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EXISTENCE AND COMPACTNESS OF SOLUTION
OF SEMILINEAR INTEGRO-DIFFERENTIAL EQUATIONS
WITH FINITE DELAY

ICHYBAHHSA TA KOMITAKTHICTB PO3B’A3KY
HAMIBJITHIMHAX IHTET' PO-IUP®EPEHIIAJIbHUX PIBHSIHb
31 CKIHYEHHUM 3ANI3BHEHHAM

We present some existence and uniqueness results for a class of functional integro-differential evolution equations generated
by the resolvent operator for which the semigroup is not necessarily compact. It is proved that the set of solutions is compact.
Our approach is based on fixed point theory. Finally, some examples are given to illustrate the results.

HageneHo aesiki pe3ynbraTy II0J0 iCHYBaHHS Ta €JMHOCTI PO3B’SI3KIB JESKOT0 KJIacy (yHKI[IOHATBHUX iHTErpo-AudepeHLIi-
QIIBHUX CBOJIIOLIHUX PiBHSHb, HOPOKEHUX PE30JIBBEHTHUM OIEPAaTOPOM, A€ HaIiBrpyra HeoOOB sI3KOBO KoMMakTHa. Jlo-
BEJICHO KOMITaKTHICTh MHOXKMHH PO3B’si3KiB. Harl miaxin rpyHTyeThesi Ha Teopil HepyXxoMmux Touok. Kpim Toro, HaBeneHo
KUTbKa MPHKIA/IIB, IO LTIOCTPYIOTh OTPUMaHI Pe3yJIbTaTH.

1. Introduction. Nonlinear evolution equations appeared in many fields of applied mathematics,
and also in other branches of science as material science, biological sciences, physics and mechanics.
For example, the nonlinear reaction-diffusion equations from heat transfers, Cahn — Hilliard equations
from material science, the nonlinear Klein—Gordon equations and nonlinear Schrodinger equations
from quantum mechanics and Navier — Stokes and Euler equations from fluid mechanics. See the
books [1-3, 10, 11].

The study of the existence of mild solutions for integro-differential equations and inclusions in
abstract spaces has been done by several authors, see the works [4-9, 13-15].

In this paper, we consider the following semilinear integro-differential problem:

t t

u'(t) = Au(t) + /U(t — s)u(s)ds + F'| t,uy, /p(t, s,us)ds | ae. teR4,
0 " (1.1)
u(t) = o(t), te Jo,
where Jy = [—r, 0], the operator A is the infinitesimal generator of a Cp-semigroup {7'(¢)}+>0 on a

real Banach space (F, || - ||) with domain D(A), F: Ry x C(Jy, E) x E — E, is a given function,
p: A xC(Jo,E) — E is a continuous function, with A = {(¢,s) € RT x R*; s >t} , and ¢ €
€ C(Jo, E). Forany t € RT, U(t) is a closed linear operator on E, with domain D(A) C D(U(t)),
which is independent of ¢.

For any function u defined on J = Jy UR, and any ¢t € R, we denote by u; the element of
C(Jo, E) defined by

w(0) =u(t+6), 60¢dJy,

where wu(-) represents the history of the state from time ¢ — r, up to the present time ¢.
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Here we are interested to study the existence of the mild solutions for the above partial functional
integro-differential evolution equations where the semigroup is not necessarily compact and we prove
the compactness of the set of the solutions.

Using methods and theorems of functional analysis, we propose a set of sufficient conditions to
ensure the existence of solutions. Specifically, to establish our main results we have used the theory
of the resolvent operator in the sense of Grimmer and Kuratowski’s measure of noncompactness.

2. Preliminaries. In this section, we introduce some notations, definitions, and preliminary facts
which will be used throughout,

BC(J,E) = {u ec(J, E)/su? u(t)]| < oo}

te

is a Banach space with the following norm:

[ulloo = sup [[u(®)]]  Yu e BO(J, E).
teJ

B represents the Banach space D(A) equipped with the graph norm
lullg = |Aulleo + |luljc  Vu € B.

The notation C*(R*, E) stands for the Banach space of all functions mapping RT into E which are
continuously differentiable, and the notation C(R™, B) stands for the space of all functions from R™
into B which are continuous.

We recall some knowledge on integro-differential equations and the related resolvent operators.

Definition 2.1 [16]. A resolvent operator for the problem (1.1) is a bounded linear operator
valued function, R(t) € L(E) for t > 0, satisfying the following properties:

(@) R(0) = I (the identity map of E) and ||R(t)| < MeP for some constants M > 0 and
B eR.

(b) For each u € E, R(t)u is strongly continuous.

(c) Forany u € E, R(-)u € CL(R*, E)NC(R*, B) and

R(t)u= AR(t)u + / Ut — s)R(s)uds = R(t)Au + / R(t — $)U(s)uds.
0 0

Theorem 2.1 [16]. Suppose that $(0) € D(A). Then (1.1) has a resolvent operator. Moreover,
if w is a solution of (1.1), then

R(t)¢(0)+/OtR(t—s)F<s,uS,/Osp(s,r,ur)dr>ds, tER,,

¢(t)v t e Jp.

u(t) =

In order to prove our main results, we need to recall the important properties of Kuratowski
measure of noncompactness.

Definition 2.2 [12]. Let (E,d) be a metric space and B(FE) be the set of all bounded subsets
of E. The Kuratowski measure of noncompactness « is a function defined on B(E) by

a(D) = inf{e > 0/D has a finite cover by sets of diameter less or equal to €} VD € B(FE).
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Using the above definition, we can prove the following lemma.

Lemma 2.1 [12]. Let (E,d) be a complete metric space and Dy, Dy be a bounded subsets of
E. Then:

(1) a(D1) =0 if and only if Dy is compact,

) a(D1) = a(Dy);

(3) forany A € R, a(ADy) = |Aa(Dy);

(4) forany u € E, a({u} U D) = a(Dy);

(5) a(Conv(D1)) = a(Dy), where Conv (D) is the convex hull of D;

(6) if D1 C Do, then a(D1) < a(D3);

(7) a(D1U D3) = max{a(D1),a(D2)};

(8) a(D1 + D2) = a(Dy) + a(D2), where Dy + Dy = {u+v € E/u € Dy and v € Da}.

Theorem 2.2 [17]. Let E be a Banach space, V. C E be a bounded open neighborhood of 0
and N : V — E be a continuous operator satisfying:

(1) the Ménch condition: if C is a countable subset of V and C' C Conv({0} U N(C)), then C
is relatively compact,

(2) the Leary—Schauder boundary condition: x # yN(x) for all x € OV and 0 < v < 1.
Then Fix(N) = {x € E: x = N(x)} is nonempty.

Lemma 2.2. Let E be a Banach space, V- C E be a bounded open neighborhood of 0 and N :
V — E be a continuous operator satisfying the Ménch condition. Then Fix(N) is compact.

Proof. 1f Fix(N) = @, it is clair that Fix(/N) is compact. Now, if Fix(V) # &, let (z,,)pen C
C Fix(N). Then

(Jjn)nEN C m({o} U N(V))

By the Monch condition, we get {x,, : n € N} is relatively compact. Thus, there exists a subsequence
of (x,)nen that converges to some = € V. By the continuity of N, we conclude that z = N (z) €
€ Fix(N).

Lemma 2.3 [22]. Let I = [0,a] be a compact interval in R, E be a real Banach space and
B={u€ E; ||lu—u(0)| < b} withb € Ry. Assume that f be a function from I X B into a Banach
space F' which satisfies the Carathéodory conditions and the condition: for any subset X of B,

a(f(T'x X)) < igh(t,a(X))

for each closed subset T of I, where h: I x Ry — R, is a Kamke function. Let K be a bounded
strongly measurable function from I X I into the space of bounded linear mappings from F to E. If
V' is an equicontinuous set of functions I — B, then

o /K(t, s)f(s,u(s)ds; ueV) S/HK(s,t)Hh(s,a(V(S)))dS.
T T

Lemma 2.4 [18]. Let f,g € L'(R.,R), B,u € C(Ry,Ry) such that

s

u(t) SB(t)—}—/f(s)u(s)ds—}—/f(s) /g(T)dT ds VteRy.
0 0

0
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If B is nondecreasing function, then

s

u(t) < B(t) 1+/f(s)exp /(f(T)—i—g(T)dT ds | VteRy.
0

0

3. Main results.
Definition 3.1. A function u € C(J, E) is said to be a mild solution of the problem (1.1) if

S

R()6(0) + /O "Rt s)F(s, ", /0
(1), t e Jo.

p(s,r, ur)dr> ds, teR,,

u(t) = (3.1)

In order to give the first result of existence and uniqueness, we shall need the following hypothe-
ses:

(H1) The function F: J x C(Jo, E) x E — FE is Carathéodory and satisfies the following
conditions:
(i) There exists f; € L'(R,) such that

1E(t ¢, x) = F(t, o, y)| < i) (10 = Ylloo + lz —yll) Vo, € C(Jo, E) and 2,y € E.

(ii) The function g : t € Ry — g1(t) = || F(¢,0,0)| € Ry belongs to L*(R,).
(Hz2) The function p: A x C(Jp, E) — E satisfies the following conditions:
(i) There exists fo € L'(R,) such that

lp(t,5,0) = p(t, 8, V)| < fa(s)¢ = Yl Vo,9 € C(Jo, E) and (¢ s) € A.

(i1) There exists a constant N > 0 such that
S
[lots.ro)ldr <N vs € ..
0

Theorem 3.1. Assume that the conditions (H1) and (H2) hold. Then the problem (1.1) has a
unique mild solution.

Proof. We put g = max(fi, f2). Assume that 8 > 0. For some constant A > 0, we introduce
the following real vectorial space:

BC.(J,E) = {u e C(J, E)/sup(e’gteAfgg(f)df”u(t)H) < oo}.
teJ

It is clair that BC(J, E) C BC.(J, E). This space, endowed with the norm

el = sup (et o 9O u(e) )
ted

for all u € BC,(J, E), is a Banach space.
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We consider now the operator N : BC,(J, E) — BC,(J, E) defined by

N - R()6(0) + /0 R(t—s)F(s,us, /0
¢(t)7 t e Jy.

s

p(s,r, ur)dr> ds, teRy,

It is clair that the fixed points of that operator are solutions of the problem (1.1). Using the Banach
fixed point theorem, we prove that N has a unique fixed point. Then we obtain to show that the
operator IV is well defined and contractive.

Step1: N is well defined.

In fact, let w € BC,(J, E), then, for any t € R, we get

I(Nu) @) < Me™|[¢(0)]|+

t s
+Meﬁt/e_55 F s,us,/p(s,r,uT)dr — F(5,0,0) + F(s,0,0)||ds <
0 0
t s
< o) + 2 [ P fi(s) | e +| [ osirunyir| |dst
0 0

t
+Meﬁf/e—ﬂ5\|F(s,o,0)|yds <
0
t t

< Me™|(0)]] +M€ﬁt/6'Bsfl(S)HusHooderMeﬁt/e5SHF(870,0)HdS+
0 0

—i—MeBt/ B f1(s) /||p s, up) — p(s,r,0) 4+ p(s,7,0)|dr | ds <

t t
< M9 + e [ P fi(s) s + 2 [ i) / £ s ool | s+
0 0
t t
+Meﬁt/ B f1(s) /||p s,r,0)||dr ds—i—MeBt/eBSHF(S,O,O)HdS <
0 0
t t S
< M) + e [ e Pg(s) s + 2™ [P pi(s) | [ g0l | dst
0 0 0
t t
+MN€’8t/6_ﬁsf1(s)ds—|—Meﬁt/e_ﬁs||F(s,0,0)||ds§
0 0
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t
< MeP||g(0)|| + Me? / ( g(s)eM o 9(€)d£> (e—w’ g(é)dge—ﬁsuusHm)dSJr
0

t s
+Me[3t/e_’85f1(8) /66’" <9(7’)e)‘f59(5)d§> (e"\foTg(g)dge_’BTHUrHoo)dr ds+
0 0

t t
+MNeBt/fl(s)ds—i—Meﬁt/Hf(s,O,O)HdsS
0 0
< MM ()| + S full (3 90% 1) 1
t
e [ e ) (e ull (MO 1) ) 4+ AN Al s+ M lr <
0

M M
< M ([9(O0) | + Nlfullua + lgrll ) + = ullue™e o €% 1 Z2eP M o o) 1.
Then
ot M st Iy o(e)d
[(Nu)(®)ll < M ([6(0) | + Nl fullza + llgnll o) + e bSO ful. + | fillza).

We have proved that, for any ¢t € R,

e Pte M o 9% || (Nu) (1) <
A [T g(€)de M
< MM IOE (6 (0)| + N fill o + lgillan) + S-Ulull + [ ln) <

M
< M(lleO)ll + Nl fllzr + llgrllz1) + ~ Ul + L fillze) < oo

On the other hand, since ¢ € C(Jy, E), then | Nu(t)|| < oo for any ¢ € Jy.
Hence,

sup (e~ 71e ™o O] (Nu) (1)) < +oc,
ted

this means that the function Nu € BC\(J, E).
Step2: N is a contractive mapping.
In fact, let u,v € BC,(J, E), then, for any ¢t € R, we get

[(Nu)(t) = (Nv)(@®)[l =

t s s
= /R(t—s)F s,us,/p(s,r, up)dr | ds — /R(t—s)F s,vs,/p(s,r,vr)dr ds|| =
0 0 0

0
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S S

t
/R(t—s) F s,us,/p(s,r,ur)dr -F s,vs,/p(s,r,vr)dr ds|| <
0

0 0

s

S/HR(t—s)H F s,us, p(s,ryuy)dr | — F| s vs, p(s,r,vr)dr ds <

t

SMeBt/e’Bsfl(s) lus — vslloo + / s,ryuyp) — p(s,ryvp))dr|| | ds <
0

0

t
< Meﬁt/eBSfl(s)HUS —v5|yoods+Meﬁt/eﬂsf1(s) Fo (M)t — vp||sdr | ds <
0 0

o,

t

t
SMeﬁt/e5Sg(s)|]us—vs||ood8—|—M65t/e5Sf1(s)
0

0

g(r)||ur — vp||codr | ds <

o,

t
§Meﬁt/e_ﬁsg(s)ﬂus—v3||oods—|—M65t/ Bsfl g(r)||ur — vp||codr | ds <
0

o"\

t

< MePt /(g(s)eA o g(g)dﬁ) <6_>\f05 g(g)dge_ﬁ)s”us - UsHOO)dS_'—

0

QU

s <

t S
M [0 fi)( [ e (gl o) (N A, v )
0 0

S

t t
R / - /
Bt/<e>\fo g(f)d£> ds||u — v +Meﬁt/f1(s) /(ekfo 9(£)d£> dr | ds|lu — v, <
0 0

0

t

t
M
eu>5r+/g@msuu—mu+'@”“em>5r+/g@mSuu—mu
0

0

g@@ﬂW@@—WWWs(¥+M%M1

[©]
»
o
|
o)
~
|
o

)\u — v, forallteJ.

Therefore,

IN(u) — N(v)|« < W\u — 0|« forall u,v € BC.(J, E).
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Then, for A > M (1 + || fi||z1), IV is a contraction. By Banach fixed point theorem, the unique fixed
point of NV is the unique mild solution in BC,(J, E') of the problem (1.1).

Theorem 3.1 is proved.

For the next result, we present an application of the Monch fixed point theorem type to prob-
lem (1.1).

Theorem 3.2. Let E be a separable Banach space and F: Ry x C(Jy,E) x E — E be a
Carathéodory function, such that (Hs) is fulfilled, and the following condition holds:

(H3) {T'(t)}e>0 is operator-norm continuous for t > 0.
(Hy) There exist f € L' (Ry) such that f3 = e 7 f € L'(Ry) with 8 <0, and

|E(t, ¢, 2)|| < f&)(|olloo + ||z|| +1) forall ¢ €C(Jy,E), xz€E, ae te..

(Hs) There exists go € L*(Ry) such that, for all bounded D1 € C(Jy, E), Dy C E, we have

a(F(t,D1. Da)) < ga(0)(sup a(D1(0) + a(D2) ) for ae t€

where
D1(0) ={6(0): ¢ € D1}, 0 € Jo.
(He) There exists g, € L*(R.y) such that, for all bounded D € C(Jy, E), we have

a(p(t,s, D)) < g«(t) sup a(D(0)) fora.e. (t,s)€ A.
0 Jy
Then problem (1.1) has, at least, one mild solution and the solution set is compact.

Proof. We put g = max(f, f2), For some constant A > 0, we introduce the following real
vectorial space:

teJ

BC.(J,E) = {u e C(J, E)/Sup(eﬂte_)‘fffg(g)dEHU(t)]) < oo}
It is clair that BC(J, E) C BC.(J, E). This space, endowed with the norm
el = sup (Pte o SO ju(r)))
ted

for all u € BC,(J, E), is a Banach space.

We consider now the same operator N : BC,(J, E) — BC,(J, E) defined in the proof of The-
orem 3.1. It is clair that the fixed points of that operator are solutions of the problem (1.1). Using
the Monch fixed point theorem, we prove that IV has, at least, one fixed point. Let us prove that the
conditions of the Monch fixed point Theorem 2.2 are satisfied following several steps.

Step1: N is well defined.
We follow the same manner as in step 1 of the proof of Theorem 3.1.
Step2: N is continuous.
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In fact, let (u(™),cn be a sequence in BC, (I, W) such that u(™ — u in BC, (I, W). Then

t s
V)0~ (V) (Ol = | [ Bt = 9F {0, [ plo,rular | ds—
0 0
t s
—/R(t—s)F s,us,/p(s,r,ur)dr ds|| =
0 0
t r s s 7
= /R(t—s) F s,ug”),/p(s,r,u,(ﬂ"))dr —F s,us,/p(s,r,ur)dr ds

0 0 0 J

IN

S

t s
S/HR(t—s)H F s,ugn),/p(s,r,uq(n"))dr - F s,us,/p(s,r,ur)dr ds. (3.2)
0 0 0

t
The sequence (Fy,)nen, defined by F,: t € Ry — F,(t) = F(t,u%n),/ p(t,r, uﬁ"))>, satisfies

0
the conditions of the Lebesgue dominated convergence theorem. In fact, since F' is a Carathéodory
function and C(Jp, E') x E' is separable, then F' is measurable. For any n € N, the function h,, :

t
teRy — hp(t) = (t, ugn), / p(t,r, uq(ﬂ"))) is also measurable because u(™ and p are continuous.
0

As F, is the composite function of two measurable functions h, and F, it follows that F,, is
measurable too.

Since the sequence (u™),cn converges to u in BC,(J, E) and F is a Carathéodory function,
then, for any ¢ € Ry,

t t

F,(t)=F t,ugn),/p(t, r,ug,”)) — F t,ut,/p(t,r,uT)dr
0 0

Since the sequence (u(™),,cy is convergent, then (u(™),,cy is bounded by some positive constant
M;. Let n € N. By the Definition 2.1 and using the hypothesis (H4) and (H2), we get, for any
tc R+,

t
1E@0)) < £ | 16800 + / ot ru™ydr| 41| <
0
t
< 5O Il + [ |lptt ) = ot 0) 4 plt. 0 far 41| <
0

t t
< 1) [ 1 oo + / Fa ()™ oo + / lott,r, 0)ldr +1 | <
0 0
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< £ (Il oo + 12l s oot + N 1) <
< fO(My A+ || fol My + N + 1) = K f(t),

with K = My + ||fal[p1 M1 + N + 1 is a positive constant. Since f is measurable, then K f is
measurable. By the Lebesgue dominated convergence theorem, we obtain that the right-hand side of
the inequality (3.2) tends to 0 as n approaches to oo, this implies that ||(N u™)(t) — (Nu)(t) | —
— 0 as n — +oo. Thus, N is continuous.

Step3: N maps bounded sets of BC\(J, E') into bounded sets of BC,(J, E).

In fact, let d > 0 and By = {u € BC.(J, E)/||ul|+ < d}, we show that N(By) is bounded. By
the Definition 2.1 and using the hypothesis (H4) and (Hz), we get, for any ¢ € R,

t S
I(NW) O] < M| 6(0)] +Meﬁt/e—ﬁ8 P s,us,/p(s,r,ur)dr ds <
0 0
t S
< MeBthb(O)H —i—Meﬂt/e_ﬁsf(s) lus oo + /p(s,r, up)dr||+1 |ds <
0 0

t
< MeP!|p(0)]] + Me? / €55 £(5) sl oods +
0

t s t
+Meﬁt/e’85f(s) /Hp(s,r, uy) — p(s,7,0) + p(s,r,0)||dr | ds + Meﬁt/eﬁsf(s)ds <
0 0 0
t t s
< M) + e [ po) s + M™ [P f(5)| [ o)l | dst
0 0 0
t S
ue? [ ss)| [ lots.r.0)ar | ds + A s <
0 0
t t S
< M) + e [ Pg(s) s + 2 [P p() | [ ool i s
0 0 0
t S
ue? [0 s)| [ lots.r0)ar | ds + Are | s <
0 0
t
< MePH|p(0)|| + Meﬁt/e—%s <g(3)€/\f§g(£)d£>eﬂse—kf5 9|y || o ds+
0
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t s
+MePt / e B £(s) /e—ﬁr (g(r)e’\foT 9(€)d§> (eﬁre—/\for g<€)d§”“r”oo>dr ds—+
0 0

t

sate? [ 56) | [ lots,r0)lar | ds + el <
0 0

M t
< M $(0)]| + e ful. (Moo — 1)+
u t
iy [ e (s) (el (NS HOE 1) s+ MNE s+ M s <
0

M
< M||$(0)]| +Me (N + 1) f]l 2 + 76_‘%6”5 O® o (14 1 £l 20),

that 1s,
¢ M
e o 9% (Nu)(t)]| < M (0] + (N + D) fllz1) + A+ Flz) = b

On the other hand, since ¢ € C(Jo, E), we have ||[Nu(t)|| < sup;e, [|[¢(t)|| = l2 for any ¢ € Jo,
with /; and [y € R,.. Hence,

sup(eﬁte_kfotg(g)dgH(Nu)(t)H) <lh+l=1L
teJ

This means that || Nu|,. <, which proves that N(By) C B;. Thus N(By) is bounded.

Step4: N maps bounded sets of BC,(J, E) into equicontinuous sets of BC,(J, E).

In fact, let d > 0 and B; = {u € BC.(J, E)/||u|l« < d}. We show that N(By) is equicontin-
uous. Let ¢1,ty € [a,b] with t; < t2 and [a, b] is a compact interval in R . By Definition 2.1 and
using the hypothesis (#H4), (H3) and (H2), we get, for any u € By,

[(Nu)(t1) = (Nu)(t2)]| <

S

< [(B(t1) — R(t2))6(0)] + /R(tl—s)F s,us,/p(s,r,ur)dr ds—
0 0

to S

— [ R(ta — s)F'| s,us, [ p(s,r,up)dr |ds|| <
/ /
< I(R(t) = R(t2))6(0)] +/ (R(tr — 5) — R(ts — 8))F S,us,/p(s,r,ur)dr ds+
0 0

to

—i—/ R(ty — s)F s,us,/p(s,r,ur)dr ds <
t1 0
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< [[R(t1) = R(t2)l () ll0(0) |+

/p(s,r, up)dr|| + 1) ds+

0

+/ [R(t1 = s) = R(t2 = 8)||c(m) [ (5) (usoo +
0

to S
—|—/Meﬁ(t2_s)f(s) (usoo + /p(s,r, up)dr|| + 1) ds <
t1

0

< [[R(t1) = R(t2)ll c(m)llo(0)]| + / [R(t1 = 5) = R(t2 — )|l c(p) f (5) X
0
X (d + /|p(87 T, ur) - P(Sﬂ“v 0) + p(S,T, O)Hd?" + 1) ds+
0

to S
—I—/Meﬁ(t?S)f(s) (d—i— /||p(5,r, ur) — p(s,7,0) + p(s,r,0)|dr + 1) ds <
t1 0
< [[R(t1) = R(t2)ll () 1 2(0) |+

t1 s
+/]R(t1 — ) = R(ts — 5) |l ey £ (5) (d+/f2(r)umodr+zv+1> ds+
0 0

to S
—I—/Meﬂ(m_s)f(s) <d+/f2(r)u,«oodr+N+1) ds.
t1 0

Then

[(Nu)(t1) = (Nu)(t2) || < [[R(t1) = R(t2) ]l ()l (0) [+

t1
4 / IR(t — 5) — R(ta — )]l 0 F(s)(d + ]l fall s + N + 1)ds+
0

to
+ / MeP9) £(s)(d + d|| fol 1 + N + 1)ds.
t1

By hypothesis (H2), we have [|[R(t1) — R(t2)| (k) tends to 0 as ¢ — ta. This leads to the
right-hand side of the above inequality tends to 0 as ¢; — to independently of u. Thus, ||(Nu)(t1) —
— (Nu)(tg)H — 0 as t1 — to.

We denote by w (u, €) the modulus of continuity of u € E on the interval [0, T], i.e.,

w” (u, €) = sup { |lu(t) — u(s)||; t,s € [0,T] and |t —s| < ¢}.
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For any K C E, we put

Wl (K, €) = sup{w (u,¢); u€ K} and wl (K)=limw! (K,e).

e—0

Let us consider the measure of noncompactness p defined on the family of bounded subsets of
BC.(J,E) by

¢
() = (1) + sup | exp ( 6t = A [ G(O)d¢ | alk(®) | + lim sup u(t)]
ted , =0 ueK
for any K bounded subset of BC,(J, E'), where A > 0 and G = max{g2, g« }.

Step 5: We prove that the Monch condition is satisfied. Let K be a bounded countable subset of
BC.(J,E) such that K C Conv({0} U N(K)}). Suppose that K C By = {u € BC«(J, E)/|Jull« <
< d}, where d > 0. We have to show that K is relatively compact. To do this, it suffices to prove
that u(K) = 0.

This will be given in several claims:

Claim1: wl'(K)=0.

In fact, using the properties of the function w (-) (see [21]), and the fact that N(B,) is equicon-
tinuous, we get

W (K) < wf (Conv({0} U N (K))) = wf (V(K)) = 0.

Hence, we infer that wl (K) = 0.

Claim 2: sup<exp<—ﬁt — A /0 t G(g)dg>a(K(t))) = 0.

teJ
In fact, let t € R;. We put K (¢t) = {u(t);u € K} and Ky = {us; u € K}. By hypothesis (H5),
(Hg) and applying the Lemma 2.3, we get

S

a(K(t)) <a(N(K(t))) =« R(t)¢(0)+/R(t—s)F S,Ks,/p(s,r, K,)dr |ds 3 <
0 0

t s
<a /R(t—s)F S,KS,/p(s,r,Kr)dr ds p <
0 0

S

< 0/ (s = 5)lga(s) | sup (IS (8)) + O/ pls,r, Kp)dr | | ds <

t s

< /Meﬂ(t_s)gg(s) sup (a(Ks(0))) + « /p(s,r, K.)dr | |ds <

oeJo
0 0

0eJo

< M / () sup (a(K(0)) ) st
0
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M / P go(s) ( / g.(r) (5gg<a<m<e>>>dr)) ds <
0

0

6cJy

M / ( / a(r <QS£ )))dr))ds <

SMeﬁt/G(s)eAfJG@)dﬁeﬁs Ao 5)dg(Svlp(a(Ks@))))alé”r

0eJo

< M / e 56(0)(sup(a(K.(0)) ) s+
0

0

t s
—I—Meﬁt/eﬁsgg(s) (/ qf:'BTG(r)e’\f(;f GE)de g—Ps o= Jy GlE)de <sup (oz(KAG)))dr)) ds <

0eJo
0 0

pt —Bt — )t Jo Ge)de
< Me 21615) (exp( I512 /G df) ) /G ds+
t s
+MePtsup (exp (ﬁt - A/G(&)df) a(K(t))) /e—ﬂng(s) (/ PTG (r)e Mo G dsdr) ds <
teJ 0 0

0

< ey (Bt 1A / G(&)d&) sup (exp (ﬁt i\ / G(&)d&) a(K(t))) +
0
t
+¥ exp (/J’t + /\/G(ﬁ)df) Sup (eXp (Bt - /G df) ) g2l
0

The above inequality reduces to

oK (1) < 5 (1 + loallr) exp (ﬂt o f G(f)dg) sup (exp (Bt - G(f)dé) a(K(t») .
0 0

This proves that for any ¢t € R, we have

t t
exp (ﬁt - G(&ME) (K (6) £ 30+ loalr) sup (exp (ﬁt - G(f)ds) a(K(t))) -
0 0

That means
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teJ

sup | exp —ﬁt—)\/G(f)dé alK(t) ] <
0

M
<
A

t
(1+ llgall 1) sup | exp | Bt — A / G(&)de | a(E (1))
teJ 9

M
Taking A > M (1 + ||g2]|11), we obtain 0 < 7(1 + |lg2llz1) < 1, and therefore

teJ

sup | exp Bt)\/G(f)df a(K(t)) | =0.
0

Claim3: sup,cg ||u(t)|] — 0 as t — +oo.
In fact, let w € K C By. According to the step 3, we get, for any t € R,

S

lu()] = R(t)<z>(0)+/R(t—s)F s,us,/p(s,r,ur)dr ds| <
0

0

¢ s
< MeP|p(0)] —i—Meth/e_ﬁs F s,us,/p(s,r,uT)dr ds <
0 0
t s
< MeP|p(0)] —i—Me*Bt/eﬁsf(s) l|us oo + /p(s,r, up)dr||+1 ]ds <
0 0

t
< M) + M [ ()it
0
t s t
+MePt / e P f(s) / lp(s,7,ur) — p(s,7,0) + p(s,r,0)||dr | ds + Me" / e P f(s)ds <
0 0 0

t t s
< MePH|g(0)]| —l—MeBt/eBSf(s)ds—{—MeBt/eBSf(s) /Hp(s,r,O)HdT ds+
0 0 0
¢

MR / e (3) | uslloo + / Fo(r) oo | ds <
0

0
t
< MePY|p(0)|| + M (1 + N)eﬂt/e—ﬁSf(s)ds+
0
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t S
sMe [ e (um + [ f2('r)urood7") ds.
0 0

Then
t
e Pu(t)] < MISO)] + M1+ N) / e f(s)dst
0
t S
+M e*ﬁsf(s) (ugoo + fg(r)uroodr> ds <
/ /
t t
< M[[6(0)] + M(1 + N) / e f(s)ds + M / F(5)e oo+
0 0
t S
+Me Pt [ f(s) ( fg(r)eﬁruroodr> ds.
[ral]
Putting
t
B(t) = M|$(0)] + M(1+ N) / e f (3)ds,
0
we get
t S
lu(®)] < B(t) + M / £(s) (eﬁwm + / f2<r>eﬂ’“umodr) ds. (3.3)
0 0

Set

V(t) = sup e™|u(s)].
s€[0,¢]

Thus, the inequality (3.3) implies
t s
V) < B(t) + M / £(s) (V(s) + / fg(r)V(r)dr) ds.
0 0
Applying the Lemma 2.4, we obtain

V(t) < B(Y) (1 + [ s)ex ( Jum+ f2<7>>d7) ds) -
0 0

Hence
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e”%mwsmw1+/ﬂ@m>/um+hmm7w
0 0
Therefore,

t

u®l < B0 1+ [ f)e| [(7)+ fa(ryar | s
0

0

Since 8 < 0 and by the condition e=# f € L!(R,) cited in (#4), we conclude that the right-hand
side of the above inequality tends to 0 as ¢ tends to 4o, and, therefore, sup,cy ||u(t)|| — O as
t — +o0.

By Claims 1, 2, and 3, we obtain p(K) = 0. Thus, we find that K is relatively compact.

Step 6: A priori bounds. We prove now the existence of V' a bounded open subset of BC,(J, E)
containing 0 and satisfying the Leary —Schauder boundary condition: u # N (u) for all u € 9V
and 0 <y < 1.

Let u € BCy(J,E) and u = yNu for some v € ]0,1]. Then we get

t
Ju(®)] < M o(0)] + Me® [ (g(s)e i a0E) (e A a3 )+
0

S

t
LM / e fi(s) / 7" (g(r)e? s 9O%) (AN 9O% e | dr | s
0 0

t t
+Mmﬂ/ﬁ@w+MW/uw@mWs
0 0

Then
t t

Bt—X [ g(s)ds s
lu(t)]] < M||o(0)| + M/g(s) (e*)‘fo 9(5)d§eﬁsHusHoo>ds+
0

e 0

s

¢
—i—M/e’BSfl(s) /eﬁrg(r) (ef)‘f(;g(é)dgeﬁrﬂurﬂoo)dr ds+
0 0

t t
+MN [ fi(s)ds+ M [ |f(s,0,0)|ds.
[t ]

Since we have
d(s+0), if s+6¢e][-r0]

u(s+0), if s+6>0,
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and, hence,

t
=215 93|y ()| < M| (0)]] +M/g(s)!¢>\|ood8+
0

r€(0,s]

t
+ / g(s) (ﬂfé’ 9(©)dEefs gy Hu(r)\|>ds+
0

S

t
M|l / e fi(s) / o(r)drds+
0

0

t S
—I—M/e_’Bsfl(s) (/g(r) (e_’\forg(f)dge& sup u(E))dr) ds+
¢elo,r]
0

0

t t
+MN | fi(s)ds+ M [ ||£(s,0,0)|ds.
[t ]

Set

Bs—Ang(T)dT
Vi(t)= sup e 0 [[u(®)]]-
s€[0,t]

Then

V.(t) < M{(0)] + M / 9(3) | Hlloods +
0

S

t t
+M ||}l 0o / e P f1(s) / g(r)drds + MN / fi(s)ds+
0 0 0

t

M / 1£(5,0,0)|ds + / 9(s)Va(s)ds + M / e fi(s) ( / g<r>m<r>dr> ds.
0 0

0 0

Applying the Lemma 2.4, we obtain

Vi(t) < Bu(t) (1 + [ 5o ( o)+ f3<7>>d7) ds) ,
0 0

where

B.(t) = M||o(0)]] +M/9(8)||¢Hood8+Mll¢lloo
0

o

s t
e_ﬁsfl(s)/g(r)drds+MN/f1(s)ds.
0 0
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Consequently, we have

Julle < Boo(L+ 1/ oo exBlgloc + 1 f2ll)) = M.

Set V. ={u € BC.(J,E): ||u|l« < M+ 1}. So, V is a bounded open neighborhood of 0 and
the operator N : V — BC(J, E) satisfies the conditions of Ménch fixed point Theorem 2.2. Hence
N has at least a fixed point v € V' which is a solution to problem (1.1). It is clear that Fix(N) C V.
By Lemma 2.2, Fix(NN) is also compact.

Theorem 3.2 is proved.

4. Applications. In this part, we give some applications on our results of this paper, for
this we assume that we have a bounded domain G of R? with a smooth boundary I' = 9G =
=TguUl'y, 'gNI'y = @. Let us consider the following internally damped wave equation:

Opu — Au + a(z)Ou(z,t) =0, (x,t) € G x (0,00),

u(z,t) =0, (z,t) €Ty x(0,00),
5 4.1)
8—3 Fu=0, (z,8) €Ty x(0,00),
u(z,t) = wo(x,t), u(z,t) =wui(x,t), (x,t)€Gx[-r0],
where a: G — R4 be a positive continuous function and ug € C([—r,0], L*(G)), u1 € L*(G). By
putting v = J;u, we write the system (4.1) into the following problem:

ou—v=0, ze€G t>0,
ov—Au+alx)v=0, z€G, t>0,
U/(.'L',t) = 0, S FO, t> 0, (4 2)

0
—u+u:0, rely, t>0,
ov

u(z,t) = up(x,t), wv(z,t)=ui(z,t), z€G, €J[-r0

The operator Ay = —A is strict positive and auto-adjoint in H = L*(G), D(Ay) = H}(G). We
shall use the semigroup method to demonstrate the global existence and uniqueness of solution, for
this purpose we rewrite the system (4.2) as an evolution equation for

U't)=Aut), t>0,
U(t) =Uy(t), te[-r0],

where U(-) = ( ' :)>, Un(t) = (ZO(:"L)> and A: D(A) C H — H is defined by

with domain
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D(A) = {(“) € H:ue H*G)NHf,(G), and gy =0 on Fl}

in the Hilbert space H = H} (G) x L*(G), where H} (G) := {u € H'(G): u = 0 on Ty}. We
equipped H with the scalar product

U1 u9
, = /(VU1VUQ —i—vlvg)d.’ﬂ—i— /UlUQdF,
V1 V2 1

G Iy

and the norm defined by

(u,v)|3, = /(wﬁ +v?)dx + /u2dr.
G I
4.1. Well-posedness.

Proposition 4.1. A is m-dissipative in the Hilbert space H.
Proof. Let U € D(A), then

<AU,U>H:/(VUVU+(AU—G, vdac+/u

G Iy
= /Vqu da:—l—/vAudw—/ 2dw+/uvdf
G G I'

By Green formula, we obtain

(AU UY,, = — [ a(z)v?dz <0,
/

Hence A is dissipative.

Now, we show that R(I — A) = H. For any f = (f1, f2) € Hp (G) x L*(G), we consider the
following problem:
u—v=f, z€G t>0,

v—Au+a(zr)v=fo, x€Gt>0,
u(z,t) =0, zely, >0,

0
l+u:0, xely, t>0.
ov

From the first and the second equation of the above system, we get —Au+(14+a)u = fo+(1+a)f1.
We associate this problem with the following bilinear form on H%O(G) X H%O(G) :

B(u,v) /VuVUdac+/(1+ )uvd:v—l—/uvdw
G

I
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By the Holder inequality, there exists C' > 0 such that
[Bu,v)| < Cllullgy @llollmg, @ — and  [Blu,u)] 2 IIUHE%O(G)-

Then, by the Lax —Milgram theorem, there is a unique solution u € H%O (@) such that

/Vqudx+/(l+a)uvdm+/uvdz:/(f2+(1+a)f1)vdx VUGH%O(G).
G G Iy G

Now, the ¢ € C§°(G), then / ugpdx = 0.
r
Therefore, '

/Vthﬁdx + /(1 + a)updr = /(fz + (14a)f1)edz Vo € C5°(Q).
G

Q G

Then

—/qﬁAudm—i—/(l + a)updr = /(f2 + (1 +a)fi)pde Vo € C3°(G).
G

G G
Hence —Au + (14 a)u = fo+ (1 +a)fi. Since fo + (1 +a)f1 € L*(G), then
—Au+ (1+a)ue L*(G) = Au= (1+a)u— fo— (1 +a)f1 € L*(G).

Hence v € H'(G) and Au € L?(G). Using the fact that G' is smooth, thus by regularity theorem,
u e H*(G). So, u € H*(G) N H} (G).

Now, we want to show that

%%-u:o on I'. 4.3)
ov

Indeed, for every v € Hy (G), we have
/Vqudx + /(1 + a)uvdx + /uvdm = /(fz + (1 +a)fi)vde.
G G I G

Since u € H?(G), we can apply Green’s formula and we get

—/Auvd:z:+/guvd:c—i—/(l—i—a)uvdx—}—/uvd:c:
v
G T

G I't

:/(f2+(1+a)f1)vda:—/(Auv—l—(l—l—a)uv)d:c—i-/(gz+u)vdx:

G G I'1

~ [+ @fioda.

G

Therefore,
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/(gz+u>”dx—0 for all vGHllo<G)'

I'1

Thus, the condition (4.3) holds. Taking v = u — f1, we find that i = (u,v) € D(A) is the solution
of the equation (I + A)U = f. Consequently, A is m-dissipative.

Proposition 4.1 is proved.

As an application of Theorem 3.1, we consider the following nonlinear wave equation with finite

delay:
Onu — Au + a(z)0wu(z,t) = /g(t —s)[Au(-, s) + a(z)dsu(-, s)]ds+
0

t
+F t,ut,/p(t,s,us)ds , (z,t) € G x (0,00),

0
4.4)
u(z,t) =0, (z,t) €Ty x(0,00),
0
8—7: Yu=0, (x,t) €Tl x(0,00),

u(z,t) = uo(x,t), w(z,t) =ui(x,t), (z,t)eGx[-r0],

where F: Ry x C(Jo, L*(G)) x L*(G) is a Carathéodory function and g € C}(R;,R) = {f €
€ C(R4,R): ||f']lo < oo}. We introduce the following hypotheses:
(H1) There exists f; € L*(R.) such that

[1F(t, ¢, u) — F(t, 4, 0)|l2q) < [1(O) (|6 = Ylloo + [u = vl 2(c))
Vo, € C(Jo, LA(G)), u,v € L*(G).

(Hs) The function g :t € Ry — g1(¢) = ||F(¢,0,0)|| € Ry belongs to L?(R,).
(H3) The function p: A x C(Jo, L*(G)) — L?(G) satisfies the following conditions:
(i) There exists fo € L(R,) such that

lp(t, s,8) — p(t, s, 9)|| < f2(s)|¢ — Ylloo Vb € C(Jo, L*(G)) and (¢,5) € A.

(i1) There exists a constant N > 0, such that
S
[1pts.r0llar <N vs e R
0

We transform the system (4.4) into the following form:

t

W(t) - /B(t ) AU(s)ds = AU + Fu(t,Us), t >0,
0
(4.5)
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where F,: Ry x C(Jy,H) — H be a function given by
0

F*(t7ut) = ¢
F<t,ut,/ p(t,s,us)ds>
0

Let B(t): D(A) C ‘H — H be the operator defined by
B(t)U = g(t)AU, U e D(A).

Theorem 4.1. Assume that the conditions (H1) — (Hs) are satisfied. Then the problem (4.5) has
a unique solution.

Proof.  From Proposition 4.1, the operator A is m-dissipative, then by the Lumer— Phillips
theorem [19, 20], A generates a strongly continuous semigroup of contractions on #H and closed.
This implies that B(t) is a closed operator. For every ® = (¢, 1), ® = (¢,) € C(Jo, H), we get

2

|t @) — Fu(t,3) ||, = F(t,¢,/p(t,s,¢)ds> —F(t,qﬁ,/p(t,s,qﬁ)ds) <
0 0

L2(G)
¢ t 2
< fi(t) /p(t,s,¢)ds — /p(t,s,¢)ds + 206 -9, <
0 0 L2(G)
< 129l |6 — 3|2 + 206 - 8-
Then
1P, @) = Fu (8, @) |, < AOlglF + 1216 - 6]l

Hence

|t @) — Fu(t,3) |3, < fi)(llgllzz + 13| @ —B||, forall @,® e C(Jo, H),
where

[o =2, = sup [|@(1) = (. H)[],,
te[—r,0]

Applying Theorem 3.1, we conclude that the problem (4.5) has a unique mild solution.
Theorem 4.1 is proved.
In the end of this example, we give some functions satisfying the conditions of Theorem 4.1:
Let h € Cy(R4,R), we define Fy, Fy: Ry x C(Ry, L3(G)) — L?(G)H by

Fi(t,¢) = h(t)sin(¢(—r,z)) Yz € G

and
Fs(t,¢) = h(t) sin(p(—r,x)) + / h(t — s)cos(s + ¢(—r,x))ds Vx € G.
0
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4.2. Semilinear parabolic problem. As an application of the Theorem 3.2, we consider the
following problem:

Owu(z,t) + Ay (z, D)u(z,t) = — /g(t — 8)A.(z, D)u(x, s)ds+
0

t
+F t,ut,/p(t,s,us)ds , (x,t) € G x (0,00),
0

DYule,t) =0, (5,8) €T x (0,00), |v] <m, (4.6)
u(z,t) = uo(x,t), (z,t)€ G x[-r0],

where G C R? is a bounded domain with a smooth boundary G = T, A.(z,D) =
= Z| <2 a,(z)D"u is a strong elliptic operator with coefficients a, € C*™(G), F: Ry x
x C([—r,0], L2(G)) x L2(G) — L2(G), is a given function, p: A x C([—r,0], L3(G)) — L*(G) is
a continuous function and g € C} (R, R). We define the operator A: D(A) C L*(G) — L*(G) by

Au = —A.(-,D)u Yu € D(A) = H*™(G) N H(G).

In [19] (Theorem 7.3.7) we have the following theorem.

Theorem 4.2. Under the assumption that A, is a strong elliptic operator with smooth coef-
ficients, then the operator A generates an analytic semigroup on L?. Moreover, the semigroups
(S(t))t>0 associated to A is equicontinuous.

For every t € Ry, we define u(t) = u(-,t). Hence the problem (4.6) can be rewritten as follows:

t

t
u'(t)—Au:/g(t—s)Au(s)ds—l—F t,ut,/p(t,s,us)ds , teRy,
0

) (4.7)

u(t) = ug(t), te[-r0].

If we assume that F' and p satisfied the conditions (#4) — (#He) of the Theorem 3.2, the problem (4.7)
has at least one mild solution.

For examples if F' is compact and p(t, s, -) is Lipschitz function, then (#4) — (#Hg) hold.

For examples if p is compact and F'(t, -, -) is Lipschitz function, then (H4) — (Hg) hold.
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