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КРАЙОВI ЗАДАЧI ДЛЯ СЛАБКОСИНГУЛЯРНИХ IНТЕГРАЛЬНИХ РIВНЯНЬ
ТИПУ ГАММЕРШТЕЙНА

We consider the problem of existence of the solution of weakly nonlinear boundary-value problem for the Hammerstein-
type integral equation with unbounded kernel, which turns, for \varepsilon = 0, into one of solutions of the generating problem.
The necessary and sufficient conditions for the existence of this solution are obtained and the iterative procedure for its
construction is proposed.

Розглянуто питання iснування розв’язку слабконелiнiйної крайової задачi для iнтегрального рiвняння типу Гаммер-
штейна з необмеженим ядром, який при \varepsilon = 0 перетворюється в один iз розв’язкiв породжуючої задачi. Отримано
необхiдну та достатню умови iснування такого розв’язку та запропоновано iтерацiйну схему його побудови.

Рiзнi типи iнтегральних рiвнянь та крайовi задачi для них є зручними засобами для опису
широкого кола процесiв у фiзицi, хiмiї, бiологiї, економiцi тощо. Зокрема, iнтегральнi рiв-
няння iз слабкосингулярними ядрами, якi ще мають назву рiвнянь зi слабкою особливiстю
або рiвнянь з полярним ядром, знаходять застосування при дослiдженнi полiмерних ланцюж-
кiв, суперплинностi, абсорбцiї газiв [1 – 3]. Вiдмiтимо також тiсний зв’язок таких рiвнянь iз
iнтегро-диференцiальним численням дробового порядку, що бурхливо розвивається в останнi
десятилiття [4, 5]. Вивченню рiзних аспектiв теорiї слабкосингулярних iнтегральних рiвнянь, як
лiнiйних, так i нелiнiйних, присвячено низку, зокрема недавнiх, робiт [6 – 13]. Окремим напрям-
ком дослiдження таких рiвнянь є вiдшукання умов iснування та вивчення структури множини
їх розв’язкiв. У статтi [14] встановлено умови iснування i структуру розв’язкiв нетерових кра-
йових задач для таких рiвнянь, а у [15] отримано умови бiфуркацiї розв’язкiв збуреної лiнiйної
крайової задачi для слабкосингулярного iнтегрального рiвняння за припущення, що породжую-
ча задача є нерозв’язною. Отриманi результати застосовано при дослiдженнi нетерової крайової
задачi для системи диференцiальних рiвнянь з дробовою похiдною Капуто [16]. У цiй робо-
тi, продовжуючи зазначенi вище дослiдження, ми висвiтлюємо один iз можливих пiдходiв до
вiдшукання необхiдних та достатнiх умов розв’язностi крайових задач для слабкосингулярних
iнтегральних рiвнянь типу Гаммерштейна та пропонуємо алгоритм вiдшукання їх розв’язкiв.

1. Постановка задачi. Розглянемо слабконелiнiйну крайову задачу для iнтегрального рiв-
няння типу Гаммерштейна у просторi L2[a, b]

x(t) - 
b\int 

a

K(t, s)x(s)ds = f(t) + \varepsilon 

b\int 
a

K(t, s)Z
\bigl( 
x(s, \varepsilon ), s, \varepsilon 

\bigr) 
ds, (1)

lx(\cdot ) = \alpha + \varepsilon J
\bigl( 
x(\cdot , \varepsilon ), \varepsilon 

\bigr) 
, (2)

де K(t, s) =
H(t, s)

| t - s| \gamma 
, K(t, s) =

H(t, s)

| t - s| \beta 
, H(t, s), H(t, s) — обмеженi в областi [a, b] \times [a, b]

функцiї, 0 < \gamma < 1, 0 < \beta < 1, неоднорiднiсть f \in L2[a, b], l = \mathrm{c}\mathrm{o}\mathrm{l}(l1, l2, . . . , lp) :
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L2[a, b] \rightarrow \BbbR p — обмежений лiнiйний векторний функцiонал, l\nu : L2[a, b] \rightarrow \BbbR , \nu = 1, p, \alpha =

\mathrm{c}\mathrm{o}\mathrm{l}(\alpha 1, \alpha 2, . . . , \alpha p) \in \BbbR p, Z
\bigl( 
x(t, \varepsilon ), t, \varepsilon 

\bigr) 
— нелiнiйна по першiй компонентi функцiя, така що

Z(\cdot , t, \varepsilon ) \in C1
\bigl[ 
\| x - x0\| \leq \mu 

\bigr] 
, Z

\bigl( 
x(\cdot , \varepsilon ), \cdot , \varepsilon 

\bigr) 
\in L2[a, b], Z(x(t, \cdot ), t, \cdot ) \in C[0, \varepsilon 0], J(x(\cdot , \varepsilon ), \varepsilon ) —

нелiнiйний обмежений p-вимiрний вектор-функцiонал, неперервно диференцiйовний по x у
розумiннi Фреше i неперервний по \varepsilon в околi породжуючого розв’язку, \mu , \varepsilon 0 — достатньо малi
константи, \varepsilon << 1 — малий параметр.

Дослiджується питання знаходження необхiдних та достатнiх умов iснування розв’язку
x(t, \varepsilon ), x(\cdot , \varepsilon ) \in L2[a, b], x(t, \cdot ) \in C[0, \varepsilon 0], крайової задачi (1), (2), який перетворюється при
\varepsilon = 0 в один iз розв’язкiв x0(t, cr) породжуючої крайової задачi

x(t) - 
b\int 

a

K(t, s)x(s)ds = f(t), lx(\cdot ) = \alpha . (3)

Розв’язок x0(t, cr) називатимемо породжуючим розв’язком крайової задачi (1), (2).
2. Зведення iнтегрального рiвняння (1) до iнтегрального рiвняння, ядра якого є сумов-

ними з квадратом. У [14] показано, що крайову задачу для iнтегрального рiвняння з необме-
женим ядром (3) можна звести до крайової задачi для iнтегрального рiвняння Фредгольма. У
роботi [15], розвиваючи описану в [14] методику, отримано аналогiчний результат для збуреної
лiнiйної крайової задачi. Покажемо, використовуючи [14, 15], що дослiдження питання iснуван-
ня розв’язку задачi (1), (2), який перетворюється при \varepsilon = 0 в один iз розв’язкiв породжуючої
крайової задачi (3), зводиться до дослiдження вiдповiдного питання для слабконелiнiйної кра-
йової задачi для iнтегрального рiвняння типу Гаммерштейна iз сумовними з квадратом ядрами.
Такий пiдхiд дозволяє використати при дослiдженнi крайової задачi (1), (2) методи теорiї лiнiй-
них операторних рiвнянь з нормально розв’язним оператором та слабконелiнiйних операторних
крайових задач з нетеровою лiнiйною частиною [17 – 21], застосованi у роботах [22, 23] до кра-
йових задач для iнтегральних рiвнянь типу Гаммерштейна iз сумовними з квадратом ядрами.

Для обґрунтування згаданого вище переходу наведемо деякi факти з теорiї слабкосингуляр-
них iнтегральних операторiв. Вiдомо [24, с. 92], що якщо дано два iнтегральних оператори H1

i H2 iз слабкосингулярними ядрами
H1(t, s)

| t - s| \gamma 1
,
H2(t, s)

| t - s| \gamma 2
з показниками \gamma 1 i \gamma 2 вiдповiдно, то

добуток H1H2 цих операторiв має ядро вигляду

F (t, s) =

b\int 
a

H1(t, \xi )H2(\xi , s)

| t - \xi | \gamma 1 | \xi  - s| \gamma 2
d\xi , (4)

яке буде такої ж структури i має своїм показником число не бiльше нiж \gamma 1 + \gamma 2  - 1. За умови
\gamma 1+ \gamma 2 - 1 < 1/2 ядро F (t, s) буде сумовним з квадратом, а при \gamma 1+ \gamma 2 - 1 < 0 — обмеженим.

Розглянемо iнтегральнi оператори

(Kw)(t) =

b\int 
a

K(t, s)w(s)ds, (Kw)(t) =

b\int 
a

K(t, s)w(s)ds

iз необмеженими ядрами K(t, s) =
H(t, s)

| t - s| \gamma 
, K(t, s) =

H(t, s)

| t - s| \beta 
та iтерованi ядра Kn(t, s),

Mn(t, s), n \in \BbbN , що визначаються за допомогою рекурентних формул
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Kn(t, s) =

b\int 
a

K(t, \xi )Kn - 1(\xi , s)d\xi , Mn(t, s) =

b\int 
a

K(t, \xi )Mn - 1(\xi , s)d\xi ,

K1(t, s) = K(t, s), M1(t, s) = K(t, s).

Згiдно з (4), як показано в [15], iтерованi ядра Kn(t, s), Mn(t, s) мають таку ж структуру,
як i слабкосингулярнi ядра K(t, s), K(t, s), а їхнi показники не перевищують чисел n\gamma +1 - n

i (n - 1)\gamma + \beta +1 - n вiдповiдно, якi є вiд’ємними при достатньо великому n. Тому [24, с. 95]
при всiх n, для яких виконуються умови

n >
1

2(1 - \gamma )
, n >

1 + 2\beta  - 2\gamma 

2(1 - \gamma )
, (5)

ядра Kn(t, s), Mn(t, s) будуть сумовними з квадратом, а при

n >
1

1 - \gamma 
, n >

1 + \beta  - \gamma 

1 - \gamma 
(6)

— обмеженими.
Згiдно з [24, с. 95], рiвняння (1) можна звести до рiвняння з iнтегральними операторами,

ядра яких є сумовними з квадратом. Справдi, домножаючи обидвi частини рiвняння (1) злiва
на K(t, s) й iнтегруючи лiву та праву частини отриманої рiвностi на вiдрiзку [a, b], отримуємо

b\int 
a

K(t, s)x(s)ds - 
b\int 

a

K2(t, s)x(s)ds =

b\int 
a

K(t, s)f(s)ds+ \varepsilon 

b\int 
a

M2(t, s)Z(x(s, \varepsilon ), s, \varepsilon )ds.

Продовжуючи цей процес далi, на n-му кроцi одержуємо рiвняння

b\int 
a

Kn - 1(t, s)x(s)ds - 
b\int 

a

Kn(t, s)x(s)ds

=

b\int 
a

Kn - 1(t, s)f(s)ds+ \varepsilon 

b\int 
a

Mn(t, s)Z(x(s, \varepsilon ), s, \varepsilon )ds.

Додаючи почленно всi отриманi рiвняння з рiвнянням (1), бачимо, що функцiя x(t) є розв’язком
рiвняння

x(t) - 
b\int 

a

Kn(t, s)x(s)ds = fn(t) + \varepsilon 

b\int 
a

Ln(t, s)Z(x(s, \varepsilon ), s, \varepsilon )ds, (7)

fn(t) = f(t) +

n - 1\sum 
i=1

b\int 
a

Ki(t, s)f(s)ds, Ln(t, s) =

n\sum 
i=1

Mi(t, s). (8)

Згiдно з першою умовою з (5), за скiнченну кiлькiсть крокiв приходимо до рiвняння (7)
iз сумовним з квадратом ядром Kn(t, s). Наведемо умови, за яких ядро Ln(t, s) також буде
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сумовним з квадратом. Враховуючи (5), (8) та те, що ядро K(t, s) сумовне з квадратом при
\beta < 1/2 [24, с. 90], отримуємо n умов

\beta <
1

2
, \beta + \gamma  - 1 <

1

2
, \beta + 2\gamma  - 2 <

1

2
, . . . , \beta + (n - 1)\gamma  - (n - 1) <

1

2
. (9)

Однак, аналiзуючи умови \beta + i\gamma  - i < 1/2, i = 1, n - 1, бачимо, що вони є зайвими.
Справдi, згiдно з нашою постановкою задачi та першою з умов (9), показники ядер K(t, s),

K(t, s) задовольняють спiввiдношення 0 < \gamma < 1, 0 < \beta < 1/2. Помножуючи обидвi частини
нерiвностi 0 < \gamma < 1 на i = 1, n - 1 i додаючи почленно отриманi нерiвностi до нерiвностi
0 < \beta < 1/2, бачимо, що всi умови (9), крiм першої, є зайвими. Отже, для того щоб ядра
Kn(t, s) i Ln(t, s) були сумовними з квадратом, достатньо виконання лише двох умов

n >
1

2(1 - \gamma )
, \beta <

1

2
,

перша з яких задовольняється в результатi скiнченної кiлькостi iтерацiй n, а друга вiд n не
залежить. Очевидно, що довiльний розв’язок рiвняння (1) є розв’язком рiвняння (7). Обернене
твердження, взагалi кажучи, є хибним. Проте можна вибрати число n так, щоб виконувала-
ся перша з умов (6), а отже i перша з умов (5), i щоб довiльний розв’язок рiвняння (7) був
розв’язком рiвняння (1), тобто щоб рiвняння (1) та (7) були еквiвалентними. Далi будемо вважа-
ти, що число n вибрано саме таким чином. Зауважимо, що доведення еквiвалентностi рiвнянь
(1) i (7), наведене в [24, с. 98] для лiнiйного випадку (\varepsilon = 0), якщо розглядати формально праву
частину рiвняння (1) як довiльну неоднорiднiсть, повнiстю переноситься на розглянутий у цiй
роботi нелiнiйний випадок (\varepsilon \not = 0). Зафiксувавши n, ми можемо перейти вiд вивчення кра-
йової задачi (1), (2) для iнтегрального рiвняння Гаммерштейна iз слабкосингулярними ядрами
до вивчення крайової задачi (7), (2) для iнтегрального рiвняння Гаммерштейна, ядра якого є
сумовними з квадратом.

3. Зв’язок задачi (7), (2) iз злiченновимiрною системою нелiнiйних алгебраїчних рiв-
нянь. Зведемо задачу (7), (2), використавши [22, 23], до злiченновимiрної системи слабконелi-
нiйних рiвнянь. Нехай \{ \varphi i(t)\} \infty i=1 — повна ортонормальна система функцiй в L2[a, b]. Вводячи
позначення

xi(\varepsilon ) =

b\int 
a

x(t, \varepsilon )\varphi i(t)dt, fi =

b\int 
a

fn(t)\varphi i(t)dt,

aij =

b\int 
a

b\int 
a

Kn(t, s)\varphi i(t)\varphi j(s)dtds, \~aij =

b\int 
a

b\int 
a

Ln(t, s)\varphi i(t)\varphi j(s)dtds,

mi(\varepsilon ) =

b\int 
a

Z
\bigl( 
x(t, \varepsilon ), t, \varepsilon 

\bigr) 
\varphi i(t)dt, h\nu (\varepsilon ) = J\nu (x(\cdot , \varepsilon ), \varepsilon ), \nu = 1, p,

вiд задачi (7), (2) приходимо до злiченновимiрної системи слабконелiнiйних рiвнянь, яку можна
записати у виглядi операторного рiвняння у просторi \ell 2 :

Uz =

\Biggl[ 
\Lambda 

W

\Biggr] 
z =

\Biggl[ 
g

\alpha 

\Biggr] 
+ \varepsilon 

\Biggl[ 
\Lambda 1V (z(\varepsilon ), \varepsilon )

H(z(\varepsilon ), \varepsilon )

\Biggr] 
= q + \varepsilon D(z(\varepsilon ), \varepsilon ), (10)
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де матрицi \Lambda , \Lambda 1, W, вектор-стовпчики z та g визначаються формулами

z(\varepsilon ) = \mathrm{c}\mathrm{o}\mathrm{l}
\bigl( 
x1(\varepsilon ), x2(\varepsilon ), . . . , xi(\varepsilon ), . . .

\bigr) 
, g = \mathrm{c}\mathrm{o}\mathrm{l}

\bigl( 
f1, f2, . . . , fi, . . .

\bigr) 
,

\Lambda =

\left(          

1 - a11  - a12 . . .  - a1i . . .

 - a21 1 - a22 . . .  - a2i . . .

. . . . . . . . . . . . . . .

 - ai1  - ai2 . . . 1 - aii . . .

. . . . . . . . . . . . . . .

\right)          
, \Lambda 1 =

\left(         

\~a11 \~a12 . . . \~a1i . . .

\~a21 \~a22 . . . \~a2i . . .

. . . . . . . . . . . . . . .

\~ai1 \~ai2 . . . \~aii . . .

. . . . . . . . . . . . . . .

\right)         
,

W := l\Phi (\cdot ), \Phi (t) =
\bigl( 
\varphi 1(t), \varphi 2(t), . . . , \varphi i(t), . . .

\bigr) 
,

V (z(\varepsilon ), \varepsilon ) = \mathrm{c}\mathrm{o}\mathrm{l}
\bigl( 
m1(\varepsilon ), m2(\varepsilon ), . . . , mi(\varepsilon ), . . .

\bigr) 
,

V (\cdot , \varepsilon ) \in C1
\bigl[ 
\| z  - z0\| \leq \mu 

\bigr] 
, V (z(\cdot ), \cdot ) \in C[0, \varepsilon 0],

H(z(\varepsilon ), \varepsilon ) = \mathrm{c}\mathrm{o}\mathrm{l}
\bigl( 
h1(\varepsilon ), h2(\varepsilon ), . . . , h\nu (\varepsilon ), . . . , hp(\varepsilon )

\bigr) 
,

H(\cdot , \varepsilon ) \in C1
\bigl[ 
\| z  - z0\| \leq \mu 

\bigr] 
, H(z(\cdot ), \cdot ) \in C[0, \varepsilon 0].

Породжуюче рiвняння для рiвняння (10) має вигляд

Uz = q, (11)

i для нього справедливим є наступний критерiй розв’язностi [18, 19].
Теорема 1. Однорiдне рiвняння (11) (q = 0) має d2-параметричну сiм’ю розв’язкiв z \in \ell 2 :

z(cd2) = P\Lambda rPQd2
cd2 \forall cd2 \in \BbbR d2 .

Неоднорiдне рiвняння (11) є розв’язним тодi й лише тодi, коли виконуються r + d1 лiнiйно
незалежних умов

P\Lambda \ast 
r
g = 0, PQ\ast 

d1
(\alpha  - W\Lambda +g) = 0, (12)

i має d2-параметричну сiм’ю розв’язкiв z \in \ell 2 вигляду

z(cd2) = P\Lambda rPQd2
cd2 + P\Lambda rQ

+(\alpha  - W\Lambda +g) + \Lambda +g \forall cd2 \in \BbbR d2 . (13)

Тут Q = WP\Lambda r , P\Lambda r (P\Lambda \ast 
r
) — матриця, яка складається з повної системи r лiнiйно незалежних

стовпчикiв (рядкiв) матрицi-проєктора P\Lambda (P\Lambda \ast ), де P\Lambda (P\Lambda \ast ) — проєктор на ядро (коядро)
матрицi \Lambda , PQd2

(PQ\ast 
d1
) — матриця, яка складається з повної системи d2 (d1) лiнiйно неза-

лежних стовпчикiв (рядкiв) матрицi-проєктора PQ (PQ\ast ), де PQ (PQ\ast ) — проєктор на ядро
(коядро) матрицi Q, \Lambda + (Q+) — псевдообернена (за Муром – Пенроузом) до \Lambda (Q) матриця.

4. Необхiдна умова iснування розв’язку крайової задачi (1), (2). Сформулюємо необ-
хiднi умови iснування розв’язку z(\varepsilon ) рiвняння (10), який при \varepsilon = 0 перетворюється в один iз
породжуючих розв’язкiв z(c0d2). Рiвняння (10) є розв’язним тодi й лише тодi, коли виконуються
r + d1 лiнiйно незалежних умов

P\Lambda \ast 
r

\bigl( 
g + \varepsilon \Lambda 1V (z(\varepsilon ), \varepsilon )

\bigr) 
= 0, PQ\ast 

d1

\bigl( 
\alpha + \varepsilon H(z(\varepsilon ), \varepsilon ) - W\Lambda +(g + \varepsilon \Lambda 1V (z(\varepsilon ), \varepsilon ))

\bigr) 
= 0.
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Оскiльки породжуюче рiвняння (11) має розв’язок, то згiдно з умовами (12) отримаємо

P\Lambda \ast 
r
\Lambda 1V (z(\varepsilon ), \varepsilon ) = 0, PQ\ast 

d1
(H(z(\varepsilon ), \varepsilon ) - W\Lambda +\Lambda 1V (z(\varepsilon ), \varepsilon )) = 0. (14)

Врахувавши, що z(\varepsilon ) \rightarrow z(cd2) при \varepsilon \rightarrow 0 та використавши умови, накладенi на нелiнiйнi
функцiї V (z(\varepsilon ), \varepsilon ) i H(z(\varepsilon ), \varepsilon ), перейдемо до границi при \varepsilon \rightarrow 0 у рiвностях (14) i отримаємо
необхiднi умови iснування розв’язку операторного рiвняння (10):

P\Lambda \ast 
r
\Lambda 1V (z(cd2), 0) = 0, PQ\ast 

d1
(H(z(cd2), 0) - W\Lambda +\Lambda 1V (z(cd2), 0)) = 0. (15)

Отже, якщо система рiвнянь (15) має корiнь cd2 = c0d2 \in \BbbR d2 , то цей корiнь c0d2 визначає той
породжуючий розв’язок z(c0d2), якому може вiдповiдати розв’язок z(\varepsilon ) рiвняння (10). Якщо
ж система рiвнянь (15) не має розв’язкiв, то i рiвняння (10) не матиме шуканого розв’язку.
Зазначимо, що мова йде про дiйснi розв’язки системи рiвнянь (15), оскiльки ми розглядаємо
нашу задачу в дiйснiй площинi. В класичнiй теорiї диференцiальних рiвнянь з перiодичними
коефiцiєнтами, як вiдомо, константа c0d2 має фiзичний змiст, тобто є амплiтудою породжуючого
розв’язку, а вiдповiднi рiвняння вигляду (15) називаються рiвняннями для породжуючих амплi-
туд. Тому, як i в теорiї крайових задач для систем звичайних диференцiальних рiвнянь, систему
рiвнянь (15) будемо називати системою рiвнянь для породжуючих констант c0d2 розглядуваного
слабконелiнiйного рiвняння (10).

Теорема 2. Нехай слабконелiнiйне рiвняння (10) має розв’язок z(\varepsilon ) \in \ell 2, z(\cdot ) \in C[0, \varepsilon 0],

який при \varepsilon = 0 перетворюється у породжуючий розв’язок (13) з константою cd2 = c0d2 \in \BbbR d2 .
Тодi константа c0d2 обов’язково повинна бути дiйсним коренем системи рiвнянь для породжу-
ючих констант (15).

Спираючись на результати для операторного рiвняння (10), сформулюємо необхiдну умову
iснування розв’язку крайової задачi (1), (2). Використаємо пiдхiд, застосований у роботах
[22, 23]. Згiдно з цим пiдходом, якщо рiвняння (10) має хоча б один розв’язок z(\varepsilon ), то за
теоремою Рiса – Фiшера iснує елемент x(t, \varepsilon ) такий, що xi(\varepsilon ) є його коефiцiєнтами Фур’є i

x(t, \varepsilon ) =
\infty \sum 
i=1

xi(\varepsilon )\varphi i(t) = \Phi (t)z(\varepsilon ). (16)

Множина елементiв x(t, \varepsilon ), якi визначаються спiввiдношенням (16), i є шуканою множиною
розв’язкiв вихiдної крайової задачi (1), (2). Отже, справедливим є таке твердження.

Теорема 3. Нехай слабконелiнiйна крайова задача (1), (2) має розв’язок x(t, \varepsilon ), x(\cdot , \varepsilon ) \in 
L2[a, b], x(t, \cdot ) \in C[0, \varepsilon 0], який при \varepsilon = 0 перетворюється у породжуючий розв’язок x0(t, cd2):

x0(t, cd2) = \Phi (t)P\Lambda rPQd2
cd2 +\Phi (t)P\Lambda rQ

+(\alpha  - W\Lambda +g) + \Phi (t)\Lambda +g \forall cd2 \in \BbbR d2 (17)

з константою cd2 = c0d2 \in \BbbR d2 . Тодi константа c0d2 обов’язково повинна бути дiйсним коренем
системи рiвнянь для породжуючих констант (15).

Необхiдна умова не забезпечує iснування розв’язку крайової задачi (1), (2). Тому важливим
завданням є вiдшукання умов, при яких розв’язок поставленої задачi гарантовано буде iснувати,
а також розробка конструктивних алгоритмiв побудови таких розв’язкiв.
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5. Достатня умова iснування розв’язку крайової задачi (1), (2). Для того щоб знайти
достатню умову iснування розв’язку крайової задачi для iнтегрального рiвняння типу Гаммер-
штейна (1), (2), сформулюємо спочатку достатню умову iснуванння розв’язку слабконелiнiйного
операторного рiвняння (10). Для цього у рiвняннi (10) виконаємо замiну змiнних

z(\varepsilon ) = z(c0d2) + y(\varepsilon ),

де z(c0d2) — породжуючий розв’язок, c0d2 — дiйсний корiнь системи (15).
У нових змiнних будемо шукати умови iснування розв’язку y(\varepsilon ) \in \ell 2, y(\cdot ) \in C[0, \varepsilon 0],

y(0) = 0, операторного рiвняння

Uy(\varepsilon ) = \varepsilon D
\bigl( 
z(c0d2) + y(\varepsilon ), \varepsilon 

\bigr) 
. (18)

Використовуючи неперервну диференцiйовнiсть функцiй V (z(\varepsilon ), \varepsilon ) i H(z(\varepsilon ), \varepsilon ) по z в
околi точки \varepsilon = 0, видiляємо лiнiйну частину по y i члени нульового порядку по \varepsilon функцiй
V (z(c0d2) + y(\varepsilon ), \varepsilon ) та H(z(c0d2) + y(\varepsilon ), \varepsilon ). Має мiсце розклад

D
\Bigl( 
z
\bigl( 
c0d2) + y(\varepsilon 

\bigr) 
, \varepsilon 
\Bigr) 
=

\left[  \Lambda 1

\Bigl( 
V
\Bigl( 
z0
\bigl( 
c0d2

\bigr) 
, 0
\Bigr) 
+A1y(\varepsilon ) +R1

\bigl( 
y(\varepsilon ), \varepsilon 

\bigr) \Bigr) 
H
\Bigl( 
z0
\bigl( 
c0d2

\bigr) 
, 0
\Bigr) 
+ l1y(\varepsilon ) +R2

\bigl( 
y(\varepsilon ), \varepsilon 

\bigr) 
\right]  

= D
\Bigl( 
z0
\bigl( 
c0d2

\bigr) 
, 0
\Bigr) 
+A2y(\varepsilon ) +R

\bigl( 
y(\varepsilon ), \varepsilon 

\bigr) 
, (19)

де

D(z0(c
0
d2), 0) \in \ell 2, A1 =

\partial V (z, 0)

\partial z

\bigm| \bigm| \bigm| \bigm| 
z=z(c0d2

)

, l1 =
\partial H(z, 0)

\partial z

\bigm| \bigm| \bigm| \bigm| 
z=z(c0d2

)

, Ri

\bigl( 
y(\varepsilon ), \varepsilon 

\bigr) 
\in \ell 2,

Ri(\cdot , \varepsilon ) \in C1
\bigl( 
\| y\| \leq \mu 

\bigr) 
, Ri(y(\cdot ), \cdot ) \in C[0, \varepsilon 0], Ri(0, 0) = 0,

\partial Ri(0, 0)

\partial y
= 0, i = 1, 2.

Таким чином, розглядаючи праву частину рiвняння (18) як неоднорiднiсть, згiдно з теоремою 1,
отримуємо, що рiвняння (18) має розв’язок

y(\varepsilon ) = P\Lambda rPQd2
cd2 + \=y(\varepsilon ) \forall cd2 \in \BbbR d2 ,

(20)

\=y(\varepsilon ) = \varepsilon 
\bigl( 
P\Lambda rQ

+(H(z(c0d2) + y(\varepsilon ), \varepsilon )

 - W\Lambda +\Lambda 1V (z(c0d2) + y(\varepsilon ), \varepsilon )) + \Lambda +\Lambda 1V (z(c0d2) + y(\varepsilon ), \varepsilon )
\bigr) 
.

Умови розв’язностi рiвняння (18) наберуть вигляду

P\Lambda \ast 
r
\Lambda 1V (z(c0d2) + y(\varepsilon ), \varepsilon ) = 0, (21)

PQ\ast 
d1
(H(z(c0d2) + y(\varepsilon ), \varepsilon ) - W\Lambda +\Lambda 1V (z(c0d2) + y(\varepsilon ), \varepsilon )) = 0. (22)

Пiдставимо у рiвностi (21), (22) розклад (19):

P\Lambda \ast 
r
\Lambda 1(V (z0(c

0
d2), 0) +A1y(\varepsilon ) +R1(y(\varepsilon ), \varepsilon )) = 0,
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PQ\ast 
d1

\Bigl( 
H(z0(c

0
d2), 0) + l1y(\varepsilon ) +R2(y(\varepsilon ), \varepsilon )

 - W\Lambda +\Lambda 1

\bigl( 
V (z0(c

0
d2), 0) +A1y(\varepsilon ) +R1(y(\varepsilon ), \varepsilon )

\bigr) \Bigr) 
= 0.

Враховуючи систему рiвнянь для породжуючих констант (15) i розв’язок (20), отримуємо

Bcd2 = Gb, (23)

де матриця B i неоднорiдностi G, b мають вигляд

B :=

\Biggl[ 
P\Lambda \ast 

r
\Lambda 1A1P\Lambda rPQd2

PQ\ast 
d1
(l1  - W\Lambda +\Lambda 1A1)P\Lambda rPQd2

\Biggr] 
, G :=

\Bigl[ 
P\Lambda \ast 

r
\Lambda 1, PQ\ast 

d1

\Bigr] 
,

b :=

\Biggl[ 
 - (A1\=y(\varepsilon ) +R1(y(\varepsilon ), \varepsilon ))

W\Lambda +\Lambda 1(A1\=y(\varepsilon ) +R1(y(\varepsilon ), \varepsilon )) - (l1\=y(\varepsilon ) +R2(y(\varepsilon ), \varepsilon ))

\Biggr] 
.

Алгебраїчна система (23) розв’язна тодi й лише тодi, коли виконується умова

PB\ast Gb = 0. (24)

Якщо

PB\ast G = 0, (25)

то рiвнiсть (24) завжди виконується i система (23) має розв’язок, а за умови

PB = 0 (26)

цей розв’язок буде єдиним.
Отже, для знаходження розв’язку рiвняння (18) за умов (25), (26) приходимо до системи

операторних рiвнянь

y(\varepsilon ) = P\Lambda rPQd2
cd2(\varepsilon ) + \=y(\varepsilon ),

cd2(\varepsilon ) = B+Gb,

\=y(\varepsilon ) = \varepsilon (P\Lambda rQ
+(H(z0(c

0
d2), 0) + l1(P\Lambda rPQd2

cd2(\varepsilon ) + \=y(\varepsilon ))

+R2(y(\varepsilon ), \varepsilon ) - W\Lambda +\Lambda 1(V (z0(c
0
d2), 0) +A1(P\Lambda rPQd2

cd2(\varepsilon ) + \=y(\varepsilon ))

+R1(y(\varepsilon ), \varepsilon ))) + \Lambda +\Lambda 1(V (z0(c
0
d2), 0) +A1(P\Lambda rPQd2

cd2(\varepsilon )

+ \=y(\varepsilon )) +R1(y(\varepsilon ), \varepsilon ))), cd2 \in \BbbR d2 .

(27)

Система операторних рiвнянь (27) належить до класу систем, для розв’язання яких засто-
совується метод простих iтерацiй, детально обґрунтований у [18, 19]. Отже, справедливою є
така теорема.
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Теорема 4. Нехай породжуюче для рiвняння (10) рiвняння (11) за виконання r+ d1 лiнiйно
незалежних умов (12) має d2-параметричну сiм’ю розв’язкiв z(cd2) (13). Тодi для кожного
значення константи cd2 = c0d2 \in \BbbR d2 , що задовольняє систему рiвнянь для породжуючих конс-
тант (15), при виконаннi умов (25), (26) рiвняння (10) буде мати розв’язок z(\varepsilon ), неперервний
по \varepsilon , який перетворюється при \varepsilon = 0 в породжуючий розв’язок z(c0d2). Цей розв’язок при
достатньо малих \varepsilon можна знайти за допомогою збiжного iтерацiйного процесу

ckd2(\varepsilon ) = B+Gbk,

\=yk+1(\varepsilon ) = \varepsilon (P\Lambda rQ
+(H(z0(c

0
d2), 0) + l1(P\Lambda rPQd2

ckd2(\varepsilon ) + \=yk(\varepsilon )) +R2(yk(\varepsilon ), \varepsilon )

 - W\Lambda +\Lambda 1(V (z0(c
0
d2), 0) +A1(P\Lambda rPQd2

ckd2(\varepsilon ) + \=yk(\varepsilon )) +R1(yk(\varepsilon ), \varepsilon )))

+ \Lambda +\Lambda 1(V (z0(c
0
d2), 0) +A1(P\Lambda rPQd2

ckd2(\varepsilon ) + \=yk(\varepsilon )) +R1(yk(\varepsilon ), \varepsilon ))),

(28)

yk+1(\varepsilon ) = P\Lambda rPQd2
ckd2(\varepsilon ) + \=yk+1(\varepsilon ), k = 0,\infty ,

zk(\varepsilon ) = z(c0r) + yk(\varepsilon ), y0(\varepsilon ) = \=y0(\varepsilon ) = 0.

Використовуючи отриманi результати для слабконелiнiйного операторного рiвняння (10),
можна зробити висновок про iснування розв’язку вихiдної крайової задачi для слабконелi-
нiйного iнтегрального рiвняння типу Гаммерштейна (1), (2). Для цього використаємо пере-
хiд, який був описаний при дослiдженнi необхiдної умови iснування розв’язку розглядува-
ної задачi, тобто справедлива наступна достатня умова iснування розв’язку вихiдної крайової
задачi (1), (2).

Теорема 5. Нехай породжуюча для крайової задачi (1), (2) задача (3) за виконання r + d1
лiнiйно незалежних умов (12) має d2-параметричну сiм’ю розв’язкiв x0(t, cd2) (17). Тодi для
кожного значення константи cd2 = c0d2 \in \BbbR d2 , що задовольняє систему рiвнянь для пород-
жуючих констант (15), при виконаннi умов (25), (26) задача (1), (2) буде мати розв’язок
x(t, \varepsilon ), x(\cdot , \varepsilon ) \in L2[a, b], x(t, \cdot ) \in C[0, \varepsilon 0], який перетворюється при \varepsilon = 0 в породжую-
чий розв’язок x0(t, c

0
d2
). Цей розв’язок при достатньо малих \varepsilon можна знайти за допомогою

збiжного iтерацiйного процесу

xk(t, \varepsilon ) = \Phi (t)zk(\varepsilon ), k = 0,\infty ,

де вектор zk(\varepsilon ) визначається за допомогою спiввiдношень (28).

Роботу частково пiдтримано грантом H2020-MSCA-RISE-2019, номер проєкту 873071
(SOMPATY: Spectral Optimization: from Mathematics to Physics and Advanced Technology), а
також грантом вiд Simons Foundation (1030291, О.Б., В.Ф.).

Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв.
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