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NO JACKSON-TYPE ESTIMATES FOR PIECEWISE ¢g-MONOTONE q > 3,
TRIGONOMETRIC APPROXIMATION *

HEMOJKJIMBI OITHKY TUITY TKEKCOHA JJIsI KYCKOBO
g-MOHOTOHHOI, q > 3, TPUT'OHOMETPUYHOI AITPOKCUMAIIII

We say that a function f € Cla,b] is g-monotone, ¢ > 2, if f € C9 2(a,b), the space of functions possessing a
(¢ — 2)nd continuous derivative in (a,b), and f (4=2) is convex there. Let f be continuous and 27 -periodic, and change
its g-monotonicity finitely many times in [—m,7]. We are interested in estimating the degree of approximation of f
by trigonometric polynomials which are co-g-monotone with it, namely, trigonometric polynomials that change their g-
monotonicity exactly at the points where f does. Such Jackson-type estimates are valid for piecewise monotone (¢ = 1)
and piecewise convex (¢ = 2) approximations. However, we prove, that no such estimates are valid, in general, for
co-g-monotone approximation, when g > 3.

Kaxyrs, mwo ¢yukuis f € Cla,b] € ¢g-MOHOTOHHOMW, ¢ > 2, SKIWO BOHA Mae (g — 2)-Ty HelepepsHy IOXiaHy B (a,b)
i fla=2) ram omykia. Hexait f — HemepepBHa 27-mepiogudHa (yHKI[is, SKa 3MiHIOE€ CBOIO ¢-MOHOTOHHICTH CKiHYEHHE
4HCIo pasiB Ha [—r, 7). Hac uikaBisATh OLIHKU MOPSAKY HaOmwKeHHs QyHKUIl f TPUTOHOMETPHYHHUMM IOJIIHOMAMH, SKi
3MIHIOIOTH CBOKO -MOHOTOHHICTH caMe B THX Toukax, ae i f. Taki ouinku Tumy JI>keKcoHa crpaBeUIMBI Uil KyCKOBO-
MOHOTOHHOTO (¢ = 1) Ta KyckoBo-omykioro (¢ = 2) Habmmkens. OqHaK MU TOBOIMMO, IO JKOIHA 3 TAaKUX OLIHOK HE €
MOXKIIMBOIO, B3araji KaKy4H, Y KO-¢-MOHOTOHHIH armpokcumarii, ko q > 3.

1. Introduction and the main results. A function f € C|a, b] is called g-monotone, ¢ > 2, ¢ € N,
if f € C972(a,b), the space of functions possessing a (¢ — 2)nd continuous derivative in (a, b), and
f@=2) is convex there. For the sake of uniformity, for ¢ = 1, we say that f € Cla, b] is 1-monotone,
if it is nondecreasing in [a, b].

Let s € N and Y := {Y;} where Yy = {y;}7%, such that yos < ... < y1 < yos + 27 =: yo. We
say that a 27-periodic function f € C(R) is piecewise g-monotone with respect to Y5, if it changes
its g-monotonicity at the points Y;, that is, if (—1)""!f is g-monotone on [y;, y;_1], 1 < i < 2s.
We denote by A(q)(YS) the collection of all such piecewise g-monotone functions. Note that if, in
addition, f € C9(R), then f € A@(Y}) if and only if

2s

FOOT]t—w) >0, te [y mo)-

=1

Remark1.1. We do not consider the case where Y consists of an odd number of points, since
the only trigonometric polynomials in A(q)(Y) are constants.

We also need the notation W", r € N, for the Sobolev class of 2w-periodic functions f €
€ AC"=1(R), such that
< 2.

e
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For a 27-periodic function g, denote

gl := ess sup |g(z)].
TER

If, in addition, g is continuous, then, of course,
lgll = max lg )]

Similarly, for a function g, defined on the interval [a, b], we denote ||g||(4,5 1= esssup,cpqpl9(@)],
and if g € Cla,b], then glljay) = maXyepoy) [9(2)].
Let 7, be the space of trigonometric polynomials

n
T,.(t) = ap + Z(ak coskt + Prsinkt), ag, Bk € R,
k=1

of degree < n (of order 2n + 1) and, for 27-periodic function g € C(R), let
E ;= inf — 1T,
n(g) = it g —Tu

denote the error of the best approximation of the function g. If g € A(q)(YS), then we would like
to approximate it by trigonometric polynomials that change their ¢g-monotonicity together with g,
namely, are in A9 (Ys). We call it co-g-monotone approximation. Denote by

ED(g,Ys):= _inf  |g—T
T €TaNA@D (Y)

the error of the best co-g-monotone approximation of the function g.
It is well-known that for ¢ = 1 and ¢ = 2, if f € A(Q)(YS) NW" r >1, then

EW(f,Y:)=0(1/n"), n—o0 (1.1)

(see [2, 4-6, 9] for details and references).

It turns out, and proving this is the main purpose of this article, that for ¢ > 3, (1.1) is, in general,
invalid for any r, s € N and every Y € Y.

Main result of this paper is the following theorem.

Theorem 1.1. For each q > 3, r € N, s € N and any Yy € Y, there exists a function
f e ADY,)NW?" such that

limsupn” B (f,Y,) = co.

n—oo

We will also prove the following less general but more precise statements. Combining all of
them, in particular yields Theorem 1.1.

ISSN 1027-3190. Vkp. mam. scypn., 2022, m. 74, Ne 5



664 D. LEVIATAN, O. V. MOTORNA, 1. A. SHEVCHUK

Theorem 1.2. For each q > 3, s € N and any Y; € Y, there exists a function
feaD(y)nwa?
such that
E{0(f,Ys) 2 C(q,Yy), neN, (12)

where C(q,Ys) > 0 depends only on q and Y.

Corollary1.1. For each ¢ > 3, r < q—2, s € N and any Y, € Y, there exists a function
f e ADY)NW?" such that

EWD(f,Y,) > C(q,Ys), neN,

where C(q,Ys) > 0 depends only on q and Y.
Theorem 1.3. For each q > 3, s € N and any Y, € Y, there exists a function

fe A(q)(ys) AWt
such that
nEW(f,Ys) > Cq,Ys), neN, (13)

where C(q,Ys) > 0 depends only on q and Y.

Final result is the following theorem.

Theorem 1.4. Let ¢ >3, p > q, s € Nand Y; € Y. For each sequence {e,}22 , of positive
numbers, tending to infinity, there is a function f € A(Q)(Yg) N WP such that

lim sup 5nnp_Q+2E7(Lq) (f,Ys) = o0
n—oo

We prove Theorem 1.2 in Section 2, Theorem 1.3 in Section 4 and Theorem 1.4 in Section 6.
In the proofs we apply ideas from [3], and we have to overcome the constraints and challenges of
periodicity.

In the sequel, positive constants ¢ and ¢; either are absolute or may depend only on 7, ¢, p
and m.

2. Eulerian type ideal splines and proof of Theorem 1.2.

Definition 2.1. For each b € (0, 7] and r € N denote by ., the 2m-periodic function such that

1) Erb € Crila

2) erp(z)dr =0,

—T
and

3) ") = sgnax — m, @ € (—b, 27 — b) \ {0}, where

Ty
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v =1-0b/m, (2.1)

so that

Remark2.1. By its definition, &,.; is a spline of minimal defect of degree r, in particular, €, - is
called an Eulerian ideal spline.
Put

1 r—1
The following properties of ¢, readily follow from its definition
erp(z) = Fr(z) + prp(z), € [-b,2m — b, (2.2)

where p;.;, is an algebraic polynomial of degree < r;

1< H&?Yb) <2, whence e, €W, (2.3)

and, for each collection Yy such that {—b,0} € Y, and every ¢ > r, we have
erp € AD(YS). (24)

We need the following lemma (see [3, Lemma 2.4]).
Lemma 2.1. For each q > 3 and any function g € C972[—1,1] such that g'92) is convex on
[0, 1] and concave on [—1,0], we have

[ Fy—2 = gll=1,1y > ¢

Proof of Theorem 1.2. Given Y € Y, let

bi= min {yj-1-y}
and by shifting the periodic function f, we may assume, without loss of generality, that yo, = —b
and yo25—1 = 0. Obviously, it follows that yo,_o > b.
We will show that f := g,_o is the desired function. Indeed, by (2.3) and (2.4), g,_2p €
e AD(Y,) N W92, So we have to prove (1.2).
To this end we take an arbitrary polynomial T;, € T, N A@) (Ys). Then the function g, :=
=T}, — pg_ny satisfies g\ (z) > 0 for x € [~b,b], whence 2g\? (z/b) > 0 for x € [—1,1]. Let

Fy_o(x) := Fy_2(z/b) and gp(x) := gn(z/b). By Lemma 2.1, we obtain

Hf - Tn”[*ﬂ',ﬂ'} = ”Fq—2 - gn”[*ﬂ',ﬂ'} > ”Fq—2 - gnH[—b,b} =

e el [ RS

[_171]

which yields (1.2).
Theorem 1.2 is proved.
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3. Approximation of |x|. Recall that

Fl(.%')

|z

In this section we prove, for trigonometric polynomials, an analog of Bernstein’s estimate
b
11 — Pollj—p,5 > ¢

which is valid for every algebraic polynomial P, of degree < n (for the exact constant c, see [8]).
To this end, we first extend to an arbitrary interval [—b,b] the Bernstein—de la Vallée-Poussin
inequality

| To|| < nllTll, (3.1)

which is valid for every T}, € T,,.
We begin with the following simple lemma.
Lemma 3.1. [f f € C[—a,a] is an even function and g € C[—a,a] is an odd function, then

1 l—aa) < I+ 9l—aa) and gll—aa < IIf + 9ll-aa-

Proof. Let M := ||f + g||(—a,q) @nd assume to the contrary, that there is a point = € [—a, a] such
that | f(z)| = K > M. Then either |f(z) + g(z)| > K, or |f(—z) + g(—=z)| = |f(z) — g(z)| > K,
a contradiction. The proof for g is similar.

Lemma 3.1 is proved.

The following result is a special case of I. 1. Privalov’s theorem (see, e.g., [7, p. 96, 97]).
However, we give another proof that provides sharp estimates.

Lemma 3.2. For each b € (0, 7] and every trigonometric polynomial T,, € Ty, there holds the
inequality

n ™
HT’V/LH[_I;/Q’I;/Q] < b ”TnH[—bb} < ?”THH[—b,b}- (3.2)

S —

2

Proof. Let b € (0,7/2]. First we prove the inequality
n
T2 0)] < — 1 Tall_55- (33)
sinb

First we show, that (3.3) holds for any odd polynomial T}, € 7,,. Indeed, denote by P, the algebraic
polynomial such that P, (sint) = T,,(¢). Then, by Bernstein inequality for the algebraic polynomials,

n n
o Pl sinbsing) = 7 1 Tnll -3

|T,(0)] = [P(0)] <

Thus, (3.3) is proved for odd polynomials 7,,. In order to prove (3.3) for an arbitrary polynomial
T, € T,, we represent T,,, in the form T}, := U, + V,,, where U,, € T, is an even polynomial, and
V,, € T, is an odd polynomial. Then 7 (0) = V,/(0) and by Lemma 3.1 HVnH[_Bj,] < ||Tn||[_1}71}]-
Hence (3.3) is valid for any T, € 7,,.

Now for the polynomial 7),(x + t) € T,, = € R, it follows by (3.3) that
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n

sinb

T(@)] < — Tl

x—i),x—l—l;] :
Hence, for x € [—b/2,b/2], we get

n n
@) < —5 1 Talliw—b/2002) < —5 |1 Talli-b1:
sin — sin —
2 2
which is (3.2).
Lemma 3.2 is proved.

We are ready to prove Lemma 3.3. We follow the arguments in [1, p. 434, 435].
Lemma 3.3. For each b € (0, 7] and polynomial T,, € T,,, we have

c1b

11 = Toll—p5) = . (3.4
where ¢ > (327)~! ~ 0.01.
Proof. Let
C* — i
©167]

and assume to the contrary, that there is a polynomial T}, € 7y, such that

< c*b
b 2n

HFl _Tn

(3.5)

Then there is an even polynomial T,, € T,, such that

c*b
S —

I,
[~bb — n

and
T,(0) = 0.

Hence T}, may be represented in the form

n

. kt

T,(t) =a1(1 —cost) + ...+ an(1l — cosnt) =2 E aj, sin? (2> .
k=1

Thus, for T}, (t) := T},(2t), we have

c*b

n .

121 — Tull—p/2,6/2) < (3.6)

Denote T (;
Tn(t) = n(t) (Tn((]) = T,/L(O)) .

sint

Then 7, is an odd trigonometric polynomial of degree < 2n.
First we prove that

7ol [—b/2,/2) < 4 (3.7

ISSN 1027-3190. Ykp. mam. scypn., 2022, m. 74, Ne 5



668 D. LEVIATAN, O. V. MOTORNA, 1. A. SHEVCHUK

Indeed, by virtue of (3.6), one has, for /8 < |t| < b/2,
*“b 8c*|t 1
()] < 20t + S8 < gt + 21 <2 + ) It] < 2.2J¢].
n n 2mn
Hence, if /8 < |t| < b/2, then

220 _ _L.1b 11w

=117 < 4.
sint ~ sinb/2  sin7w/2 "

| (8)] <
Thus, assuming the contrary, that there is a point ¢y € [—b/2,b/2] such that

17nll[—b/2,/2) = ITn(to)| = M > 4,

we conclude, that ¢y € [—b/8,b/8]. Since Lemma 3.2 implies that

bHT/

b
llicassg < sinb/d (2n —1)M < 2nM ——

sin b/4

< 2nM

/4 = 2v2mnM,

c*b c*b b b
we get, fort € I, := |to — —,t0 + - “11)
n n

170 ()] > |7 (to)| — |70 (t) — Tn(to)| >

v

7 (to)] = [t = tol [|7a]| , = M — [t —toll 77 ll—s/a,04) =

> M = c"2v2rM = (1-v2/8) M > 0.8M.

Hence, for t € I,,, we have

which, in turn, implies

3M c*b
17~ 26k, = (3 = 2) IRl 2 IRl > 5,

contradicting (3.6). Therefore, (3.7) is proved.
By virtue of Lemma 3.2 and (3.7),

< 2 167 n
7l iz a < < 5 @n=Dlmllpzp2 < —-n=—5.

t
tn
n(l)] = d d pere
0] = | [l < 2
0
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whence

*

c
Hence, for t = , we get
n

t *b
%—Eﬁﬁm<%—”>:tzc,

contradicting (3.6) and, in turn, (3.5).

Lemma 3.3 is proved.

The following lemma is a consequence of Lemma 3.1.

Lemma 3.4. For each b € (0,7|, any linear function | and every trigonometric polynomial
T, € T, we have

01b

1571 + 1= Toll[—bp) > (3.8)

n

Proof. We represent T;, in the form T,, = T, +T,, where T, is an even polynomial, and 7, is an
odd polynomial. Let I(z) = az + k =: l,(z) + l.. Denote T, := T, — I € Ty, the even polynomial.
By (3.4), |[|[F} — TEH > c1b/n. Since 1, — T, is an odd function, it follows by Lemma 3.1 that (3.8)
is valid.

Lemma 3.4 is proved.

4. Proof of Theorem 1.3. The following result readily follows from [3, Lemma 3.1].

Lemma 4.1. Given q > 3. If a function f € C972[—2b,2b] has a convex (q — 2)nd derivative
£9=2) on [0,2b] and a concave (q — 2)nd derivative f(9=2) on [—2b,0], then

2|2, < el e (4.1

Indeed, let || f4=2)||(_y;) # 0 and z* € [=b,b] be such that |1~ (2%)| = Hf<¢-%\h_bb].1f
either z* = 0 and f(@=2(0) < 0, or z* > 0, then [3, (3.1)] yields,

p2 e =] <o)

04 ~ 0,20 < c2l| fll[—2b,28)-

[7b’b]

Otherwise (4.1) follows from [3, (3.2)].
Recall that F.(z) = |z|z"~!/r!. We have the following lemma.
Lemma 4.2. For every b € (0, 7], every trigonometric polynomial T,, € Ty, satisfying

T () >0 for |t] < b,
and any algebraic polynomial P, of degree < r, we have
nl|Fy + Pr — Tyll—pp > c3b”, neN. 4.2)
Proof. Since Fr(rfl) = F) and Py*l) is linear, it follows by Lemma 3.4 that

Ty BV - P(Pl)H[ b/2,b/2] = %b
—b/2, n
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Now, T — F=Y _ pr=1 5 convex in [0, b] and concave in [—b, 0], so, by virtue of Lemma 4.1,

Trgr—l) _ Fr(r_1) _ Prgr_l)H > o <b>r‘
[-b/2,b/2] © con \ 2

1 b r—1
||Tn - Fr - Pr”[-b,b] > g (2) ‘
Hence, (4.2) follows with ¢3 > 27 "¢y /co.
Lemma 4.2 is proved.
Proof of Theorem 1.3. Given Y € Y, again, let

b:= min{yit1 — i},
JEZ

and by shifting the periodic function f, we may assume, without loss of generality, that yo, = —b
and yo,—1 = 0. Then f := g,_1 is the desired function. Indeed, by (2.3) and (2.4), 415 €
e AD(Y,) n W91, So, we have to prove (1.3).

To this end, take an arbitrary polynomial T}, € 7, N A@) (Ys). By (2.2),

gq—1p(2) = Fyo1(x) + pg_1p(x), x € [=b,2m — b,

where p,_1; is an algebraic polynomial of degree < g — 1. Therefore, Lemma 4.2 implies (1.3) with
O(Qa YS) 2 Cqu_l‘
Theorem 1.3 is proved.
5. Auxiliary results. Let S € C*°(R), be a monotone odd function such that S(z) = sgnz,
|x| > 1.
Put
§j 1= HS(J)H, j € Np.
Fix d € (0, 7], and for A € (0,d/3], let
g x— 2\
~ L >\ )
Snalw) = (m—2)\+d
_S —

it zel0,2r—d,

), if xe[-d,0l.

Finally, denote
Sxa(@) == Sxa(x) = va, € [—d,2m —d],

where 4 was defined in (2.1), extended periodically to R.
Note that
HS@H = \7s;, jeEN, (5.1)

and
iy

/ Sya(w)dz = 0.

—Tr

Definition 5.1. For each A\ € (0,d/3] and v € N denote by €, 4 the 2m-periodic function
erax € C°(R) such that
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™

1) erax()dz =0
and -
2) ££2A = Srd(z), z € [—d,2m —d].

Note that, for each j € N, we have

[~d, 2 — d] N suppel’y] = [~d + A, —d + 3] U[A, 3)], (5.2)
and that (5.1) implies
| =2, jen (53)
Also,
8%AH <c4, j=0,...,r, inparticular, HagAH < 2. 5.4

Lemma 5.1. We have

leraxn — erall < csA. (5.5)

Proof. Put ¢; := cj4—¢€jqx, j = 1,...,7. Since / gj(x)dx = 0, it follows that for any

1 < j <r thereis an x; € [—m, | such that £;(x;) = 0. Hence, we first conclude that

27 —d

el < [ sens = Suate)] do = 52
—d

Assume by induction that |[e;]| < cA for some j < r, and note that &, = ¢;. Thus, for z €
€ [zj41 — 41 + 7,

x

(@) = lega@) — ez = | [ sl de| < men

Tjy1

Lemma 5.1 is proved.

Lemma 5.2. Let 0 < b < d and r € N be given. Let n € N and T,, € T, be such that
tT,(er)(t) > 0 for |t| < b. For any algebraic polynomial P, of degree <, if

. c3b” d . b" d
< - = -
0<)\_mln{2nc5,3} mln{06n73}7

then
2n||5rjd7>\ + PT — Tn”[—b,b] > Cng. (5.6)
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Proof. Inequalities (4.2) and (5.5) imply

2nlleran + Pr — Talli—op) = 2nllera + Pr — Tall—pp) — 2nll€rax — rall >

> 2e3b” — 2nes A > e3b’.

Fixr>2and m e N, and let ¢ :=r + 1 and

cr = st
For 0 < b < d and each n > 3¢gb”, denote
b’r‘
>\n,b =C —
n
and
bTm
fn,b =cCr nm Erd Ay pe
Then we have the following lemma.
Lemma 5.3. We get
\ ffflfm)H <1, (5.7)
and
j C9 .
]f,g{g]gnfm, j=0,...r (5.9)
For each collection Yy such that yss = —d, y2s—1 = 0 and d = min;<;j<2s:{y;—1 — y;}, we have
frp € AW(YY), (5.10)

and, for every polynomial T,, € Ty, satisfying tTT(Lq) (t) > 0 for |t| < b and any algebraic polynomial
P, of degree < r, we obtain

2" fup + Pr = Tl > 100" ™. (5.11)

Proof. First, (5.9) and (5.10) are clear from the definition of &, 45, , and (5.4), respectively.
We prove (5.7) and (5.8) together. By virtue of (5.3), we have, for j =0,...,m,

. prm b —Jj oy b —J o Ny
FUED| = ¢ c6— | si=cls;t— (c6—) s5=cIndmprim=i) 2L
7b nm n J 6 °m n ] 6 )

n Sm

that is, (5.7) and (5.8).
N T -1 - bTm -1
Finally, we prove (5.11). Let P, := <C7 m) P, T, = <C7 > T, apply Lemma 5.2
n

nm
and get
1 1 bT’m - .
nm+ ||fn,b + Pr — Tn”[—b,b] = nm+ cr poo ‘ Er,b,A + Pr — Tn >
n [—b,b]
b”'m c bT’
> nmtle n7m ;n —. Clobr(m—H).

Lemma 5.3 is proved.
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6. Proof of Theorem 1.4. Set r := ¢ — 1 and m :=p — r. Given Y; € Y, let

d:= min {yi1 - ik
and by shifting the periodic function f, we may assume, without loss of generality, that yo5 = —d
and y95_1 = 0. Obviously, it follows that 35,9 > d.
We will prove, that the desired function f may be taken in the form

o
= § : fnk+1:bk7
k=1

where integers nj and numbers by are chosen as follows. We put n; := [3cd"| and by := d/4.
Then let ny be such that by := Ay, , < b1/3. Assume that n; and b, have been chosen. Then we
take ng1 > 2ng, to be such that

3Angeir b < bk, (6.1)
Enpprcr0bl Y >k, (6.2)
and
co croby, (mﬂ)
ne o~ 10n;”+1 ‘ 63)
Denote
brt1 := Ay iy by (6.4)
It follows by (5.2) and (6.4) that, for any j € N,
[—d, 27 — d] N supp fy(%ﬁ)bk = [—d + bgt1, —d + 3bg41] U [brt1, 3bg11]- (6.5)
Hence by (6.1), for any j € N,
supp f}lkiz )bk supp fn;;i ) =92 (6.6)
We divide the proof of Theorem 1.4 into two lemmas.
Lemma 6.1. We have
fewrnAD(yy). (6.7)

Proof. Inequalities (5.8) and (5.9) imply, for all j =0,...,p—1,

Cc

]féghbk < keN
Hence, for each j =0,...,p — 1,
|| ) N c 5~ 1
;’fnk+17bk <c ];nk—i-l < ngy—c,
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so that f is well defined on R, it is periodic, f € CP~!, for each j =0,...,p — 1,
Dy = N )
FO@) =D s @),
k=1

which, combined with (5.10), implies that f € A9 (Y;).

Then (6.6) means, that for each point = € (—d,0)U (0, 27 —d) there is neighbourhood, where the
sum in f("+7) consists of at most one term not identically zero. Hence, f € C*((—d,0)U(0, 2r—d))
and, in particular, f € CP((—d,0) U (0,27 — d)). Combining with (5.7), we have Hf(p)H <1

Lemma 6.1 is proved.

Lemma 6.2. For each k > 2, we have

i Men B (1,Y5) > k/2. (6.8)
Proof. Fix k > 1. Then by (6.1) and (6.4), forevery 1 < j <k —1,
r+1 .
fT(Lji_h)bj ($) = 0’ if ‘x’ S bk

Hence,

k—1
Pr(x) = fuypny (@), 2| < b, (6.9)
j=1

is an algebraic polynomial of degree < 7.
Now, by (5.9) and (6.3),

> > o N1 %o crobi™tY
9 o 9 k
D0 Mhnanll e 3o o <Y sm = < S b (610)
j=k+1 j=k+1 I+l k+2 j—0 k+2 k+1
Finally, we take an arbitrary polynomial 75, ., € Tn,,, N A9 (Y;) and note, that tTr(Lz)Jrl > 0 for

|t| < br < d. Therefore (6.9), (6.10) and (5.11), imply

[o.¢]
Hf - Tnk+1 H > Hf - Tnk+1 H[—bk,bk] = P?' + Z fnj+1,bj - Tnkﬂ
i=k

[7bk7bk]

(e.)
- (PT + fnk+1,bk - Tnk+1) + Z fnj+1,bj

>
=k [~ by
o0
Z HPT‘ + fnk+1:bk - TM-H H[—bk,bk] - Z fnj+1,bj >
j=k+1
r(m+1 r(m+1 r(m+1
ClObk( ) ClObk( ) B 4Clobk( )
m+1 o m+1 m+1
Mgt DMy SNy

Combining with (6.2), we obtain (6.8).
Lemma 6.2 is proved.
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