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INEQUALITIES OF THE EDMUNDSON - LAH - RIBARIC TYPE
FOR n-CONVEX FUNCTIONS WITH APPLICATIONS *

HEPIBHOCTI TUITY EAMYHACOHA -JIAXA -PUBAPHUYA
JIJISI n-ONMYKJINX ®YHKIIA TA iX 3ACTOCYBAHHS

We derive some Edmundson — Lah—Ribari¢ type inequalities for positive linear functionals and n-convex functions. Main
results are applied to the generalized f-divergence functional. Examples with Zipf—Mandelbrot law are used to illustrate
the results.

Otpumano HepiBHOCTI Uy EaMyHncona —Jlaxa — Pubapuya Ui 1ogaTHUX JIIHIHUX (YHKIIOHANIB Ta N-OMyKINX (QyHK-
wiit. OCHOBHI pe3yJbTaTH 3aCTOCOBYIOTHCS JI0 y3arajibHEHNUX f-AWBEpPreHTHUX QyHKiioHanis. HaBeaeHo npukiaau, B SKHX
BUKOPHCTOBYETECS 3akoH 3inda— Mannensopora.

1. Introduction. Let ' be a nonempty set and let L be a vector space of real-valued functions f:
FE — R having the properties:

(L) f,g€ L= (af +bg) € L forall a,b € R,

(Le) 1€ L,ie.,if f(t)=1forevery t € E, then f € L.

We also consider positive linear functionals A: L — R. That is, we assume that:

(A1) A(af +bg) =aA(f)+bA(g) for f,g € L and a,b € R;

(Ag) feL, f(t) >0 forevery t € E = A(f) >0 (A is positive).

Since it was proved, the famous Jensen inequality and its converses have been extensively studied
by many authors and have been generalized in numerous directions. Jessen [17] gave the following
generalization of Jensen’s inequality for convex functions (see also [30, p.47]).

Theorem 1.1 [17]. Let L satisfy properties (L1) and (L) on a nonempty set E, and assume
that f is a continuous convex function on an interval I C R. If A is a positive linear functional with
A(1) =1, then for all g € L such that f(g) € L we have A(g) € I and

f(A(g9)) < A(f(9)). (1.1)

The following result is one of the most famous converses of the Jensen inequality known as
the Edmundson — Lah — Ribari¢ inequality, and it was proved in [3] by Beesack and Pecaric¢ (see also
[30, p.98]).

Theorem 1.2 [3]. Let f be convex on the interval I = [a,b] such that —oco0 < a < b < 0.
Let L satisfy conditions (L) and (L) on E and let A be any positive linear functional on L with
A(1) = 1. Then for every g € L such that f(g) € L (so that a < g(t) < b for all t € E) we have

b— A
A < A iy ¢ Ay (12
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For some recent results on the converses of the Jensen inequality, the reader is referred to [7, 19,
20, 27, 29, 31].

Unlike the results from the above mentioned papers, which require convexity of the involved
functions, the main objective of this paper is to obtain inequalities of the Edmundson —Lah —Ribari¢
type that hold for n-convex functions, which will also be a generalization of the results from [24, 25].

Definition of n-convex functions is characterized by nth order divided differences. The nth
order divided difference of a function f: [a,b] — R at mutually distinct points to, ¢1,...,t, € [a, b
is defined recursively by

tilf = f(ti), i=0,...,n,
[tla s ,tn]f - [t(]a s ,tnfl]f
tn - tO .
The value [tg,...,t,]f is independent of the order of the points ¢, ..., t,.
Definition of divided differences can be extended to include the cases in which some or all the

[to, ..., tolf =

points coincide (see, e.g., [2, 30]):

fla,...,a] = f"Y(), neN.
n times .

A function f: [a,b] — R is said to be n-convex (n > 0) if and only if for all choices of (n + 1)
distinct points ¢, t1,...,t, € |a,b], we have [to,...,t,]f > 0.

The results in this paper are obtained by utilizing Hermite’s interpolating polynomial, so first we
need to give a definition and some properties (see [2]).

Let —co<a<b<ooandleta <a; <az <...<a, <b, where r > 2, be given points. For
f € C"([a,b]) there exists a unique polynomial Py (t), called Hermite’s interpolating polynomial, of
degree (n — 1) fulfilling Hermite’s conditions

P(aj) = fO(a): 0<i<hk;, 1<j<r, > kj+r=n

Among other special cases, these conditions include type (m,n — m) conditions, which will be of
special interest to us:
(r=2,1<m<n—-1,kk=m-1, ko=n—m-—1)
P (a) = fD(a), 0<i<m—1,
PO ®)=fD®), 0<i<n—m-—1.

To give a development of the interpolating polynomial in terms of divided differences, first let us
assume that the function f is also defined at a point ¢ # a;, 1 < j < . In [2] it is shown that

7(t) = P(t) + R(1), (13)
where
P(t) = fla1) + (t — a1) flar, az] + (¢t — a1)(t — az) fla1, az, a3 + ...
ot (t—a).. (t=ar ) flar, ..., ar] (1.4)
and
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R(t)=(t—a1)...(t —a,)f[t,a1,...,a.]. (1.5)
In case of (m,n —m) conditions, (1.4) and (1.5) become

Pon(t) = f(a) + (t —a)fla,a] + ... + (t —a)™ L f[a,..., a]+

m times
+(t—a)"fla,...,a;b] + (t —a)™(t —b)fla,...,a;b,b] + ...
~—— ~——
m times m times
e+ =)t =" fla,...,a; bb,....b 1.6
(t = a)y™(t - 5" fa,....a 1 (1.6)
m times (n—m) times
and
Ry(t)=({t—a)"(t—0)"""f[t;a,...,a; b,b,...,b]. (1.7)
—_—— ———

m times (n—m) times

This paper is organized as follows. Main results, that are inequalities of the Edmundson—Lah -
Ribari¢ type for n-convex functions, are given in Section 2. Application of the main results to the
generalized f-divergence functional is given in Section 3. Finally, in Section 4 the results for the
generalized f-divergence are applied to Zipf—Mandelbrot law.

2. Results. Throughout this paper, whenever mentioning the interval [a,b], we assume that
—00 < a < b < oo holds.

Let L satisfy conditions (L;) and (Lg2) on a nonempty set E, let A be any positive linear
functional on L with A(1) = 1, and let g € L be any function such that g(F) C [a, b]. For a given
function f: [a,b] — R denote

LR(f.g,a.b, 4) = A(f(9)) = =W p(q) - AP =4

- L1 ). 1)
Following representations of the left-hand side in the Edmundson—Lah - Ribari¢ inequality are
obtained by using Hermite’s interpolating polynomials in terms of divided differences (1.6).
Lemma 2.1. Let L satisfy conditions (L) and (L) on a nonempty set E and let A be any
positive linear functional on L with A(1) = 1. Let f € C"([a,b]) and let g € L be any function
such that f o g € L. Then the following identities hold:

n—1
LR(f,g,a,b,A) =Y fla;b,....b]A[(g —al)(g — b1 1] + A(R1(9)), (2.2)
’ kZQ [ k times ] [ ’ ’ ] Y
LR(f,g,a,b,A) = fla,a;b]A[(g — al)(g — b1)]+
n—2
+Y fla,asb,...,b]A[(g — a1)?(g — b1)F71] + A(Ra(g)), (2.3)
; [ m] (g g ] 2(9
= (a) k
LR(f,g,a,b,A) = (A(g) — a) (fla,a] — fla,b]) + I Al(g = al)*]+
k=2
+ Y fla,...,a;b,...,b]A[(g — al)™ (g — bl)k_l] + A(Rn(9)), (2.4)

—— ——

m times k times

where m > 3 and Ry, () is defined in (1.7).

k=1
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Proof. From representation (1.3) of every function f € C"([a,b]) and its Hermite interpolating
polynomial of type (m,n — m) conditions in terms of divided differences (1.6) we have

f@t) = f(a) + (t —a)fla,a] + ...+ (t —a)™" ' fla,..., a]+

m times
+(t—a)"fla, (t—a)™(t—>b)fla,...,a;bb] +
m times m times
A (t—a)™(t =) fa,. .. a; bb,...,b] + Ry(t), (2.5)
——— ——

m times (n—m) times

where R,,(-) is defined in (1.7). After some straightforward calculations, for different choices of
1<m < n-—1, from (2.5) we get the following:
for m =1 it holds

R(f,1,a,b,id) = (t — a)(t — b) fla; b,b] + (t — a)(t — b)*f[a; b, b, b] +
o+ (t—a)(t=0)""2fla; bb,....b ]+ Ri(2), (2.6)
e

(n—1) times
for m = 2 it holds
LR(f7 1,q, bald) = (t - (Z)(t - b)f[aa a; b] + (t - a)Q(t - b)f[av a;b, b] +
A (t—a)?(t—b)"?fla,a; b,b,...,b] + Ra(t), (2.7
——

(n—2) times

for 3 <m <n —1 it holds

R(f,1,a,b,id) = (t — a) (fla,a] — fla,b]) + ...+ (t —a)" ' f[a, ..., a]+

m times
+(t—a)"fla (t—a)™(t—>0)fla,...,a;b,b] +
m times m times
A t=a)"t =" a,. .., a bb |+ Rn(t). (2.8)

m times (n m) times

Since fog € L it holds g(E) C [a,b], so we can replace ¢ with g(¢) in (2.6), (2.7) and (2.8), and
obtain

n—1
R(f.g.a,b,id) =) (9(t) —a)(g(t) = b)"'f + Ra(g(t)),
’ kzz? ’ ’ [ k times ] 1
R(f,9,a,b,id) = (9(t) — a)(g(t) — ) fla, a; bl+
n—2
k— .
+ ;(g(t) —a)*(g(t) —b) 1f[a, a; b}; tlm;bb] + Ra(g(t))

and
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LR(f.g,a,b,id) = (9(t) — a) (fla,a] = fla,0]) + ) _(9(t) = a)* "' fla,. .., a]+
k=3

k times
+ 3 (g(t) —a)™(g(t) — b)kilf[a, oah, ., b} + Rin(g(t)).

k=1 m times k times

Identities (2.2), (2.3) and (2.4) follow by applying positive normalized linear functional A to the
previous equalities, respectively.

Lemma 2.1 is proved.

Lemma 2.2. Let L satisfy conditions (L) and (L) on a nonempty set E and let A be any
positive linear functional on L with A(1) = 1. Let f € C"([a,b]) and let g € L be any function
such that f o g € L. Then the following identities hold:

n—1
— . _ —a k— * )
LR(f,g,a,b,A>—kZZf[b,a,...,a}AKg b1)(g — al)* 1] + A(R;(9)), (2.9)

k times
LR(fvga a,b, A) = f[ba b; G]A[(g — bl)(g — al)]—i—

n—2

+ ; fb, b;%ﬁ]A[(g —01)*(g —al)* '] + A(R3(9)), (2.10)
LR(J.g.0,0,4) = (0 Al (lat] - 110t + S LoD v+
2
3 fl %;%}A[(g = b1)™(g — a1)* '] + A(R},(9)), (2.11)
where m > 3 and
A(R%,(g)) = A[f [g:b1,...,b1;al,...,al](g — b1)™(g — al)" ™|, 2.12)

m times  (n—m) times
Proof. Let us define an auxiliary function F': [a,b] — R with
F(t)= fla+b—1).

Since f € C"([a,b]) we immediately have F' € C"([a,b]), so we can apply (2.6), (2.7) and (2.8) to
F' and obtain respectively

n—1
LR(F,1,a,b,id) =Y Fla:b,....b|(t—a)(t —b) 1+ R (¢t 2.13
( 4, Qs 71) Z [av ) ) ]( a)( ) + 1( )7 ( )
k=2 k times
LR(F,1,a,b,id) = Fla,a;b](t — a)(t — b)+
n—2
+Y Fla,asb,...,b](t —a)(t — b)* 1 + Ro(t), (2.14)
g k times
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m—1 (k)
LR(F,1,a,b,id) = (t — a) (F|a,a] — F[a,b]) + ;::2 F k!<a) (t—a)f+
'« oM+ p\k—1
+ 2 Fla,....a;b,...,b](t—a)™(t —b)""" + Ry (t). (2.15)

m times k times

We can calculate divided differences of the function F' in terms of divided differences of the func-
tion f:
F[a,...,a;b,...,b] = (fl)k"'i_lf[b,...,b;a,...,a].
— —— —— ——

k times ¢ times k times ¢ times

Now (2.13), (2.14) and (2.15) become

n—1
: _ _1\k . . _ p\k—1 D
LR(F,1,a,b,id) = };( D f[b; a]; tma](t a)(t —b)* 1+ Ry(t), (2.16)
LR(F7 17 a, b>1d) = (_1)2f[b7 b7 a](t - a)(t - b)+
n—2
D DE b bra, . a](t—a) (t—b)F T+ Ro(t), (2.17)
P N——

k times

m—1  _\g (k) b
BR(FL0.0,i0) = 0 0) (/0] o) + 3 CUIZ 0 oy
«— m+k 1 “a a —a)™(t — k—1 D
+kzl Flbybia,. . al(t —a)™(t —b)F ' + Ro(t), (2.18)

m times k times
where
Rpt)=(t—a)"(t—=0)"""(-1)"fla+b—t;b,...,b;a,a,...,a].
m times (n—m) times

Let g € L be any function such that f o g € L, thatis, a < g(t) < b for every t € E. Let us define
a function g(t) = a + b — g(t). Trivially, we have a < g(¢) < b and g € L. Since

b—(a+b—g(t))

LR(Fa.g’aab?ld):f(a+b_(a+b_g(t)))_ b—a f((l+b—(l)—
SO o ) = LR( g.0.0,10),
after putting g(¢) in (2.16), (2.17) and (2.18) instead of ¢, we get
n—1
R(f,9,a,b,id) = > (=1)*f[bia,...,a](b—g(t))(a — g(1)* ' + Ri(a+b— g(t)),

LR(f,g,a,b,id) = (=1)*f[b,ba](b — g(t))(a — g(t))+
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n—2

+) (D ba, - a] (b= g()(a— g()* ! + Rala +b— g(1)),
N——

k=2 k times

k=2

n—m
m+k 1 . m k—1 P,
+> (- flbobsa,.a](d—g)™(a—g) ' + Ry(a+b—g(t)).
k=1 m times k times

Identities (2.9), (2.10) and (2.11) follow after applying a normalized positive linear functional A to
previous equalities, respectively.

Lemma 2.2 is proved.

Our first result is an upper bound for the difference in the Edmundson — Lah — Ribari¢ inequality,
expressed by Hermite’s interpolating polynomials in terms of divided differences.

Theorem 2.1. Let L satisfy conditions (L) and (Lga) on a nonempty set E and let A be any
positive linear functional on L with A(1) = 1. Let f € C"([a,b]) and let g € L be any function
such that f o g € L. If the function f is n-convex and if n and m > 3 are of different parity, then

R(f,g.a,b,4) < (Alg) — a) ([a,d] Z —al)*]+
k=2
+ 3 f[a, o azby b]A[(g —al)™(g — bl)k_l}. (2.19)
k=1 M -

m times k times

Inequality (2.19) also holds when the function f is n-concave and n and m are of equal parity. In
case when the function f is n-convex and n and m are of equal parity, or when the function f is
n-concave and n and m are of different parity, the inequality sign in (2.19) is reversed.

Proof. We start with the representation of the left-hand side in the Edmundson — Lah — Ribaric¢
inequality (2.4) with a special focus on the last term:

A(R(g))=A[(g—al)" (g —b1)""" flg;al,...,al; b1,... b1 ]

m times  (n—m) times

Since A is positive, it preserves the sign, so we need to study the sign of the expression

(g(t) - a)m (g(t) - b)n_mf[g(t)aaa s @5 b7 ba s 7b ]
S—— ——
m times (n—m) times
Since a < g(t) < b for every t € E, we have (g(t) —a)™ > 0 for every ¢ € E and any choice
of m. For the same reason we have (g(t) —b) < 0. Trivially it follows that (g(¢) —b)"~" < 0 when

)
n and m are of different parity, and (g(¢) — )"~ > 0 when n and m are of equal parity.
If the function f is n-convex, then f[g(t);a, co,a; bbb } > 0, and if the function f is
—_—— ————

m times (n—m) times

n-concave, then f[g(t);a, co,a; bbb } <0.
—_—— ———

m times (n—m) times
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Now (2.19) easily follows from (2.1).

Theorem 2.1 is proved.

Following result provides us with a similar upper bound for the difference in the Edmundson—
Lah —Ribari¢ inequality, and it is obtained from Lemma 2.2.

Theorem 2.2. Let L satisfy conditions (L1) and (L2) on a nonempty set E and let A be any
positive linear functional on L with A(1) = 1. Let f € C"([a,b]) and let g € L be any function
such that f o g € L. If the function f is n-convex and if m > 3 is odd, then

LR(f,g,a,b,A) < (b— A(9))(fla,b] — f[b,b]) + o Allg — 1)+
k=2 ’
+r;::f[b, obiag. a]A[(g —b1)"(g — al)k_l}. (2.20)

m times k times

Inequality (2.20) also holds when the function f is n-concave and m is even. In case when the
function f is n-convex and m is even, or when the function f is n-concave and m is odd, the
inequality sign in (2.20) is reversed.

Proof. Similarly as in the proof of the previous theorem, we start with the representation of
the left-hand side in the Edmundson —Lah — Ribari¢ inequality (2.11) with a special focus on the last
term:

ARy, (g9) =A f[g; bl,...,b1;al,...,al ] (g—01)" (g —al)"™™

m times  (n—m) times

As before, because of the positivity of the linear functional A, we only need to study the sign of the
expression:
t)—b)"(gt) —a)® ™ t);b,...,b;a,a,...,a |.
(9(t) = b)™(g(t) — a)" " f[g(t) ]

m times (n—m) times

Since a < g(t) < b for every t € E, we have (g(t) —a)"™ ™ > 0 for every t € E and any
choice of m. For the same reason we have (g(t) — b) < 0. Trivially it follows that (g(¢) — b)™ < 0
when m is odd, and (g(t) — b)™ > 0 when m is even.

If the function f is n-convex, then its nth order divided differences are greater of equal to zero,
and if the function f is n-concave, then its nth order divided differences are less or equal to zero.

Now (2.20) easily follows from Lemma 2.2.

Theorem 2.2 is proved.

Corollary 2.1. Let L satisfy conditions (L1) and (La) on a nonempty set E and let A be any
positive linear functional on L with A(1) = 1. Let n be an odd number, let f € C™([a,b]), and let
g € L be any function such that f o g € L. If the function f is n-convex and if m > 3 is odd, then

gy (a) k
(A(g) —a) (fla,a] — fla,b]) + Z " Al(g —al)*]+
o

n—m
+ f[a,...,a;b,...,b
k=1

m times k times

JA[(g —al)™(g —b1)" 1] <

ISSN 1027-3190.  Vkp. mam. ocypn., 2021, m. 73, Ne 1



INEQUALITIES OF THE EDMUNDSON - LAH - RIBARIC TYPE FOR n-CONVEX FUNCTIONS . .. 97

m—1
F®(b) k
< LR(f,g,a,b,A) < (b— A(9))(f[a,b] — f[b,0]) + o Allg = b))+
k=2 )
- Y Flb, - bia,. . a]Al(g —b1)™(g — al)*1]. (2.21)

—— ——

k=1 m times k times

Inequality (2.21) also holds when the function f is n-concave and m is even. In case when the
function f is n-convex and m is even, or when the function f is n-concave and m is odd, the
inequality signs in (2.21) are reversed.

Remark 2.1. In [25] (Theorem 2.3) is proved that for a 3-convex functions we have

(tg) ~ ) |70 - LOZTON  E0 g -y <

b—a
< LR(gvab. A) < (0= Alg) [T =1 | o+ E agon - g

and if the function f is 3-concave, then the inequality signs are reversed. It is obvious that inequali-
ties (2.21) from Corollary 2.1 provide us with a generalization of the result stated above.

Next result gives us an upper and a lower bound for the difference in the Edmundson—Lah -
Ribari¢ inequality expressed by Hermite’s interpolating polynomials in terms of divided differences,
and it is obtained from Lemma 2.1.

Theorem 2.3. Let L satisfy conditions (L) and (La) on a nonempty set E and let A be any
positive linear functional on L with A(1) = 1. Let f € C"([a,b]) and let g € L be any function
such that f o g € L. If the function f is n-convex and if n is odd, then

n—1
f[aa bv st ?b]A[(g - al)(g - bl)k_l] < LR(f,g,a, ba A) <
kZZQ k times
n—2
< fla,a;B]A(g — al)(g = b1)] + > fla,a3h,... D] A[(g —al)*(g —D1)* '] (222)
P ——

k times

Inequalities (2.22) also hold when the function f is n-concave and n is even. In case when the
function f is n-convex and n is even, or when the function f is n-concave and n is odd, the
inequality signs in (2.22) are reversed.

Proof. From the discussion about positivity and negativity of the term A(R,,(g)) in the proof
of Theorem 2.1, for m = 1 it follows that

A(Ri(g)) > 0 when the function f is n-convex and n is odd, or when f is n-concave and n
even;

A(Ri(g)) < 0 when the function f is n-concave and n is odd, or when f is n-convex and n
even.
Now the identity (2.2) gives us

LR(f,g,a,b, A) > fla;b,b]A[(g — al)(g — b1)] + fa; b,b,b]A[(g — al)(g — b1)*] + ...
oot fla; bbb ]A[(g —al)(g — b1)"?]

(n—1) times
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for A(R1(g)) > 0, and in case A(R1(g)) < 0 the inequality sign is reversed.

In the same manner, for m = 2 it follows that

A(R2(g)) < 0 when the function f is n-convex and n is odd, or when f is n-concave and n
even;

A(R2(g)) > 0 when the function f is n-concave and n is odd, or when f is n-convex and n
even.
In this case the identity (2.3) for A(R2(g)) < 0 gives us

LR(f?.gv a, b7 A) < f[a7 a; b]A[(g - al)(g - bl)] + f[a7 a; b7 b]A[(g - a1)2(g - bl)] +...
...—l—f[a,a; b,b,...,b}A[(g—al)z(g—bl)”_?’]
———

(n—2) times

and in case A(R2(g)) > 0 the inequality sign is reversed.

When we combine the two results from above, we get exactly (2.22).

Theorem 2.3 is proved.

By utilizing Lemma 2.2 we can get similar bounds for the difference in the Edmundson—Lah -
Ribari€ inequality that hold for all n € N, not only the odd ones.

Theorem 2.4. Let L satisfy conditions (L) and (Lga) on a nonempty set E and let A be any
positive linear functional on L with A(1) = 1. Let f € C"([a,b]) and let g € L be any function
such that f o g € L. If the function f is n-convex, then

n—2
f1b,b; a]A[(g —bl)(g — al)] + f[b, ba,... ,a]A[(g — b1)2(g — al)kil] <
kZQ k times
n—1
< LR(f,g,a,b,A) < f[b; a,...,a]A[(g—bl)(g—al)k_l]. (2.23)
; k times

If the function f is n-concave, the inequality signs in (2.23) are reversed.
Proof. We return to the discussion about positivity and negativity of the term A(R?,(g)) in the
proof of Theorem 2.2. For m = 1 we have

(g(t) —b)(g(t) —a)" 1 <0 forevery teE,

so A(R;(g)) > 0 when the function f is n-concave, and A(Rj(g)) < 0 when the function f is
n-convex. Now the identity (2.9) for a n-convex function f gives us

LR(f,g,a,b,A) > f[b,b;alA[(g — b1)(g — al)] + f[b,b;a,a]A[(g — b1)*(g — al)] + ...
cot f[b, b;a,a,.. .,a}A[(g —01)%(g — al)"?

(n—2) times

and if the function f is n-concave, the inequality sign is reversed.
Similarly, for m = 2 we have

(g(t) —b)?(g(t) —a)* 2 >0 forevery tecE,

so A(R3(g)) > 0 when the function f is n-convex, and A(R3(g)) < 0 when the function f is
n-concave. In this case the identity (2.10) for a n-convex function f gives us
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LR(f?.gv a, ba A) < f[b7 a, a}A[(g - bl)(g - CL].)] + f[b, a, a, CL]A[(Q - bl)(g - a1)2] Tt
oot f[b;a,a,, - ,a]A[(g —bl)(g — al)"_Q]
N——
(n—1) times
and if the function f is n-concave, the inequality sign is reversed.
When we combine the two results from above, we get exactly (2.23).

Theorem 2.4 is proved.
Remark 2.2. Since

b—a b—a
floait = 2 (1o - L0 =1,

when we take n = 3 in (2.22) or (2.23), we get that

Allg —al)(g—0b1)] [, f(b) = f(a)
r— <f(b)— — >§
< LR(f.goa A) < HOZ DO () LOZI)) (224

holds for a 3-convex function, and for a 3-concave function the inequality signs are reversed. In-
equalities (2.24) are proved in [25] (Theorem 2.1), so it follows that Theorem 2.3 and Theorem 2.4
give a generalization of a result from [25].

3. Applications to Csiszar divergence. Let us denote the set of all finite discrete probability dis-
tributions by P, that is we say p = (p1,...,p,) € Pifp; € [0,1] fori =1,...,r and Z%_l p; = 1.

Numerous theoretic divergence measures between two probability distributions have i)_een intro-
duced and comprehensively studied. Their applications can be found in the analysis of contingency
tables [13], in approximation of probability distributions [8, 22], in signal processing [18], and in
pattern recognition [4, 6].

Csiszar [9-10] introduced the f-divergence functional as

Ds(p,q) = af (2’) (3.1
i=1 !

where f: [0, +00) is a convex function, and it represent a “distance function” on the set of probability
distributions P.

A great number of theoretic divergences are special cases of Csiszar f-divergence for different
choices of the function f.

As in Csiszar [10], we interpret undefined expressions by

F(0) = lim f(t), 0-f (8) o,

t—0+t
007 (2) = e () = 22
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In this section our intention is to derive mutual bounds for the generalized f-divergence func-
tional in described setting. In such a way, we will obtain some new reverse relations for the genera-
lized f-divergence functional that correspond to the class of n-convex functions. It is a generalization
of the results obtained in [25]. Throughout this section, when mentioning the interval [a, b], we as-
sume that [a,b] C R, . For a n-convex function f: [a,b] — R we give the following definition of
generalized f-divergence functional:

Q)= af (2) (3.2)
i=1 !

The first result in this section is carried out by virtue of our Theorem 2.1.

Theorem 3.1. Let [a,b] C R be an interval such that a < 1 < b. Let f € C"([a,b]) and let
p=(p1,...,pr) and q = (q1,...,qr) be probability distributions such that p;/q; € |a,b] for every
1=1,...,r. If the function f is n-convex and if n and 3 < m < n — 1 are of different parity, then

b—1 1— .
@+ 5 f(®) = Dy(p.a)
M) (a) & k
<(1—-a)(fla,a] - fla,b) +Zf Z qk“f”) +
k! =1 ?
'« — (pi —ag))"(pi — ag;)**
+k:1f ,a; b, ..,b]; T : (3.3)

Inequality (3.3) also holds when the function f is n-concave and n and m are of equal parity. In
case when the function f is n-convex and n and m are of equal parity, or when the function f is
n-concave and n and m are of different parity, the inequality sign in (3.3) is reversed.

Proof. Let x = (x1,...,x,) be such that z; € [a,b] for i = 1,...,r. In the relation (2.19) we
can replace

g—x and Alx) = Zplacz

In that way we get

b— = T
(@) + T f ()~ () <

m— 1f ) r
<(z —a)(f[a,d] ) + sz'(l’z
k=2 =1
+ f -5 @5 ba 7b] pl(xl _a)m($2 _b)k_la

k=1 m times k times
— n . .
where T = E _, iwi. In the previous relation we can set
1=

Di = G and T = —,
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and after calculating

3
3

we get (3.3).

Theorem 3.1 is proved.

By utilizing Theorem 2.2 in the analogous way as above, we get an Edmundson — Lah — Ribaric¢
type inequality for the generalized f-divergence functional (3.2) which does not depend on parity of
n, and it is given in the following theorem.

Theorem 3.2. Let [a,b] C R be an interval such that a < 1 < b. Let f € C"([a,b]) and let
p=(p1,...,pr) and p = (qu,...,qr) be probability distributions such that p;/q; € [a,b] for every
i=1,...,r. If the function f is n-convex and if 3 < m <n — 1 is odd, then

b—1 1—a ~
—_— —D <
o @+ —f(b) = Dylp.g) <
m— lf r —bq)k
< (b= 1)(fla,b] — £[b,]) +Z Uy i by
=2 =1 qz
ey 4 pz_b% pz_afh -1
+Y  f[b... bia,. . Z( e i (3.4)
k=1 i=1 z

m times k times

Inequality (3.4) also holds when the function f is nm-concave and m is even. In case when the
function f is n-convex and m is even, or when the function f is n-concave and m is odd, the
inequality sign in (3.4) is reversed.

Another generalization of the Edmundson—Lah—Ribari¢ inequality, which provides us with a
lower and an upper bound for the generalized f-divergence functional, is given in the following
theorem.

Theorem 3.3. Let [a,b] C R be an interval such that a < 1 < b. Let f € C"([a,b]) and let
p=(p1,...,pr) and p = (qu,-..,qr) be probability distributions such that p;/q; € |a,b] for every

i =1,...,r. If the function f is n-convex and if n is odd, then we have
n—1 -1
a% Di sz) b—1 l1—a .
< — <

%fabb ]Z < @) +3—f(b) — Ds(p.a) <

k times

(pi — ag;) (i — bg;) —~ (pi — ag;)*(pi — ba;)* "
< fla,a;b] + fla,a;b,....b . (3.5
; di Z Hf—’k - ] ; Qf

Inequalities (3.5) also hold when the function f is n-concave and n is even. In case when the
function f is n-convex and n is even, or when the function f is n-concave and n is odd, the
inequality signs in (3.5) are reversed.
Proof. We start with inequalities (2.22), and follow the steps from the proof of Theorem 3.1.
By utilizing Theorem 2.4 in an analogue way, we can get similar bounds for the generalized
f-divergence functional that hold for all n € N, not only the odd ones.
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Theorem 3.4. Let [a,b] C R be an interval such that a < 1 < b. Let f € C"([a,b]) and let
p=(p1,...,pr) and p = (q1,...,qr) be probability distributions such that p;/q; € |a,b] for every

i =1,...,r. If the function f is n-convex, then we have
r n-2 r yE1 2
pi — aqi)(pi — by —ag)" (pi — bgi
f[b,b;a]z( )( ) Zf[bbaa Z k( ) <
i=1 i k=2 i=1 4
k times
n—1 r
b—l 1—a ~ _a(hk 1( sz)
< @+ = f() = Dslp.q) < Z — . (3.6)

=1 4;

B
[|

2 k times

If the function f is n-concave, the inequality signs in (3.6) are reversed.
Example 3.1. Let p = (p1,...,p,) and p = (q1,...,¢,) be probability distributions.
Kullback - Leibler divergence of the probability distributions p and q is defined as

Dkr(p,q Z i log

and the corresponding generating function is f(¢) = tlogt, t > 0. We can calculate
FO () = (<1)(n — 2)= D).

It is clear that this function is (2n — 1)-concave and (2n)-convex for any n € N.
Hellinger divergence of the probability distributions p and g is defined as

Dr(p,q) = Z(\f Vpi),

=1
1
and the corresponding generating function is f(¢) = 5(1 —V/1)2,t > 0. We see that

(2n - 3)” 2n—1

7o) = (-1

so function f is (2n — 1)-concave and (2n)-convex for any n € N.
Harmonic divergence of the probability distributions p and q is defined as

n
2piq;
Dya(p,q) = —,
al ) ;pi+%

2t
and the corresponding generating function is f(¢) = T 1 We can calculate

FO(t) = 2(=1)"nl(1 + )~ (D,

Two cases need to be considered:
if t < —1, then the function f is n-convex for every n € N;
if t > —1, then the function f is (2n)-concave and (2n — 1)-convex for any n € N.
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Jeffreys divergence of the probability distributions p and q is defined as

1 — q
Dj(p,a) = > (¢i —pi) log j,
i=1 v

1
and the corresponding generating function is f(¢) = (1 — t) log 7 t > 0. After calculating, we see
that
FO @) = (=) — D1 + nt).

Obviously, this function is (2n — 1)-convex and (2n)-concave for any n € N.

It is clear that all of the results from this section can be applied to the special types of divergences
mentioned in this example.

4. Examples with Zipf and Zipf—Mandelbrot law. Zipf’s law [33, 34] has a significant
application in a wide variety of scientific disciplines — from astronomy to demographics to software
structure to economics to zoology, and even to warfare [12]. It is one of the basic laws in information
science and bibliometrics, but it is also often used in linguistics. Typically one is dealing with integer-
valued observables (numbers of objects, people, cities, words, animals, corpses) and the frequency
of their occurrence.

Probability mass function of Zipf’s law with parameters N € N and s > 0 is

1/k*
HN,S’

N
1
f(k;N,s) = where HN,s:E -
£~

Benoit Mandelbrot in 1966 gave an improvement of Zipf law for the count of the low-rank words.
Various scientific fields use this law for different purposes, for example information sciences use it
for indexing [11, 32], ecological field studies in predictability of ecosystem [26], in music it is used
to determine aesthetically pleasing music [23].

Zipf—Mandelbrot law is a discrete probability distribution with parameters N € N, ¢,s € R
such that ¢ > 0 and s > 0, possible values {1,2,..., N} and probability mass function

N
1
f(i;N,q,8) = ——, where Hygs= Y —. 4.1)
( ) HNqS q,S ;(z+q)s

Let p and g be Zipf—Mandelbrot laws with parameters N € N, g1, g2 > 0 and s1, so > 0,
respectively, and let us denote

HN7Q1,51 = Hy, HN,Qz,Sz = Hoy,

. H y 52
ap,q := min Pl = Z2in i+ @)™ (4.2)
’ qi Hy (i+q)™

b {pz} _ H» {(Z—I—%)”}
D,q ‘= max — = —max 3
qi H, (t+q1)%

In this section we utilize the results regarding Csiszar divergence from the previous section in
order to obtain different inequalities for the Zipf—Mandelbrot law. The following results are special
cases of Theorems 3.1, 3.2, 3.3 and 3.4, respectively, and they gives us Edmundson—Lah —Ribari¢
type inequality for the generalized f-divergence of the Zipf—Mandelbrot law.
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Corollary 4.1. Let p and q be Zipf— Mandelbrot laws with parameters N € N, q1, q2 > 0 and
s1, s > 0, respectively, and let Hy, Ha, ap q and ap q be defined in (4.2). Let f € C™([ap.q,bp.q])
be a n-convex function. If n and 3 < m < n — 1 are of different parity, then

bpg — 1 1—apgq ~
——flapq) + —— " f(bpq) — D(p,q) <
bp,q — Apgq P bpq — apq d

[ary

Hy(i + q2)%2 F
m— L s Opg

, (k) r <H 3 S1
< (1 —apgq) (f (ap,q) — flapq; bzqu + ! H(:k?q) ; 1 Z?i)qz)SQ

Hy (i + qo)™ 4 " H2(i+QQ)82_b ht
N\ Hi (i +q) P Hi(i+q) P

Hg(i + QQ)52

+

n—m
+§ flapqs - apqibpg;---:bpgl
k=1

m times k times =1

This inequality also holds when the function f is n-concave and n and m are of equal parity. In
case when the function f is n-convex and n and m are of equal parity, or when the function f is
n-concave and n and m are of different parity, the inequality sign is reversed.

Corollary 4.2. Let p and q be Zipf— Mandelbrot laws with parameters N € N, q1, g2 > 0 and
s1, s2 > 0, respectively, and let Hy, Ha, ap q and ap q be defined in (4.2). Let f € C"([ap.q:bp.q])
be a n-convex function and let 3 < m < n — 1 be of different parity. Then

bpg —1 l—apgq ~
LD flap )+ ——LL f(bpq) — Ds(p,q) <
bp,q — apq P bp,q — apq
) Hy(i+q2)™ g
m— f(k)(bp q) r Hl(l + Q1)51 p.q
< (bp.g — 1) (flap.g:bp.ql — f'(bpg)) + : . +
D,q ( P.9>9p,q PQ) £ Hyk! 2 (i + q2)
Hy(i 4 ¢2)%2 " Hy(i + g2)%2 bl
n—m T —bpgq : — apgq
+ f[ a .a } Hy(i4 q)% Hy(i4 q)%
p.q> -+ 0p,qiGpgs---:0pg : s :
k=1 m times k times =1 H2 (,L * q2) :

The inequality above also holds when the function f is n-concave and m is even. In case when
the function f is n-convex and m is even, or when the function f is n-concave and m is odd, the
inequality sign is reversed.

Corollary 4.3. Let p and q be Zipf—Mandelbrot laws with parameters N € N, q1, g2 > 0 and
s1, s2 > 0, respectively, and let Hy, Ha, apq and ap q be defined in (4.2). Let f € C"([ap.q,bp.q])
be a n-convex function. If n is odd, then we have

<H2(¢+q2)32 ) <H2(i+Q2)82 >’“‘1
n—1 r | — @ o —Upg
. Hi(i+ q1)* Hy(i+ q1)*
Z f[ap,qv bpq:-- - bp,q} Z Ho(i 52 =
k=2 o 2(i + a2)
- k times

bpa—1 1—a ~

< bLf(ap,q) + biqu( ) Df(pv Q) <
p,q — Op,q p,q — Ap,q
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<H2(i+Q2)82 4 > <H2(i+Q2)52 0 )
~\H(i +q1)% PO\ H (i 4 q)sr 7Y

< flap.q: ap.q; bp, . +
flap.q ap.q; bp.q] ; Hy(i + q2)%
2 Holit )\ (Halita)™ , \*!
n— ‘ T Hl (Z + ql)sl P.q H’1 (Z + ql)sl pP,q
+Zf{ap,qvap,qabp,qv s 'vbp,q] Z Hs(i + q2)% .
k=2 . i=1 2 =
k times

Stated inequalities also hold when the function f is n-concave and n is even. In case when the
function f is n-convex and n is even, or when the function f is n-concave and n is odd, the
inequality signs are reversed.

Corollary 4.4. Let p and q be Zipf— Mandelbrot laws with parameters N € N, q1, g2 > 0 and
s1, s2 > 0, respectively, and let Hy, H, ap q and ap q be defined in (4.2). Let f € C"([ap.q;bp.q])
be a n-convex function. Then we have

Ha(i + go2)™ . Ha(i + go)™ b
S \Hi(i+q) P \Hi(i+q)r P

bp.as bp.a;a . +
f1bp.q: bp.q; ap.q] Zz; Hy(i + q2)%2
2 (HQ(qu)” o\ (Halit e N
n— r H]_(i"—q]_)sl P,q Hl(i‘f‘Ch)Sl p,q
"‘Zf[bp,q,bp,q5ap7qv---aanq] Z Hy(i + q2)* <
k=2 k times =1 ? =
b—1 1—a ~
< —= b)— D <
< T f(@) + o f(6) — Dy(p.q) <
Hoi + q2)" Tl (Hait )
B ST I b o e B v
= ~ P.q> “pP,q> - 5> YD,q g Hg(i + q2)52

k times

If the function f is n-concave, the inequality signs are reversed.

Remark 4.1. By taking into consideration Example 3.1 one can see that general results from
this section can easily be applied to any of the following divergences: Kullback —Leibler divergence,
Hellinger divergence, harmonic divergence or Jeffreys divergence.
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