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ON SOME IDENTITIES INVOLVING CERTAIN HARDY SUMS
AND KLOOSTERMAN SUM

IMPO AEAKI TOTOKHOCTI I3 HIEBHUMU CYMAMM TI'APII
TA CYMOIO KJIOOCTEPMAHA

We give a new reciprocity theorem for the Hardy sum ss(h, p). Also, a hybrid mean value problem involving the Hardy
sum s4(h,p) and Kloosterman sum is studied and two exact computational formulae are obtained.

3ampornoHOBaHO HOBY TeopeMy B3aeMHOCTI it cymu L'apai s5(h, p). Kpim mporo, BuBIaeThCs ribpuana 3axada mpo cepeaHi
3Ha4YeHHsI, ska MicTuTh cymy Lapmi sa(h,p) i cymy Kioocrepmana, Ta OTpHUMAHO JIBi TOYHI 0GUHCIIOBAIBHI (hOPMYITH.

1. Introduction. Let

x—[z]—1/2, if zeR\Z,
((z)) =
0, it zeZ,
with [z] being the largest integer < x. For positive integer p and integer h the classical Dedekind
sum s(h, p), arising in the theory of Dedekind 7-function, were introduced by R. Dedekind in 1892

| o))

a=1

Perhaps the most important property of Dedekind sums is the reciprocity theore

1 1 (h p 1
S(h,p) +S(p, h) = E + ﬁ <p + E + hp> 5 (11)

when (h,p) = 1 (for basic properties see [9]). The arithmetic properties of Dedekind sums were in-
vestigated by many authors (see, for example, [12, 14, 15]). J. B. Conrey et al. [4] dealt with the mean
value distribution of Dedekind sums and achieved an asymptotic formula for Z:ﬂ, |s(h,p)[*™,
where the dash denotes the summation over all 1 < h < p such that (h,p) = 1. Moreover,
H. Valum [11] derived a relation between the mean square value of s(h,p) and the fourth power
mean of Dirichlet L-function.

Similar arithmetic sums arise in the theory of logarithms of the classical theta functions. They
are studied by Hardy and Berndt, and for this reason they are called Hardy or Hardy — Berndt sums.

There are six such sums, two of which are [2, 6]

sa(h,p) = pi(l)[ha/p},
a=1
s5(h,p) = pzl(_l)aﬂha/p] <<Z>> .
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Goldberg [6] showed that these sums also arise in the theory of 7,,,(n), the number of representations
of n as a sum of m integral squares and in the study of the Fourier coefficients of the reciprocals
of the classical theta functions. Like Dedekind sums, these Hardy sums also satisfy a reciprocity
(or reciprocity-like) formula [2, 6]. R. Sitaramachandrarao [10] expressed these sums in terms of
classical Dedekind sums. For example,

sq(h,p) = —4s(h,p) + 8s(h,2p), if h is odd. (1.2)

Recently, Du and Zhang [5] have studied the computational problem of Dedekind sums and estab-
lished a new reciprocity formula by using analytic method and the properties of Dirichlet L-function.
That is, they gave the following theorem.
Theorem 1.1 ([5], Theorem 1). Let h and p are two positive odd numbers with (h,p) = 1.
Then
_ . RP+p?+4 1
3(2p,h)+s(2h,p) :W_Z’ (1.3)
where p and h satisfy the congruence pp =1 (mod h) and hh =1 (mod p).
On the other hand, the mean value of Hardy sums or hybrid mean value involving Hardy sums
and other celebrated sums are intensively studied. For example, the authors of [13] discussed the
hybrid mean value involving certain Hardy sums and Kloosterman sum, defined for any positive

integer p > 1 and integer n by

o= (2555,

where a denotes the solution of the congruence za = 1 (mod p), the dash denotes the summation
e

over all 1 < a < p such that (a,p) = 1 and e(z) = €2™*. They obtained exact computational
formulas
p—1 p—1
> > K(m,p)K(n,p)S (2mn, p)
m=1n=1
and
p—1 p—1
> D K (m,p)P|K(n,p)* S (2mi, p),
m=1n=1

where S(h,p) is one of the Hardy sums. Some elementary properties of K (n,p) can be found in
[3, 7]. Peng and Zhang [8] investigated the hybrid mean value involving s5(h, p) in order to help to
achieve several identities between Hardy sums and Kloosterman sums.

As mentioned in [8], little about s5(h, p) is known. Thus, it is meaningful to continue to study
the properties of s5(h, p).

In this paper, firstly, we give following new reciprocity theorem for Hardy sum s5(h,p) by
applying rather elementary method.
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Theorem 1.2. Let h and p are odd primes. Then we have

_ _ 1 k4 p?
55 (20, h) + 55 (2h,p) = 5 = =5

where p and h satisfy the congruence pp =1 (mod h) and hh = 1 (mod p).

Secondly, using the properties of Gauss sums and mean value theorems of Dirichlet L-function,
we obtain the following conclusions for Hardy sum s4(h,p) and Kloosterman sum in order to help
to obtain further relations between these sums.

Theorem 1.3. Let p be odd prime, then we have

p—1 p—1

> > K(m,p)K(n,p)ss (mn,p) =p*(p— 1).

m=1n=1

Theorem 1.4. Let p be odd prime, then we obtain

p—1 p—1
> D 1K (m,p)*|K (n,p)|* 54 (mi, p) =
m=1n=1

pg(p_1)7 lf pEl (m0d4)7

=4p(p—1)— 36p2h12], if p=3(mod8),
pP(p—1)—4p*h2, if p=7T (mod8),

where h,, denotes the class number of the quadratic field @(\/Tp)

2. Preliminaries. In order to prove our theorems, we will need some lemmas. Hereinafter, we
shall use many properties of Gauss sums, all of which can be found in [1].

Lemma 2.1. Let p be an odd prime. Then, for any odd number h with (h,p) = 1, we have

s5(h,p) = 2s(h,p) — 4s (2h,p) ,

where 2 satisfies the congruence 22 =1 (mod p).
Proof. See [8] (Lemma 2.3).
Lemma 2.2. Let p > 2 be an integer, then, for any integer h with (h,p) = 1, we obtain

1 d?
s(hip) = ==Y —= > x(h) L1,
m2p 4= ¢ (d)
dlp x modd
x(-1)=-1
where L(1,x) is the Dirichlet L-function corresponding to the character x modd and ¢(p) is the
Euler function.
Proof. See Lemma 2 of [14].
Lemma 2.3. Let p be an odd prime. Then, for any nonprincipal character x mod p, we have

p—1 3y (<2
> x(n) |K(n,p)|* = x(—1)M
n=1 T (X)

where T(x) denotes the Gauss sum.
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Proof. This is Lemma 1 of [13].
Lemma 2.4. Let p be an odd prime. Then we obtain

*(p-1)*(p—2)
S L 2_m(p-1)7(p-2)
XmOdp ‘ ( 7X)‘ 12 p2
x(—=)=-1

" 2 (p—1)2(p—5)
™ (p—1)*(p—>5
2)|L(L, )|} = ——— 2
x mod p
x(-1)=-1
Proof. See [13] (Lemma 5).
3. Proofs. This section is devoted to complete the proof of theorems.

3.1. Proof of Theorem 1.2. Employing Lemma 2.1 repeatedly, one can write

S5 (27L,p) =2s (27L,p) — 4s(h,p)

and
S5 (2]57 h) =2s (2131 h) - 4S(p7 h)a

M. C. DAGLI

3.1)

(3.2)

where we have used the fact that if positive integers n and ¢ satisfying (n,q) = 1. Then s(n,q) =

= s(n,q), where 7 satisfies the congruence nin = 1 mod q.

Adding (3.1) and (3.2), then applying reciprocity formulas (1.1) and (1.3) give the desired result.
3.2. Proof of Theorem 1.3. Before beginning the proof, we should prove the following relation.
Lemma 3.1. For odd prime p and any odd number h with (h,p) = 1, we have the identity

54(hap) = 203(hap) - 85(2hap) —8s (éhap) )

where 2 satisfies the congruence 22 =1 (mod p).
Proof. From (1.2) and Lemma 2.2, one has

s4(h,p) = —4s(h,p) + 8s(h,2p) =

2
:_4s<h,p>+;§pz¢‘ﬁd) S X)L

d|2p x modd

Since the divisors of 2p are 1, 2, p, 2p and

sthp)=—=—L— S X)L, P,

Com2p—1
x modp
x(=1)=-1
the right-hand side of (3.3) becomes
4p 2
—4s(h,p) + 2p—1) Z x(h) |L(1, )"+

x mod p
x(—1)=-1

(3.3)
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16p

+7T2(p— 1)

> X)L =
x mod 2p
x(=1)=-1
_ 16p 9
=——— > x(WAMB) L1 xN)?, (3.4)
m(p—1)
x modp
x(—1)=-1

where A denotes the character mod 2. Now, from the Euler product formula, we obtain

2 _ _xe)Ap) |
o =] -
B x| ], x@FP x|
_pg21 o _’1 5 1;[1 - —
_ (i ) X(;)) L1 )P, (3.5)

Thus, substituting (3.5) in (3.4) completes the proof.
We proceed to the proof of Theorem 1.3. Notice that if x is nonprincipal character mod p, then

[7(x)| = /p and

bS]

! p=lp-l ma+ a
W) E(mp) =3 3 x(m)e ( ) ) _ [200| = ».

m=1 a=1m=1

So, it follows from Lemmas 2.4 and 3.1 that

p—1 p—1
SN K(m,p)K (n,p)sa (mn,p) =
m=1n=1
20 p-l 2
=57 > DoxmEnp)| 1L, X))~
" (p 1> x mod p n=1
x(—1)=-1
8 -l 2
oy 2 X XK )| 120, -
x%—T;jfl "
8 Pl 2
—% > x@ D x(m)K(n,p)| L) =
w1 X modp n=1

20p3 9 8p3 9
= 5 L(1 - 2)|L(1 -
X modp x modp
x(—1)=-1 x(—1)=—1
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which completes the proof.
3.3. Proof of Theorem 1.4. 1f p =1 (mod4), in view of Lemmas 2.3, 2.4 and 3.1, we have

p—1 p—1
Z Z |K(m,p)’2 ‘K(nvp)|2 S4 (mﬁvp) =
m=1n=1
20p p-l ?
= Y Yo xmIKmp)?| LX) -
T (p_ 1) x modp n=1
x(—1)=-1
8p p! ?
YA Z x(2) ZX(”) |K(”ap)|2 ’L(LX)|2*
m (p 1) x modp n=1
x(—1)=-1
8p p! ?
2o 2 X@R_xmIEmpF| ILF =
mod n=1
x)(c—l):fl
=p’(p—1).

—1
If p =3 (mod 4), then we have the Legendre symbol <> = x2(—1) = =1, L(1, x2) = why/\/P
p

-2 ) ()

a=1

and

Hence, using Lemma 2.3 and proceeding as in the proof of Theorem 1.3 yield that

p—1 p—1

> DK, p) K (n,p)f? s (i, p) =
m=1n=1
20p = 2 i 2
Jer,
8p = 2 i 2
e S @ le(n) K (n,p)|”| 1L(L,x)|" —

X mod p n=
x(—1)=-1
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2

—1
8p 7 14
2o D X X xMIEmpP| ILOLX)P =
x modp n=1
x(—1)=-1
=S R S @) n P -
772(]7_1) X modp | 77'2(]3_1) x modp |
x(—1)=-1 x(—1)=-1
20p° 5 16p? (2 9
L = (Z) L -
2 | (7X2)| + 2 P ’ (7X>‘

2
=p’(p — 1) — 20p°h, + 16p” <p> h? =

p*(p—1) —36p*h2,  if p=3(mod8s),

pp—1)— 4p2h123, if p=7(mod8),

2 2

where we have used that (> = —1 if p = 3 (mod8) and () = 1 if p = 7(mod8). So, the
p p

proof is completed.
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