.2), we see that, for pg(t ‘Z] 09 e Ut Wee (f, 6)M =

m
2

= wo(f,0)y;- In particular, for @, (t) = 2™|sin(t/2)|™ =

w@m(f: 5)M = wm(fa 6)1\/[
Further, let

(1 —cost)z, m € N, we have

Fu(f,1) = fula) = 2h/f

be the Steklov function of a function f € BSwg. Define the differences as follows:

AL = AL ) = Fa(f,0) = £(8) = (Fu = D)(£, 1),
A A A m— m - m—k [ T
Rp(f) o= Bp(f,0) = AHAPY L) = (Fa—1"(f8) = Sk k( k)Fm(f,t),
k=0
where m = 2,3,..., Fpo(f) :== f, For(f) := Fip(Fri(f)) and I is the identity operator in BSnm.
Consider the following smoothness characteristics

G (£,0) == sup ARy 0> 0.
0<h<$

It can be shown [6] that wg,, (f, )y = Wm(f, )y for for @ (t) = (1 —sinc t)™, m € N, where
sinc t = {sint/t, when ¢ # 0, and 1, when ¢ = 0}.

In the general case, moduli similar to (2.5) were studied in [3-5, 8, 11, 19, 26, 32, 34].

3. Main results”.  3.1. Jackson-type inequalities. In this subsection, direct theorems are
established for functions f € BSn in terms of the best approximations and generalized moduli of
smoothness. In particular, for functions f € BSn with the Fourier series of the form (2.1), we prove
Jackson-type inequalities of the kind as

T

E)\n(f)MSK(T)W¢<f,)\> , 7>0, neN.
"M

Let V(7), 7 > 0, be a set of bounded nondecreasing functions v that differ from a constant on
[0, 7].

Theorem 3.1. Assume that the function f € BSw has the Fourier series of the form (2.1).
Then, for any 7 > 0, n € N and p € ®, the following inequality holds:

E)\n(f)M S KTMD(T)WSO <f7 ;—) ’ (31)
"M

* The results of this section was supported by the project “Innovative methods in the theory of differential equations,
computational mathematics and mathematical modeling” (project number 0122U000670).
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where

e v(T) —0(0)
K () := vEl\I}f’r) I (7, v) 32)

and

T
Io(T,0) == ke&}n}in/ap (/\k) do(t). (3.3)
el 0 n

Furthermore, there exists a function v, € V(T) that realizes the greatest lower bound in (3.2).

In the spaces Ly of 2m-periodic square-summable functions, for moduli of continuity wy,(f; )
and @y, (f;9), such result was obtained by Babenko [7], and Abilov and Abilova [6], respectively. In
the spaces SP of functions of one and several variables, this result for classical moduli of smoothness
was obtained in [27] and [1], respectively. In the Musielak —Orlicz spaces Sng, similar result was
obtained for generalized moduli of smoothness in [3].

In the Besicovitch — Stepanets spaces BSP, a similar theorem was proved in [26]. It was noted
above that in the case when all functions My (u) = u? (pfl/qul/p/)p, p>1,1/p+1/p =1, we
have BSm = BSP and [|f|ly; = Ifl gg»- In the case p = 1, the similar equalities BSy = BS!
and ||flly; = HfHle obviously can be obtained if all My(u) = u, k € Z, and the set T" is
a set of all sequences of positive numbers v = {yx}rez such that ||[v||;_(z) = supgez v < 1.
Comparing estimate (3.1) with the corresponding result of Theorem 1 from [26], we see that in the
case when BSy; = BS!, the inequality (3.1) is unimprovable on the set of all functions f € BS!,
|f = Ao(f)llyg # 0. Furthermore, Theorem 1 [26] implies the existence of the function v, € V(7)
that realizes the greatest lower bound in (3.2).

Proof. In the proof of Theorem 3.1, we mainly use the ideas outlined in [7, 16, 17, 26, 27],
taking into account the peculiarities of the spaces BSy. From (2.2) and (2.4), it follows that for any
f € BSm with the Fourier series of the form (2.1), we have

Ex,(Fye = 1 = Sn(f)llm —Sup{ > wlAr(f)]: v € F}7 (3.4)

k| =n

where S, (f) := Zlen Ap(f)ePw®.

By the definition of supremum, for arbitrary ¢ > 0 there exists a sequence ¥ € I', ¥ = (),
such that the following relations holds:

> AlAe(f) +e > sup > wlAk(f)]: yET

|k|>n |k|>n

For arbitrary ¢ € ® and h € R, consider the sequence of numbers {p(Axh)Ak(f)}rez. If there
exists a function Ay (f) € B-a.p. such that, for all k € Z,

Ap(AF(f)) = p(Arh) Ar(f), (3.5)

then here and below we denote by [|[AY(f)|lm the Orlicz norm (2.2) of the function A7 (f). If
such a B-a.p. function A} (f) does not exist, then to simplify notation we also use the notation
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|AY(f)||m, meaning by it the ing-norm of the sequence {p(Axh)Ag(f)}rez. In view of (2.2) and
(3.5), we obtain

IAY Fllag = sup Y wmeMeh)[Ak(F)l: v €T p > > Arp(Ah)|Ak(f)| =

k| >n o
= In,lp(T;U) A Sl A < \eh) — In,go 7'71)) )
o(r) — 0(0) “%nfyk\ W)+ Ik%m ] )
For any u € [0, 7], we get
I, (T, .
14% Fline 2 'l)(T’)cp— 1)12())) > Al Ak +
’ |k|>n
Aku In7 T, ’U)

The both sides of inequality (3.6) are nonnegative and, in view of the boundedness of the function

, the series on its right-hand side is majorized on the entire real axis by the absolutely convergent

series () Z\k\> Y| Ak (f)|, where K(¢) := max,cr ¢(u). Then integrating this inequality with
>n

respect to dv(u) from 0 to 7, we get

/ 185 fllygdo(w) > Tng(r,0) 3 5l 44 f)
k[ >n
+ Y alal | fo(3) dotw) - 1ptro)
|k|>n 0 "

By virtue of the definition of I,, ,(7,v), we see that the second term on the right-hand side of
the last relation is nonnegative. Therefore, for any function v € V(7), we have

/IIAquIMdv( > Ig(r,0) 3 Al Ak(f)

k|=n

> Ing(m,0) [sup ¢ Y wlAe(f):yeTp —e ],
P

wherefrom due to an arbitrariness of choice of the number &, we conclude that

/ 8% i) 2 oo (7, 0) B, (D

Hence,
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1 1 u
Bnfyn = gy [ 1% Aatot) < ——5 [ (£55) . 6)
0

n,$
0 M

whence taking into account nondecreasing of the function w,, we immediately obtain relation (3.1).
Theorem 3.1 is proved.
Now we consider some realisations of Theorem 3.1. Setting ¢, (t) = 22 (1 — cost)2, a > 0,
Weo (f,0)y = wa(f;6)yp, 7=, and v(u) =1 —cosu, u € [0, 7], we get the following assertion.
Corollary3.1. For arbitrary numbers n € N and « > 0, and for any function f € BSm with
the Fourier series of the form (2.1), the following inequalities hold:

(=1
2

1 7 i
Ey, (f)a < aa/wa <f,) sinu du, (3.8)
M 22171(5) 0 )\n M
where
I (3>— inf f | — cos K4 %sinudu (3.9)
"\2/)  keNi>n An ' '
0
a
If, in addition, 3 €N, then
22+1
I, (9) - (3.10)
2
51

and the inequality (3.8) cannot be improved for any n € N.
Proof. Estimate (3.8) follows from (3.7). In [27] (relation (52)), it was shown that for any 6 > 1
and s € N the following inequality holds:

/(1 — cos 0t)® sintdt >
0

s+1

s+ 1’

v
An
the monotonicity of the sequence of Fourier exponents {\ }rcz, we see that for % € N, indeed, the
equality (3.10) holds.

which turns into equality for § = 1. Therefore, setting s = % and 0 = ,v=mn,n+1,..., and

o
- +1
Let us prove that in this case, the constant 22a 1 in inequality (3.8) is unimprovable for % e N.
It suffices to verify that the function
FH(@) =7+ Be ™% + bt (3.11)

where ~y, 8 and § are arbitrary complex numbers, satisfies the equality
% +1 7 t\
B\, (f )y = W/wa (f*,)\n> sintdt, o> 0. (3.12)
0 M
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We have Ey, (f*)y; = 6] + [0], the function [|A7 e flly = 22 (18] + [6))(1 — cosu)% does not

decrease with respect to w on [0, 7|. Therefore, w, < I, )\> = [|AY D f*llyg an
n

M

T

2a+1 . . t .
2] E/\n(f )M_/wa <f ’An> sintdt =

PR 0 M

2a+1 o N
= (181 +14]) a 2/1—cost2sintdt =0.

0

Corollary 3.1 is proved.

It was shown in [27] that I,,(s) > 2 when s > 1 and I,(s) > 1+ 2°~! when s € (0,1).
Combining these two estimates and (3.8), we obtain the following statement, which establishes a
Jackson-type inequality with a constant uniformly bounded in the parameter n € N.

Corollary3.2. Assume that the function f € BSw has the Fourier series of the form (2.1) and
|f — Ao(f)llyg # O- Then, for any n € N and o > 0,

Ex,(f)yg < Cata <f, ;) : (3.13)
"M

where cq =272 for a > 2 and co, =4 - 2_0‘/2/3 for 0 < a < 2. Furthermore, in the case where
a =m € N, the following more accurate estimate holds:

Ex,(flm < 4;m2/;/§wm <f, ;)M : (3.14)

Proof. Relation (3.14) follows from the estimate I, (%) >1+4+ which is a consequence of

1
\/57
the above estimates for the value of I,,(s) in the case « = m € N [27].

If the weight function vo(t) = ¢, then we obtain the following assertion.

Corollary3.3. Assume that the function f € BSn has the Fourier series of the form (2.1) and
3
a > 1. Then, forany 0 < 17 < Zﬂ and n € N,

T

By (g <~ [ o (f, ;) d. (3.15)
20‘/ sin® — dt "
0 2

0 M

Relation (3.15) becomes equality for the function f* of the form (3.11).

Inequalities (3.8) and (3.15) can be considered as an extension of the corresponding results of
Serdyuk and Shidlich [26] to the Besicovitch—Musielak spaces BSw, and they coincide with them
in the case BSyt = BS'. In the spaces SP of functions of one and several variables, analogues of
Theorem 3.1 and Corollaries 3.1 and 3.3 were proved in [27] and [1], respectively. The inequalities
of this type were also investigated in [8, 17, 27, 32, 34].

Proof. From inequality (3.7), it follows that
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DIRECT AND INVERSE APPROXIMATION THEOREMS ... 709

1 r ¢
Ea(f)y < ) O/ » <f, An) .

T

I <E> = inf / 1—cos )\i dt, a>0, neN.
2 keN, k>n An
0

. . 1 [* 3
In [35], it is shown that for the function F,(z) := / |sint|* dt, any h € <0, Z) and
T Jo

a > 1, the following relation is true:

where

112%521:1&(3;) = F,(h/2). (3.16)

Sinceforh:¥21(k‘2n)

r At o
1-— — dt =2
/( COsS >\n> 2/

0

3T
4

o T
* kt z B 2
I ( = inf /(1—cos> dt = inf 22/
keN:k>n keN:k>n
0 0

For the functions f* of the form (3.11), the equality

it e
Sin ——

AT
dt = 2% F,
o (35):

from (3.16) <w1th TE <0, ] and a > 1) we obtain

. At
sin ——

2,

! a r t
dt :22/ sin® B dt.
0

T

« 1 Lt
By (f )M:Tt/wa <f 7)\> dt
20/ sin® — dt "M
0 2

0

is verified similarly to the proof of equality (3.12).

Corollary 3.2 is proved.

In the case ¢(t) = @m(t) = (1 —sinc t)™, m € N, where, by definition, sinc ¢t = {sint/t, if
t#0, and 1, ift = 0}, for 7 = 7 and v(u) = 1 — cosu, u € [0; 7], from relation (3.7) we get

1 ﬂ~ .
E)\n(f)M S fn(m) !wm <f7 i)MSIHUduv

where

m
I,(m)= inf /(1 — sinc ) sinu du.
keN,k>n
0

Taking into account the estimation [33]
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i 2
1 — sinc <);i€u>>1—smu>(u), kE>n, wuel0;n],

o u N\

we have

s ™
1
In,(m) > /(1 — sinc w)™ sinu du > 7T2m/u2m sinu du =
0 0

om! [ — . g2m=2j w2 m 2m/!

=0

Thereby, the following corollary follows from Theorem 3.1.
Corollary3.4. For arbitrary numbers n € N and m > 0, and for any function f € BSm, with
the Fourier series of the form (2.1) the following inequalities hold:
mem f . U )
By, (f)M < Il K K m) /Wm <f, )\n> . sinu du,
0

where

In the case m = 1, we have 2K (1) = 72 — 4 and

™

2 2An
By, (Hp < 7T_4/c711 <f, ;) sinu du < 7:; 1 /djl (f,u)M sin A, u du.
0 0

72 _
M
If the weight function v () = u™*!, then we obtain the following assertion.
Corollary3.5. Assume that the function f € BSn has the Fourier series of the form (2.1) and
m > 1. Then, for any 0 < 7 < mand n € N,

7/ An

Ex, (N gwm—1< 2 >m)\n / B (f, ) g t™ dt. (3.17)

w2 —4
0

Ideed, applying Holder’s inequality, we find

/ <1 — sinc Aku) du™ "t > (m + 1)/ <1 - smu) u™ du =
An U
0 0

T g m

. um m+ 1 . m+1 (7% —4\"
:(m+1)/(u—31nu) duzﬂm_l /(u—smu)du —Wm_1< 5 > .

0

In the spaces Lo of 27-periodic square-summable functions, for moduli of smoothness @, (f; ),
the results of this kind were obtained by Abilov and Abilova [6], and Vakarchuk [32]. Note that in
the case f € BSym = Lo the inequality (3.17) follows from the result of [6] (see Theorem 1). For
m =1 and f € Lo, the statements of Corollary 3.5 and Theorem 1 from [6] are identical, and the
constant in the right-hand side of (3.17) cannot be reduced for every fixed n.
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4. Inverse approximation theorem.

Theorem 4.1. Assume that f € BSwn has the Fourier series of the form (2.1), the function
¢ € ® is nondecreasing on the interval [0, 7], 7 > 0, and o(7) = max{p(t): t € R}. Then, for any
n € N, the following inequality holds:

W (f, ;)M 39 (so (T,f) i <T);\an>) By, (ar (.

v=1

Proof. Let us use the proof scheme from [27] and [3], modifying it taking into account the
peculiarities of the spaces BSy and the definition of the modulus w,.

Let f € BS\m. For any € > 0 there exists a number Ny = Ny(e) € N, Ny > n, such that, for
any N > Ny, we have

Exy (P = IIf = Sn—a(F)llyy <e/e(7).
Let us set fo := Sn,(f). Then in view of (3.5), we see that
IAT ()llag < IAEfo)llyg + IAFC = fo)lly <
< AL (fo)llpg + D) Exygia (g < IAF(fo)llyg + - (4.2)
Further, let S,,—1 := S,,—1(fo) be the Fourier sum of fy. Then by virtue of (3.5), for |h| < 7/A,,

we have

1A (folllyg = I1AF (fo = Sn—1) + AfSn-1llyy < ||9(T)(fo — Sn-1) +

, (4.3)

No n—1 A
T H, + Y\ H,
o ); ;so < . )
M
where H,(z) := |A,(f)| +|A-.(f), v=1,2,....
Now we use the following assertion from [27].
Lemma 4.1 [27]. Let {c,}}2, and {a,}°, be arbitrary numerical sequences. Then the fol-

lowing equality holds for all natural N1, No and N N1 < Na < N:

+ ) (P()\kh)’Ak(f)‘H <
M

|k|<n—1

Ny N No N N
E a,c, = an, E c, + E (ay — ay—1) E Ci — an, E cy. (4.4)
v=N1 v=N1 v=N1+1 1=V v=No+1

TA,

)\) , o =H,(x), Ny =1, Ny=n—1and N = Ny in (4.4), we get
n

Setting a, = ¢ <

1 0 (Tjn”) Hy(x) = o (Tl) S, (0) +

v= v=1

+21 (e (3) - (5) %H() —o (52 iﬂym

Therefore,
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(2) o () oo (B2) S
nl (so <TAAn,,> _ <T)\,, 1>> ZH
: nl (w (Tf) oY (T);Vn_l» Ex, (folnr: (4.5)

Combining relations (4.2), (4.3) and (4.5) and taking into account the definition of the function
fo, we see that, for |h| < 7/\,, the following inequality holds:

850 HM<Z(( ) o (1)) Bl +

which, in view of arbitrariness of ¢, gives us (4.1).

IN

IN

<

Theorem 4.1 is proved.

Consider an important special case when () = @o(t) = 22 (1 — cost)2 = 29|sin(t/2)
a > 0. In this case, the function ¢ satisfies the conditions of Theorem 4.1 with 7 = 7. Then for
« > 1 using the inequality 2 — y® < ax® '(z —y), z > 0,y > 0 (see, for example, [18], Ch. 1),

‘ «

and the usual trigonometric formulas, for v = 1,2, ..., n, we have
A T)\V_1> N < oW e ‘ TAy_1 O‘)
%) — =2 sin - <
a—1 «
v . )\y . )\y— 2 _
< 2% |sin ¥ sin Y — gin ~27L < o (;) Ay, = A1)

, o T

If 0 < a < 1, then the similar estimate can be obtained using the inequality z® —y% < ay®~!(z—y),
which holds for any = > 0,y > 0 [18] (Ch. 1). Hence, for any f € BSnm, we get the following
estimate:

a(f,I) gaG”) Z)\O‘ " = A)Bx (f)yy @ > 0. (4.6)
n M n

It should be noted that the constant in this estimate can be improved as follows.

Theorem 4.2. Assume that f € BSn has the Fourier series of the form (2.1). Then, for any
n € Nand a > 0,

w(ff) ( )Z ~ X2 E, (Fy (4.7)
M

v=1
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Proof. We prove this theorem similarly to the proof of Theorem 4.1. For any € > 0, denote by
No = Ny(¢) € N, Ny > n, a number such that, for any N > Np,

Bay (g = 17 = Swo1()lly < e

Let us set fo := Sn,(f), Sn—1 := Sn-1(fo) and |AR(f)lly = 1AL (f)lly> and use relations
(4.2) and (4.3). We obtain

1AR (Nl < 18R (o)l +€ (4.8)

and

1AL (fo)llyg < ‘QQZH +2QZ‘smW” H) <
a\° No n—1
<(1) DWEDRTE S (49)
where |h| < w/A\, and H,(z) = |A,(f)| +|A—.(f)], v=1,2,....
By virtue of (4.4), for a, = \S, ¢, = Hy(z), Ny =1, No=n—1and N = Ny,
n—1 No n—1 No No
D NH (@) =20 ) Hy(w)+ ) (A = AT) D Hi(w) = Ay ) H(w)
v=1 v=1 v=2 1=V v=n
Therefore,
No n—1 n No
XS TH, Y OXNH| =D (A -x)Y H| <
v=n v=1 M v=1 i=v M
< Z (\g = X2_1) B, (fo)a (4.10)

Combining relations (4.8), (4.9) and (4.10) and taking into account the definition of the function
fo, we see that, for |h| < 7/A,, the following inequality holds:

1A ()l < (j) ST - %) By (fyy + ¢

v=1

which, in view of arbitrariness of £, gives us (4.7).

Theorem 4.2 is proved.

In (4.1), the constant 7 is exact in the sense that for any ¢ > 0, there exists a function
f* € BSwm such that, for all n greater than a certain number ng, we have

@ (f’:f) > T (0 = A) B (F ) (4.11)
"M

n v=1
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Consider the function f*(z) = e*x®, where kg is an arbitrary positive integer. Then E, (f*)

forv=1,2,... ko, Ex, (f*)y; =0 for v > ko and

M= L

AT |
Sin ——
2,

x T o px a
oo (F5) 2 18% Sy 22
n M n

Since sint/t tends to 1 as ¢ — 0, then, for all n greater than a certain number ng, the inequality
2% sin Mg,/ (2A5)|* > (7 — €) AR, /An” holds, which yields (4.11).

Corollary 4.1. Suppose that f € BSw has the Fourier series of the form (2.1). Then, for any
n €N and a > 0,

Wa <f, ;) <a (;) ST O = A1) En, (Fy- (4.12)
n M n

v=1

If, in addition, the Fourier exponents \,, v € N, satisfy the condition
1= <C, v=1,2..., (4.13)

with an absolute constant C > 0, then
m 7\ —
-1
Wey <f7 )‘H>M <Ca (>\n> ;:1 A EN, (f)M (4.14)

5. Constructive characteristics of the classes of functions defined by the generalized moduli
of smoothness. Let w be the function (majorant) given on [0, 1]. For a fixed a > 0, we set

BSMHE = {f € BSm: walf.0)y; = Ow(d)), & —0+}. (5.1)

Further, we consider the majorants w(J), ¢ € [0, 1], which satisfy the following conditions: 1) w(d)
is continuous on [0, 1]; 2) w(d) 13 3) w(d) # 0 for § € (0,1]; 4) w(d) — 0 for 6 — 0; as well as the
condition

i:)\f)_lw (;) - O[A;w (;) } (5.2)
v=1 v n

where s > 0, and A,, v € N, is a increasing sequence of positive numbers. In the case where
A = v, the condition (5.2) is the known Bari condition (Bj) (see, e.g., [9]).

Theorem 5.1. Assume that the function f € BSwm has the Fourier series of the form (2.1),
a > 0 and the majorant w satisfies the conditions 1—4.

1. If f € BSMHY, then the following relation is true:

Ba,(f)yg = O [w (;)] . (53)

2. If the numbers \,, v € N satisfy condition (4.13) and the function w satisfies condition (5.2)
with s = «, then relation (5.3) yields the inclusion f € BSMHY.
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Proof. Let f € BSMHY. Then relation (5.3) follows from (5.1) and (3.13).
On the other hand, if f € BSng, the numbers \,, v € N satisfy condition (4.13) and the function

w satisfies condition (5.2) with s = «, and relation (5.3) holds, then, by (4.14), we get

Ve (f, ;) <Oy Neig, () < %Zkﬁ‘”w (;) =ofw (;N

= a
M noy=1 noy=1

where C; = a(27)® - C. Hence, the function f belongs to the set BSMHY .

Theorem 5.1 is proved.
The function t", 0 < r < «, satisfies condition (5.2) with s = «. Hence, denoting by BSniH,

the class BSMHY for w(t) = t" we establish the following statement.

Corollary5.1. Let f € BS\m have the Fourier series of the form (2.1), a > 0, 0 < r < a and

condition (4.13) holds. The function f belongs to the set BS\iHY], iff the following relation is true:

Ex,(Fp = O

In the spaces SP, for classical moduli of smoothness w,,,, Theorems 4.1 and 5.1 were proved in

[27] and [1]. In the spaces SP, inequalities of the form (4.14) were also obtained in [29]. In spaces L,
of 2m-periodic Lebesgue summable with the pth degree functions, inequalities of the kind as (4.14)
were obtained by M. Timan (see, for example, [30], Ch. 6, [31], Ch. 2). In the Musielak — Orlicz type
spaces, inequalities of the kind as (4.1) were proved in [3].
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