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IДЕАЛЬНА ТУРБУЛЕНТНIСТЬ — РIЗНОВИД РОЗПОДIЛЕНОГО ХАОСУ:
КОРОТКИЙ НАРИС

We outline the key points of the concept of ideal turbulence offering novel scenarios for distributed chaos, which are based
not on the geometric-dynamical complexity of the attractor but on the extremely complex spatial structure of elements of
the attractor. Ideal turbulence is observed in idealized (neglecting internal resistance) models of various processes related to
electromagnetic or sound oscillations. This idealization significantly simplifies the analysis and, at the same time, in many
cases, provides a quite adequate description of real processes.

Окреслено ключовi положення концепцiї iдеальної турбулентностi, яка пропонує новi сценарiї розподiленого ха-
осу, заснованi не на геометро-динамiчнiй складностi атрактора, а на надзвичайно складнiй просторовiй структурi
елементiв атрактора. Iдеальна турбулентнiсть спостерiгається в iдеалiзованих (що не враховують внутрiшнiй опiр)
моделях рiзноманiтних процесiв, пов’язаних з електромагнiтними чи звуковими коливаннями. Така iдеалiзацiя
iстотно спрощує аналiз i разом з тим у багатьох випадках надає цiлком адекватний опис реальних процесiв.

1. Вступ. Ми говоритимемо про турбулентнiсть у широкому сенсi й з позицiї детермiнiстич-
ного пiдходу. Тобто, пiд турбулентнiстю розумiємо процеси розвитку хаосу в еволюцiйних
просторово-розподiлених детермiнованих системах, тим самим де-факто ототожнюючи понят-
тя турбулентностi й динамiчного розподiленого (просторово-часового) хаосу. Незважаючи на
фантастичний прогрес у галузi обчислювальних технологiй, якiсно-аналiтичне дослiдження
турбулентностi залишається прiоритетним завданням. Для моделювання хаотичної динамiки в
розподiлених системах використовують рiвняння з частинними похiдними (РЧП), ланцюжки
й решiтки нелiнiйних осциляторiв, клiтиннi автомати. Останнi три математичнi iнтерпрета-
цiї обмежуються ґратковими моделями неперервного середовища, i лише перша цiлком уз-
годжується з просторовою неперервнiстю, а отже, у багатьох випадках краще вiдповiдає реаль-
ностi.

Коли йдеться про РЧП-моделi, для яких „точками” простору станiв є функцiї — просторово
протяжнi об’єкти, треба говорити не тiльки про динамiку переходiв мiж миттєвими станами (як
у випадку звичайних диференцiальних рiвнянь), а й про еволюцiю з часом внутрiшньої, просто-
рової, структури самих станiв. Це вiдкриває гiпотетичну, не залежну вiд геометро-динамiчних
властивостей атрактора, можливiсть для виникнення турбулентностi: ускладнення зi зростан-
ням часу внутрiшньої структури станiв може спричиняти просторово-часову хаотизацiю. Пере-
хiд до хаотичної динамiки зазвичай пов’язаний iз формуванням каскадiв просторових структур,
мiнiмальний масштаб яких у природних системах диктується внутрiшнiм опором. Воднораз iде-
альнi системи (без внутрiшнього опору) не перешкоджають появi як завгодно малих структур,
що власне i має сприяти надскладнiй просторово-часовiй динамiцi. Тому iдеалiзованi РЧП-
моделi заслуговують на увагу, тим паче, що достатньо реалiстичнi РЧП-моделi турбулентностi
наразi слабко пiддаються всебiчному аналiзу. Природно очiкувати, що динамiка реальної сис-
теми зi зменшенням внутрiшнього опору \nu буде значною мiрою визначатися динамiкою вiдпо-
вiдної iдеальної системи, принаймнi на промiжку часу порядку 1/\nu . Надихаючим прикладом
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плiдностi такого пiдходу є теорiя сухої води фон Неймана (води без в’язкостi), яка сприяла
розв’язанню багатьох задач гiдродинамiки, щоправда, переважно для ламiнарних течiй.

Рис. 1. Типова поведiнка розв’язкiв крайової задачi wt  - wx = 0, w(1, t) = (w(0, t))2 + \alpha при
 - 2 < \alpha \leq  - 1, 401 . . . (вiдображення z \rightarrow z2+\alpha має цикл перiоду, вiдмiнного вiд степеня
двiйки).

Виходячи з цих мiркувань, О. М. Шарковський ще у 1983 р. запровадив поняття iдеаль-
ної турбулентностi — турбулентностi в системах без внутрiшнього опору [1] (спершу вико-
ристовувалася назва суха турбулентнiсть за аналогiєю з сухою водою). Вiдтодi ця пробле-
матика постiйно лишалася в колi зацiкавлень наукової команди О. М. Шарковського (див.
[2, 3] та наведену там бiблiографiю). В результатi було створено математичну концепцiю iде-
альної турбулентностi, яка пропонує для вивчення турбулентних режимiв вiдносно простi
якiсно-аналiтичнi методи, заснованi на теорiї динамiчних систем, i надає (на базi iдеалiзованих
РЧП-моделей) новi сценарiї турбулентностi, при яких розподiлений хаос виникає внаслiдок кас-
кадного ускладнення внутрiшньої структури станiв системи, при цьому атрактор складається з
циклiв i нерухомих точок. Нам не вiдомi роботи, в яких би розглядалися такого роду ефекти.
Сьогоднi поняття „iдеальна турбулентнiсть” починає входити в термiнологiю теорiї хаосу, його
включено в „Енциклопедiю нелiнiйної науки” [4].

Iдеальна турбулентнiсть суттєво зумовлена нескiнченновимiрнiстю простору станiв, оскiль-
ки для систем iз нульовим внутрiшнiм опором не можна знехтувати внеском дрiбномасштабних
структур до якiсної картини динамiки. Взагалi, серед РЧП-моделей турбулентностi вирiзняють
два основних класи: нелiнiйнi крайовi задачi для параболiчних та гiперболiчних рiвнянь. Атрак-
тори задач iз першого класу зазвичай є скiнченновимiрними пiдмножинами фазового простору,
а задачi з другого класу, навпаки, переважно не мають атрактора у фазовому просторi. Тому
для моделювання iдеальної турбулентностi було взято саме крайовi задачi для гiперболiчних
рiвнянь. Типову поведiнку розв’язкiв таких задач продемонстровано на рис. 1. Варто зазна-
чити, що хоча одним iз iдейних витокiв поняття iдеальної турбулентностi була теорiя сухої
води, гiперболiчнi моделi iдеальної турбулентностi не мають прямого вiдношення до гiдроди-
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намiки, а пов’язанi з вивченням електромагнiтних i звукових коливань. Такi моделi доцiльно
використовувати як iдеалiзованi версiї для низки крайових задач електродинамiки, радiофiзики,
електронiки, акустики тощо. Наприклад, дослiдження коливальних режимiв у лiнiї без втрат iз
дiодом Чуа дозволило детально проаналiзувати характер коливань в залежностi вiд параметрiв,
зокрема видiлити в областi параметрiв зону iдеальної турбулентностi (див., наприклад, [5]).

Через обмеженiсть обсягу статтi зроблено акцент на якiсних аспектах теорiї iдеальної тур-
булентностi, послуговуючись елементарними викладками й комп’ютерною вiзуалiзацiєю i лише
вимушено залучаючи „високу” математичну аргументацiю (та й то з достатньою часткою вiль-
ностi в мiркуваннях). Також наведено лише опорнi посилання, виходячи з яких можна, якщо є
бажання, скласти достатньо повну бiблiографiю з цiєї теми.

2. Найпростiшi моделi iдеальної турбулентностi. Звiднi крайовi задачi. Математична
концепцiя iдеальної турбулентностi сформувалася завдяки дослiдженню низки (дуже простих
за формою) крайових задач, якi вiдносно легко проаналiзувати безпосередньо в нескiнченнови-
мiрному варiантi, без використання скiнченновимiрних апроксимацiй. Iдеться переважно про
системи лiнiйних рiвнянь

\partial wi

\partial t
+

n\sum 
j=1

aij
\partial wi

\partial xj
= 0, i = 1, . . . ,m, (1)

де | aij | — стала (m\times n)-матриця, (x1, . . . , xn) \in G \subset \BbbR n, t \in \BbbR +, iз нелiнiйними крайовими
умовами вигляду

H(x1, x2, . . . , xn; w1, w2, . . . , wm)
\bigm| \bigm| \bigm| 
\partial G

= 0. (2)

Сюди також належать хвильове та iншi рiвняння, що так чи iнакше зводяться до систем вигляду
(1), (2). Завдяки лiнiйностi рiвнянь загальний розв’язок зазвичай записують в аналiтичнiй фор-
мi. Тодi, пiдставляючи вiдповiдну формулу в крайовi умови, можна звести задачу до нелiнiйного
рiзницевого або диференцiально-рiзницевого рiвняння. Здебiльшого, коли використовують тер-
мiн рiзницеве рiвняння, мають на увазi рiвняння з дискретним аргументом, а внаслiдок редукцiї
крайових задач одержують рiзницевi рiвняння з неперервним аргументом. У найпростiших
випадках це рiвняння вигляду

u(\tau + 1) = f(u(\tau )), \tau \in \BbbR +. (3)

Класичний приклад — задача

wt  - wx = 0, x \in [0, 1], t \in \BbbR +, (4)

w | x=1 = f(w) | x=0. (5)

Загальний розв’язок для (4) має вигляд w(x, t) = u(t + x), де u — довiльна C1-функцiя.
Пiдставляючи цю формулу в (5), переконуємося, що u справджує рiвняння (3), якому вiдповiдає
одновимiрне вiдображення z \mapsto \rightarrow f(z).

Ще приклад — задача для хвильового рiвняння

w tt  - wxx = 0, x \in [0, 1], t \in \BbbR +,
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w | x=1 = f(w) | x=0, wx | x=0 = awt | x=0, a > 1.

Пiдставляючи загальний розв’язок w(x, t) = u+(x + t) + u - (x  - t), де u+, u - — довiльнi
C2-функцiї, в крайовi умови, пiсля певних (доволi громiздких) перетворень виводимо, що

u+(\tau ) =
1 + a

2
u(\tau + 1) - A, u - (\tau ) =

1 - a

2
u(\tau + 1) +A,

де A — довiльна стала, а u(\tau ) — розв’язок рiзницевого рiвняння другого порядку u(\tau + 2) =

bf(u(\tau + 1)) + cu(\tau ), b = 2/(1 + a), c = (1  - a)/(1 + a), яке замiною v(\tau ) = u(\tau + 1)/c,

h(z) = bf(cz)/c зводиться до системи рiзницевих рiвнянь першого порядку

u(\tau + 1) = c v(\tau ),

v(\tau + 1) = h(v(\tau )) + u(\tau ).
(6)

Рiвнянням (6) вiдповiдає двовимiрне вiдображення y \mapsto \rightarrow cz, z \mapsto \rightarrow h(z)+ y, яке є вiдображенням
Ено при h(z) = 1 - dz2 i вiдображенням Лозi при h(z) = 1 - d| z| .

Iснує багато iнших одно- та багатовимiрних крайових задач, що зводяться до рiзницевих
або близьких до них рiвнянь [3, 6]. Приклади таких задач були вiдомi давно, проте на той
час метод редукцiї не привернув належної уваги, оскiльки аналiз отримуваних у такий спосiб
рiвнянь iз перетвореним аргументом видавався не менш складним, анiж аналiз самих крайових
задач. Реальний шанс на серйозний поступ у цьому напрямi з’явився завдяки створенню якiсної
теорiї нелiнiйних рiзницевих рiвнянь вигляду (3) [7 – 9]. Розв’язки цих рiвнянь виражаються
через iтерацiї вiдображення f за формулою

u(\tau ) = fn(\varphi (\tau  - n)), \tau \in [n, n+ 1), n = 0, 1, . . . ,

де \varphi (\tau ) = u(\tau )| [0,1) i fn(z) = f(fn - 1(z)), f0(z) = z, а отже, їхня поведiнка визначається як
асимптотичними властивостями послiдовностi функцiй \{ fn\} n, так i структурою самих функ-
цiй fn(z) при великих n. Зазвичай послiдовнiсть \{ fn\} n є асимптотично перiодичною, а от
поведiнка функцiй fn(z) стає дедалi заплутанiшою [10]. Тому розв’язки рiвняння (3) також
асимптотично перiодичнi, але водночас типовими є асимптотично розривнi розв’язки — обме-
женi гладкi функцiї, в яких число (незгасних) коливань на [\tau , \tau + 1] необмежено зростає при
\tau \rightarrow \infty , i здебiльшого експоненцiально. Тож поведiнка розв’язкiв критично ускладнюється
зi зростанням \tau (скажiмо, як на рис. 2), що робить їх вiдмiнним iнструментом для моде-
лювання турбулентних процесiв.2 Властивостi розв’язкiв рiзницевих рiвнянь успадковуються
розв’язками звiдних крайових задач, i це надає можливiсть вiдносно просто з’ясувати матема-
тичнi механiзми розподiленого хаосу та його просторово-часової iєрархiзацiї.

3. Вiзуалiзацiя рiзновидiв iдеальної турбулентностi. Щоб дати початкове уявлення про
iдеальну турбулентнiсть, почнiмо з прикладiв її комп’ютерної вiзуалiзацiї.

В певному розумiннi найпростiший патерн iдеальної турбулентностi надає рис. 3, де зобра-
жено перетини по t типового розв’язку крайової задачi

2Зокрема, увесь каскадний процес утворення структур можна описати лише одним рiзницевим рiвнянням (3), тодi
як використання систем звичайних диференцiальних рiвнянь потребує збiльшення їх розмiрностi для врахування
структур кожного подальшого масштабу, i доводиться розглядати системи надвисокої розмiрностi (стає актуальною
проблема „прокляття розмiрностi”).
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(a) (б)

Рис. 2. Фрагменти розв’язку рiвняння u(\tau + 1) = f(u(\tau )) з початковою умовою u(\tau )| [0,1) = \varphi (\tau ) у випадку
f(z) = z2 + \alpha , \varphi (\tau ) = \alpha \tau , \alpha =  - 1, 755: (a) x(\tau ) = f10(\varphi (\tau  - 10)), \tau \in [10, 11), (б) x(\tau ) =
f12(\varphi (\tau  - 12)), \tau \in [12, 13).

Рис. 3. Миттєвi портрети розв’язку крайової задачi wt  - wx = 0, w(1, t) = (w(0, t))2  - \alpha , w(x, 0) = \alpha x,
\alpha =  - 2.

wt  - wx = 0, x \in [0, 1], t \in \BbbR +,

w | x=1= (w | x=0)
2  - 2.

З деякого моменту розв’язок w\varphi (x, t) починає коливатися в межах вiд  - 2 до 2 iз амплiтудою,
рiвною 4, а число коливань функцiї w\varphi (x, T ) зростає вдвiчi зi збiльшенням T на 1.

Тут спостерiгаються вiдразу три принциповi особливостi, що зустрiчаються в крайових
задачах iз iдеальною турбулентнiстю. Перша — це градiєнтна катастрофа, коли максимум
градiєнта обмеженої (до того ж гладкої) функцiї w\varphi (x, T ) необмежено зростає при T \rightarrow \infty .

Друга особливiсть має назву space-filling властивiсть. Вона полягає в тому, що графiк
функцiї w\varphi (x, T ) зi зростанням T дедалi щiльнiше заповнює прямокутник \Pi = [0, 1]\times [ - 2, 2] i
стає схожим на пласку space-filling криву — неперервну двовимiрну криву, що проходить через
кожну точку деякого квадрата (такi кривi ще називають кривими Пеано). А саме, для будь-якого
\varepsilon > 0 знайдеться T\varepsilon > 0 таке, що при T > T\varepsilon крива y = w\varphi (x, T ) проходить бiля кожної точки
(x, y) \in \Pi на вiдстанi, меншiй за \varepsilon .

Третя особливiсть: яким би не було x\ast \in [0, 1], значення функцiї w\varphi (x, T ) при x = x\ast 
не можна обчислити достовiрно, коли T достатньо велике. Будь-яка обчислювальна схема
(навiть за як завгодно високої точностi) буде нестiйкою, тож поведiнку функцiї w\varphi (x, t) можна
з певнiстю визначити тiльки на вiдносно невеликому промiжку часу. В такому випадку кажуть,
що w\varphi (x, t) потрапляє за горизонт передбачуваностi.

Iнший патерн iдеальної турбулентностi отримаємо, якщо змiнимо сталу в крайових умовах,
взявши

w | x=1= (w | x=0)
2  - 1, 755.

ISSN 1027-3190. Укр. мат. журн., 2023, т. 75, № 12



IДЕАЛЬНА ТУРБУЛЕНТНIСТЬ — РIЗНОВИД РОЗПОДIЛЕНОГО ХАОСУ. . . 1657

Рис. 4. Миттєвi портрети розв’язку крайової задачi wt  - wx = 0, w(1, t) = (w(0, t))2  - \alpha , w(x, 0) = \alpha x,
\alpha =  - 1, 755.

(a) (б)

Рис. 5. „Язики полум’я” (a) i „золотi злитки” (б).

Рис. 6. „Картинки в калейдоскопi”.

Який тепер вигляд мають типовi розв’язки видно з рис. 1 i 4. Вони демонструють ще одну особ-
ливiсть — каскадне самоструктурування: розвинення каскадiв когерентних структур спадних
масштабiв до як завгодно малих структур.
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Кращої вiзуальної виразностi каскаднi процеси набувають при двовимiрнiй машиннiй графi-
цi (а надто з використанням кольору). Отримуванi картинки iнодi можуть спричинити курйознi
асоцiацiї, наприклад, як на рис. 5 i 6.

Цi рисунки отримано за графiчного супроводу роботи [11], вони стосуються задачi

\partial w1

\partial t
=

\partial w1

\partial x1
+

\partial w1

\partial x2
,

\partial w2

\partial t
=  - \partial w2

\partial x1
 - \partial w2

\partial x2
, (x1, x2) \in \BbbR \times [0, 1], t \in \BbbR +,

w1

\bigm| \bigm| 
x2=0

= w2

\bigm| \bigm| 
x2=0

, w1

\bigm| \bigm| 
x2=1

= f(w2)
\bigm| \bigm| 
x2=1

, f(z) = \lambda (1 - z2) - 1, \lambda \in \BbbR .

При кожному фiксованому t \in \BbbR + розв’язок w(x, t) визначає в площинi (x1, x2) векторне
поле (w1(x, t), w2(x, t)). В точках x = (x1, x2) обчислюємо m(x) =

\sqrt{} 
(w1)2 + (w2)2 або

r(x) = \mathrm{a}\mathrm{r}\mathrm{c}\mathrm{t}\mathrm{a}\mathrm{n}(w2/w1) i фарбуємо вiдповiдний пiксель дисплея згiдно з обраною колiрною
шкалою. Збiльшуючи t, простежуємо динамiку миттєвих портретiв векторного поля, написаних
„пiкчерами” m(x) та r(x). Картинки на рис. 5 вiдповiдають \lambda = 2, „пiкчер” для першої — m(x),

для другої — r(x), а на рис. 6 — \lambda = 1, 925, „пiкчером” є m(x).

На цих рисунках чiтко простежуються послiдовнi етапи каскадного виникнення структур.
Спостерiгаються двi загальнi тенденцiї. Перша — це коли, як на рис. 5, виникнення структур
менших масштабiв супроводжується руйнуванням попереднiх структур бiльших масштабiв
i зрештою виникає турбулентна пляма — зона хаотичного перемiшування. Друга тенденцiя
— це коли, як на рис. 6, iз виникненням структур менших масштабiв попереднi структури
бiльших масштабiв продовжують iснувати i вибудовується каскадна просторово-часова iєрархiя
структур, що приводить до формування в усiй областi надскладної фракталоподiбної структури,
самоподiбної на рiзних масштабних рiвнях. Це явище, назване скейлiнг, добре видно на двох
останнiх картинках (t = 18, t = 22) з рис. 6.

Як бачимо, навiть найпростiшi iдеалiзованi крайовi задачi здатнi моделювати головнi
сценарiї реальної турбулентностi. Тому задача „математизацiї” перебiгу турбулентностi в iде-
алiзованих задачах не є чисто математичною забаганкою, а має парадигматичне значення.

4. Концепцiя iдеальної турбулентностi. Переважна бiльшiсть крайових задач для рiвнянь
iз частинними похiдними iндукує на просторi початкових станiв нескiнченновимiрнi динамiч-
нi системи зсувiв уздовж розв’язкiв. Це дозволяє охарактеризувати асимптотичну поведiнку
розв’язкiв задачi, виходячи з динамiки на (глобальному) атракторi вiдповiдної системи зсу-
вiв. Крайовiй задачi (1), (2) вiдповiдає на просторi гладких функцiй \varphi : G \rightarrow \BbbR m, G \subset \BbbR n,

динамiчна система

St : \varphi (x) \mapsto \rightarrow w\varphi (x, t), x \in G, t \in \BbbR +, (7)

де St[\varphi ] — оператор зсуву, w\varphi (x, t) — розв’язок, що вiповiдає умовi w(x, 0) = \varphi (x). Результати
аналiзу конкретних задач вигляду (1), (2) з n,m,= 1, 2 на основi переходу до системи (7) склали
пiдґрунтя для нового погляду на можливi механiзми розвитку турбулентностi, який переносить
iдею про виняткову складнiсть як причину хаосу з атрактора на його просторово-протяжнi
„точки”. Було отримано пiдтверджувальнi сценарiї, за яких хаотизацiя зумовлена саме склад-
ною структурою „точок” атрактора, а власне атрактор є регулярним (зокрема, складається з
однiєї, проте надскладно влаштованої „точки”).

Стисло цi сценарiї хаосу можна окреслити так. Просторово-часова еволюцiя початкових
станiв динамiчної системи — гладких або кусково-гладких функцiй — супроводжується дедалi
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бiльшим ускладненням їхньої просторової структури i, як наслiдок, граничний стан неможливо
описати в термiнах гладких або хоча б неперервних функцiй. Побудова атракторiв траєкторiй
потребує продовження системи на ширший функцiональний простiр. Для цiєї мети виявилися
придатними два простори: напiвнеперервних зверху функцiй3 i випадкових функцiй4 (перший —
з метрикою Гаусдорфа для графiкiв функцiй, другий — зi спецiальною метрикою, що порiвнює
скiнченновимiрнi розподiли функцiй). Це, зокрема, дало змогу формалiзувати поняття iдеальної
турбулентностi.

Iдеальна турбулентнiсть — це математичне явище, яке характерне для низки нескiнчен-
новимiрних динамiчних систем на просторах гладких функцiй i полягає в тому, що атрактор
системи лежить не в фазовому просторi, а в бiльш широкому функцiональному просторi, що
мiстить фрактальнi або навiть випадковi функцiї .

Якщо крайова задача породжує динамiчну систему зсувiв з iдеальною турбулентнiстю,
природно сказати, що в крайовiй задачi має мiсце iдеальна турбулентнiсть.

Наведене означення має загальний характер i потребує конкретизацiї: що розумiється пiд
атрактором, як визначаються простори фрактальних i випадкових функцiй, якими є метрики в
цих просторах. Математика за всiм цим стоїть непроста, але якщо не заходити в подробицi,
то явище iдеальної турбулентностi можна охарактеризувати таким чином. Заради спрощен-
ня вiзьмемо задачу (1), (2). Поведiнка її розв’язкiв на великих значеннях часу визначається
атрактором динамiчної системи (7). За наявностi iдеальної турбулентностi атрактор лежить не
у фазовому просторi гладких функцiй, а знаходиться в ширшому функцiональному просторi,
який мiстить нарiвнi iз гладкими фрактальнi або ж випадковi функцiї. Фрактальними назива-
ємо напiвнеперервнi зверху функцiї iз нескiнченним числом розривiв. Графiки таких функцiй
є замкненими пiдмножинами евклiдового простору, якi у багатьох випадках є фрактальними.
Введемо такi позначення:

C1 — фазовий простiр динамiчної системи зсувiв, який складається з гладких функцiй \varphi , i
St[\varphi ] — траєкторiя цiєї системи, породжувана початковим станом \varphi ;

C\Delta , C\# — простори, одержанi поповненням простору C1 фрактальними та, вiдповiдно,
випадковими функцiями (у метриках належних розширених просторiв);

\omega \Delta [\varphi ], \omega \#[\varphi ] — \omega -граничнi множини або, простiше, атрактори траєкторiї 5 St[\varphi ] в просто-
рах C\Delta i C\# (зазначимо, що \omega \Delta [\varphi ], на вiдмiну вiд \omega \#[\varphi ], завжди iснує);

w\varphi (x, t) — розв’язок задачi (1), (2), який справджує початкову умову w(x, 0) = \varphi (x).

Якщо траєкторiя St[\varphi ] некомпактна в C1-метрицi (a саме це притаманно крайовим задачам
для гiперболiчних рiвнянь), то її динамiка, а отже i динамiка розв’язку w\varphi (x, t), iз часом стає
турбулентною. Цей факт можна формалiзувати у такий спосiб:

\omega \Delta [\varphi ] \cap (C\Delta \setminus C1) \not = \varnothing , \omega \#[\varphi ] \cap (C\# \setminus C1) \not = \varnothing . (8)

Цi спiввiдношення свiдчать про ускладнення „в рази” геометрiї розв’язку w\varphi (x, t) зi зростанням
t (наприклад, як на рис. 1). Мiрилом складностi визначимо фрактальну розмiрнiсть графiкiв

3Функцiю \xi : G \rightarrow 2D, де G,D — областi евклiдових просторiв i 2D — множина непорожнiх опуклих замкнених
множин iз D, називаємо напiвнеперервною зверху, якщо для будь-яких x0 \in G та \varepsilon > 0 iснує \delta > 0 таке, що
f(U\delta (x)) \subset U\varepsilon (\xi (x0)), де U\varepsilon (\cdot ), U\delta (\cdot ) — околи у вiдповiдних евклiдових просторах.

4Випадковi й детермiнованi вимiрнi функцiї трактуємо як сiм’ї їхнiх скiнченновимiрних розподiлiв. Це повнiстю
виправдано в межах класичних методiв теорiї iмовiрностей, якi не використовують розподiлiв у нескiнченновимiр-
них просторах вибiркових функцiй.

5Термiн „атрактор траєкторiї” запропоновано О. М. Шарковським у [12].
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(a) (б)

Рис. 7. Iдеальна турбулентнiсть в крайовiй задачi wt  - wx = 0, w(1, t) =
(w(0, t))2 + \alpha при \alpha =  - 2 (a) i \alpha =  - 1, 755 (б).

функцiй iз множини \omega \Delta [\varphi ]. У гладкої початкової функцiї \varphi фрактальна розмiрнiсть графiка
збiгається з її топологiчною розмiрнiстю i виражається натуральним числом k = m + n  - 1.

Водночас перше зi спiввiдношень (8) показує, що множина \omega \Delta [\varphi ] мiстить фрактальну функцiю,
графiк якої має фрактальну розмiрнiсть r \geq k. Гiпотетично здiйснимi два якiсно вiдмiнних
випадки: r = k або k < r \leq k + 1. Також виокремлюємо випадок, за яким у множинi \omega \#[\varphi ]

є випадкова функцiя. Виходячи з цих мiркувань, можна запропонувати таку класифiкацiю
iдеальної турбулентностi в iндивiдуальних траєкторiях.

Кажемо, що початковий стан \varphi \in C1 генерує
слабку iдеальну турбулентнiсть, якщо \omega \Delta [\varphi ] мiстить фрактальну функцiю, графiк якої

має ту саму фрактальну розмiрнiсть, що й графiк функцiї \varphi ;
сильну iдеальну турбулентнiсть, якщо \omega \Delta [\varphi ] мiстить фрактальну функцiю, графiк якої

має бiльшу фрактальну розмiрнiсть, анiж графiк функцiї \varphi ;
стохастичну iдеальну турбулентнiсть, якщо \omega \#[\varphi ] мiстить випадкову функцiю.6

Наприклад, початковi стани \varphi 1, \varphi 2, яким вiдповiдають розв’язки з рис. 3 i 4, генерують
сильну iдеальну турбулентнiсть. Цей факт проiлюстровано на рис. 7, де зображено фракталь-
нi функцiї з \omega \Delta [\varphi 1] та з \omega \Delta [\varphi 2]. Насправдi при  - 2 < \lambda \leq  - 1, 25 iдеальна турбулентнiсть
генерується майже всiма початковими станами i вiдповiднi їм розв’язки є турбулентними.

В процесi обчислення сильно турбулентних розв’язкiв вiдбувається „роздування” малих
помилок округлення до порiвняно великих. Так, для розв’язку w\varphi 1(x, t) з рис. 3 множина
\omega \Delta [\varphi 1] складається з однiєї функцiї \xi (x) = [ - 2, 2], x \in [0, 1], розривної в кожнiй точцi. То-
му, яким би малим не було \delta > 0, обчислене значення розв’язку w\varphi 1(x, t) при достатньо
великому t може виявитися \delta -близьким до будь-якого числа з [ - 2, 2] (за будь-якої точностi
обчислень). Отже, сильна турбулентнiсть веде до потрапляння розв’язкiв за горизонт пе-
редбачуваностi. Це актуалiзує замiну традицiйного запитання „Яким є значення в точцi?” на
запитання „З якою ймовiрнiстю значення в точцi належить до тiєї чи iншої множини?” Коли
таке „овипадковування” (randomization) можливе, сильна турбулентнiсть стає стохастичною.
Тодi за допомогою множин \omega \#[\cdot ] можна значно зменшити невизначенiсть, притаманну число-
вому описовi розв’язкiв у межах сильної турбулентностi. Наприклад, для розв’язку w\varphi 1(x, t)

6Початковий стан \varphi може генерувати турбулентнiсть рiзних типiв на рiзних множинах зi своєї областi визна-
чення G. Фрактальна розмiрнiсть графiкiв функцiй з \omega \Delta [\varphi ] може на одних множинах iз G збiгатися, а на iнших
перевищувати розмiрнiсть графiка функцiї \varphi . Також можливо, що випадковi функцiї з \omega \#[\varphi ] є детермiнованими на
якихось множинах iз G.
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з рис. 3 за допомогою множини \omega \Delta [\varphi 1] можна визначити тiльки дiапазон значень — iнтервал
[ - 2, 2]. Воднораз вiдображення z \mapsto \rightarrow z2  - 2 в крайовiй умовi має гладку iнварiантну мiру
\mu (dz) = dz

\big/ 
\pi 
\surd 
4 - z2, що забезпечує iснування множини \omega \#[\varphi 1]. Ця множина складається

з однiєї випадкової функцiї \zeta (x), x \in [0, 1], яка при кожному x є випадковою величиною з
функцiєю розподiлу F (z) = \mu (Bz), Bz = [ - 2, z). Тож при великих t\prime iмовiрнiсть потрапляння
значення w\varphi 1(x

\prime , t\prime ) в iнтервал [a, b) майже дорiвнює \mu -мiрi цього iнтервалу, тобто дорiвнює
F (b)  - F (a) = 1/\pi 

\bigl( 
\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{s}\mathrm{i}\mathrm{n}(b/2)  - \mathrm{a}\mathrm{r}\mathrm{c}\mathrm{s}\mathrm{i}\mathrm{n}(a/2)

\bigr) 
. Стохастична турбулентнiсть еквiвалентна

явищу автостохастичностi, яке в загальному трактуваннi [13] визначається як спонтанне роз-
винення в детермiнованiй системi хаотичних процесiв, якi пiдпорядковуються статистичним
закономiрностям (допускають iмовiрнiсний опис).

Якщо ж говорити про iдеальну турбулентнiсть у крайовiй задачi в цiлому, то це доцiльно
тiльки за умови, що початкових станiв, якi генерують турбулентнiсть, дуже багато в тому
чи iншому сенсi. Це може бути множина додатної або повної мiри, скрiзь щiльна множина або
множина другої категорiї, або ще якась множина, „розумна” в межах даної задачi. У цiй статтi
„дуже багато” трактуємо як множину другої категорiї, а коли йдеться про стохастичну турбу-
лентнiсть, пiд „дуже багато” розумiємо множину несингулярних функцiй.7 Систематизований
виклад окреслених вище конструкцiй можна знайти в [3].

5. Найпростiша версiя iдеальної турбулентностi. В концепцiї iдеальної турбулентностi
особливе мiсце посiдають крайовi задачi, просторово-часова динамiка яких керується однови-
мiрним вiдображенням (див., зокрема, [14]). Це дозволяє iстотно просунутися в математичнiй
формалiзацiї i порiвняно легко пояснити, чому для таких задач характернi хаотичнi, але гладкi
розв’язки — „носiї ” iдеальної турбулентностi. Природно очiкувати, що це наслiдок хаотичної
динамiки керiвного вiдображення. Втiм, хаотизацiя розв’язкiв вiдбувається i тодi, коли вiдобра-
ження перебуває у вiкнi перiодичностi. Вiзьмемо задачу (4), (5), де f — гладке вiдображення
замкненого iнтервалу I \subset \BbbR у себе. Те, якою буде асимптотична поведiнка розв’язкiв, ви-
значається атрактором динамiчної системи зсувiв (7) на просторi функцiй \varphi \in C1([0, 1], I).

Завдяки звiдностi задачi до рiзницевого рiвняння оператор зсуву St має дуже просту форму.
Справдi, якщо w\varphi , u\varphi — розв’язки задачi (4), (5) та рiвняння (3), якi задовольняють початковi
умови w(x, 0) = \varphi (x) i u(\tau )| [0,1) = \varphi (\tau ), то w\varphi (x, t) = u\varphi (t + x) i u\varphi (\tau ) = fn(\varphi (\tau  - n)),

n \leq \tau < n+ 1. Тому (7) набирає вигляду

St : \varphi (x) \mapsto \rightarrow f \lfloor x+t\rfloor (\varphi (\langle x+ t\rangle )), де \lfloor \cdot \rfloor i \langle \cdot \rangle — цiла i дробова частини числа. (9)

Основним фактором хаотизацiї розв’язкiв є складна тополого-динамiчна будова множи-
ни \scrD (f) нестiйких точок вiдображення f, яка має назву роздiльник8 i виокремлює точки з
розбiганням близьких траєкторiй.9 Наскiльки далеко вiд траєкторiї точки z \in \scrD (f) вiдходять
траєкторiї близьких до неї точок показує область впливу — множина

7В англомовнiй лiтературi замiсть термiна „множина другої категорiї” перевага надається синонiмiчнiй назвi
„non-meager set” (нехуда множина). Пiд несингулярними розумiємо функцiї \varphi (x), для яких \mathrm{m}\mathrm{e}\mathrm{s}\varphi  - 1(B) = 0, якщо
\mathrm{m}\mathrm{e}\mathrm{s}B = 0; \mathrm{m}\mathrm{e}\mathrm{s} позначає мiру Лебега.

8У бiльшостi випадкiв точки з \scrD (f) роздiляють басейни притягувальних циклiв, зазвичай басейни притягуваль-
них циклiв є досить складними множинами аж до множин третього класу Бера [15, 16].

9Для z \in \scrD (f) iснує d(z) > 0 таке, що при будь-якому \varepsilon > 0 знайдуться z\ast \in (z  - \varepsilon , z + \varepsilon ) i цiле s > 0 з
властивiстю | fs(z) - fs(z\ast )| > d(z). Здебiльшого \scrD (f) мiстить пiдмножину додатної мiри, на якiй \mathrm{i}\mathrm{n}\mathrm{f}z d(z) > 0, i
тодi f чутливо залежить вiд початкових даних: як завгодно малi збурення початкових станiв призводять до значних
i непередбачуваних вiдхилень кiнцевих станiв.
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Qf (z) =
\bigcap 
\delta >0

\bigcap 
j>0

\bigcup 
i>j

f i(V\delta (z)),

де V\delta (z) = (z  - \delta , z + \delta ). Для точки z \not \in \scrD (f) область впливу збiгається з її \omega -граничною
множиною.

Як властивостi роздiльника \scrD (f) вiдбиваються на розв’язках, стає зрозумiлим iз формули
w\varphi (x, t) = f \lfloor x+t\rfloor (\varphi (\langle x+t\rangle ). Нехай z\circ \in \scrD (f) — нерухома точка, d\circ = \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}Qf (z\circ ) й x\circ \in [0, 1].

Якщо \varphi (x\circ ) = z\circ i \.\varphi (x\circ ) \not = 0, то для будь-якого околу Vn точки (x, t) на прямiй x + t =

x\circ + n маємо \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}w\varphi (Vn) \approx d\circ , починаючи з деякого n. Це означає, що розв’язок w\varphi (x, t)

асимптотично втрачає неперервнiсть: його коливання (стрибок) в околi кожної точки, що
лежить на прямiй x+ t = x\circ +n, стає iз зростанням n майже рiвним d\circ , а його графiк — майже
схожим на вертикальний вiдрiзок J\circ = Qf (z\circ ). Аналогiчна ситуацiя вiдбувається на будь-якiй
прямiй x+ t = x\ast + n, якщо x\ast \in \varphi  - 1(\scrD (f)). Вiзуалiзацiю такої втрати неперервностi бачимо
на рис. 3 i 4.

Саме тому функцiї \xi \in \omega \Delta [\varphi ], якi характеризують довготривалу поведiнку розв’язку w\varphi (x, t),

мають розриви (є „iнтервальнозначними”), кожна на певному зсувi множини \varphi  - 1(\scrD (f)). Зовсiм
спрощено цей факт формулюється так.

Для майже всiх f iснує цiле p > 0 таке, що при майже всiх \varphi множина \omega \Delta [\varphi ] складається
з функцiй \xi t : [0, 1] \rightarrow 2I , t \in [0, p), якi визначаються у такий спосiб:

\xi 0(x) = Qfp(\varphi (x)), \xi t(x) = f \lfloor x+t\rfloor \bigl( \xi 0(\langle x+ t\rangle )
\bigr) 
, t \in [0, p), (10)

до того ж множина значень функцiї \xi 0(x), а отже i всiх функцiй \xi t(x), є скiнченною.
Динамiчна система (9) iндукує (за неперервнiстю) C\Delta -розширену динамiчну систему на

C\Delta , зокрема визначає рух на \omega \Delta [\cdot ]. Тож майже завжди атрактор \omega \Delta [\varphi ] траєкторiї St[\varphi ] є
циклом C\Delta -розширеної динамiчної системи (p необов’язково найменший перiод). Звiсно, рiзнi
траєкторiї можуть мати спiльний атрактор. Скажiмо, якщо f : z \mapsto \rightarrow z2  - 2, z \in [ - 2, 2], то
\scrD (f) = [ - 2, 2] i Qf (z) = [ - 2, 2]. Тому для функцiї \varphi (x), вiдмiнної вiд сталої на будь-якому
iнтервалi, множина \omega \Delta [\varphi ] складається з однiєї функцiї \xi (x) = [ - 2, 2], x \in [0, 1], тож траєкторiї
всiх таких початкових функцiй притягуються до нерухомої точки \{ \xi (x)\} .

Нехай \scrD t(f, \varphi ) — множина, утворена точками x = \langle x\ast  - t\rangle , x\ast \in \varphi  - 1(\scrD (f)), t \in \BbbR + (зокре-
ма, \scrD 0(f, \varphi ) = \varphi  - 1(\scrD (f))), \scrJ 0(f) — множина точок стiйких циклiв вiдображення f i \scrJ (f) —
множина компонент зв’язностi областей впливу Qf (z) точок z \in \scrD (f). Якщо \varphi  - 1(\scrD (f)) \not = \varnothing ,

то функцiя \xi t(x) напiвнеперервна зверху i розривна, її значення є iнтервалом iз \scrJ (f) при
x \in \scrD t(f, \varphi ) й одноточковою множиною з \scrJ 0(f) в iншому випадку (а отже, \xi t(x), як функцiя
з [0, 1] в I, є сталою на кожному iнтервалi неперервностi).

Для множин \omega \#[\varphi ] аналогiчне твердження потребує додаткової математичної аргументацiї,
i надати тут навiть дуже спрощене формулювання не видається можливим. Зауважимо лише,
що за певних умов, основною з яких є наявнiсть у f гладкої iнварiантної мiри, множини \omega \#[\varphi ]

iснують для несингулярних \varphi , є циклами C\#-розширеної динамiчної системи i складаються з
випадкових функцiй, скiнченновимiрнi розподiли яких задаються цiєю iнварiантною мiрою.

Вищезазначена асимптотична перiодичнiсть траєкторiй динамiчної системи (9) транс-
формується в асимптотичну перiодичнiсть вiдповiдних розв’язкiв крайової задачi (4), (5). А
саме, розв’язок w\varphi (x, t) прямує при t \rightarrow \infty (в метрицi Гаусдорфа для графiкiв) до перiодичної
напiвнеперервної зверху функцiї

W\varphi (x, t) = \xi t\mathrm{m}\mathrm{o}\mathrm{d} p(x), x \in [0, 1], t \in \BbbR +, де \xi t \in \omega \Delta [\varphi ], t \in [0, p). (11)
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Нехай \mathrm{g}\mathrm{r} позначає графiк функцiї. З геометричного погляду (11) означає, що
\mathrm{g}\mathrm{r}W\varphi (x, t)| [0,1]\times [0,p] є топологiчною границею послiдовностi \mathrm{g}\mathrm{r}w\varphi (x, t + ip)| [0,1]\times [0,p] при
i \rightarrow \infty , а отже, розв’язок w\varphi (x, t) асимптотично вiдтворює тополого-геометричнi особливостi
функцiй \xi t \in \omega \Delta [\varphi ], якi у свою чергу вiдтворюють властивостi роздiльника \scrD (f). Наприклад,
розв’язку w\varphi 2(x, t) з рис. 1 i 4 вiдповiдає траєкторiя St[\varphi 2], для якої p = 3 i функцiї \xi t(x),

t \in [0, 3), що складають множину \omega \Delta [\varphi 2], знаходяться за формулою (10), де

\xi 0(x) =

\left\{   \gamma i, якщо x \in \varphi  - 1
2 (\scrB i), i = 1, 2, 3,

[\alpha , \alpha + \alpha 2], якщо x \in \varphi  - 1
2 (\scrD (f)),

\scrD (f) — роздiльник i \{ \gamma 1, \gamma 2, \gamma 3\} — (єдиний) притягувальний цикл10 керуючого вiдображення f :
z \rightarrow z2 - 1, 755, \alpha =  - 1, 755, \scrB i — басейн притягання точки z = \gamma i пiд дiєю f3. Графiк функцiї
\xi 0(x) є фрактальним, що вiзуально пiдтверджує рис. 7(б). В цьому випадку роздiльник \scrD (f) —
це границя басейну \scrB притягувального циклу, а басейн \scrB , як об’єднання областi безпосеред-
нього притягання B0 i злiченного числа iнтервалiв Bjs, j = 1, 2, . . . , s = 1, 2, . . . , lj , таких,
що f j(Bjs) \subset B0, влаштований складно: мiж будь-якими Bj\ast s\ast i Bj\ast s\ast , j

\ast \not = j\ast , знайдеться
Bj\circ s\circ , j\circ > j\ast , j\ast , тож його границя має канторiвську структуру. Це зумовлює фрактальнiсть
роздiльника \scrD (f), а отже, i графiкiв функцiй \xi 0(x) i W\varphi 2(x, t). Це в свою чергу спричиняє
каскадне утворення структур розв’язком w\varphi 2(x, t) у процесi наближення до граничної функцiї
W\varphi 2(x, t) iз подальшим (при t \rightarrow \infty ) перетворенням його графiка на фрактальну множину. Цей
процес проiлюстровано на рис. 4; математичний опис, на жаль, надто громiздкий [11].

Якщо множина \omega \#[\varphi ] iснує й складається з випадкових функцiй, то розв’язок w\varphi (x, t)

також прямує при t \rightarrow \infty (в метрицi простору C\#) до перiодичної випадкової функцiї\widetilde W\varphi (x, t) = \zeta t\mathrm{m}\mathrm{o}\mathrm{d} p(x), x \in [0, 1], t \in \BbbR +, де \zeta t \in \omega \#[\varphi ], t \in [0, p). Скiнченновимiрнi роз-

подiли функцiї \widetilde W\varphi (x, t) асимптотично описують вiдповiднi розподiли розв’язку, що, зокрема,
дозволяє вираховувати його статистичнi характеристики (математичне очiкування та iншi). Про
це побiжно йшлося в попередньому пунктi на прикладi розв’язку w\varphi 1(x, t) з рис. 3.

З (10) випливає, що iдеальна турбулентнiсть у задачi (4), (5) — звичайна рiч. Позначимо
\mathrm{d}\mathrm{i}\mathrm{m} \mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c} фрактальну розмiрнiсть. Коли f має цикл перiоду > 2, роздiльник \scrD (f) i множина
його граничних точок нескiнченнi. Тодi в C1 iснує множина \Phi (f) другої категорiї, для функцiй
iз якої справджуються властивостi „успадкування”:

\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}\scrD t(f, \varphi ) = \mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}\scrD (f), \mathrm{m}\mathrm{e}\mathrm{s}\scrD t(f, \varphi ) = \mathrm{m}\mathrm{e}\mathrm{s}\scrD (f),

\mathrm{d}\mathrm{i}\mathrm{m} \mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c}\scrD t(f, \varphi ) = \mathrm{d}\mathrm{i}\mathrm{m} \mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c}\scrD (f), \mathrm{d}\mathrm{i}\mathrm{m} \mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c} \mathrm{g}\mathrm{r} \xi t = \mathrm{d}\mathrm{i}\mathrm{m} \mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c}\scrD t(f, \varphi ) + 1 для \xi t \in \omega \Delta [\varphi ].

Тому кожна функцiя з \Phi (f) є фрактальною i, отже, генерує iдеальну турбулентнiсть. Це в свою
чергу засвiдчує наявнiсть iдеальної турбулентностi у задачi в цiлому, а тип турбулентностi
залежить вiд тополого-геометричних властивостей роздiльника \scrD (f); модельний приклад щодо
цього детально розглянуто в [17].

Якщо \scrD (f) — злiченна множина, то в задачi вiдбувається тiльки слабка турбулентнiсть.
Якщо ж множина \scrD (f) незлiченна i \mathrm{d}\mathrm{i}\mathrm{m} \mathrm{f}\mathrm{r}\mathrm{a}\mathrm{c}\scrD (f) > 0, то при \varphi \in \Phi (f) фрактальна розмiр-
нiсть графiка будь-якої функцiй \xi t \in \omega \Delta [\varphi ] бiльша за 1 (не перевищує 2). Тому турбулентнiсть в

10Числовi значення \gamma 1, \gamma 2, \gamma 3 знаходяться як коренi рiвняння (f3(z) - z)
\big/ 
(f(z) - z) = 0.
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задачi є сильною.11 Бувають ситуацiї, коли \mathrm{m}\mathrm{e}\mathrm{s}\scrD (f) > 0. Тодi \mathrm{m}\mathrm{e}\mathrm{s}\scrD t(f, \varphi ) > 0 для \varphi \in \Phi (f),

а отже, значення функцiй, якi складають траєкторiю St[\varphi ], неможливо достовiрно обчислити на
множинах додатної лебегової мiри, тож просто знехтувати цими значеннями не можна (приклад
на pис. 3 i 7(a)). Якщо в цьому випадку траєкторiї St[\varphi ] мають атрактори \omega \#[\varphi ], що мiстять
випадковi функцiї (допускають iмовiрнiсний опис), то сильна турбулентнiсть виявляється ще й
стохастичною. Виходячи з цих мiркувань та з властивостей одновимiрних вiдображень, прихо-
димо до критерiю iдеальної турбулентностi.

Динамiчна система (9), а отже i крайова задача (4), (5), демонструє:
слабку iдеальну турбулентнiсть, коли f має цикли лише з перiодами 2i, i = 0, 1, . . . , l,

l > 1;

сильну iдеальну турбулентнiсть, коли f має цикл iз перiодом, вiдмiнним вiд 2i, i = 0, 1, . . . ;

стохастичну iдеальну турбулентнiсть, коли f має гладку iнварiантну мiру.
Тут маємо приклад того, як тополого-динамiчна складнiсть одновимiрного вiдображен-

ня трансформується в надскладну (просторову) поведiнку функцiй, що утворюють вiддаленi
вiдрiзки траєкторiй нескiнченновимiрної динамiчної системи, дiя якої „керується” цим вiдобра-
женням.

Важливо, що стохастична турбулентнiсть не є винятковим явищем. Як вiдомо, для ши-
роких класiв унiмодальних вiдображень f\lambda з параметром \lambda тi значення параметра, при яких
f\lambda має гладку iнварiантну мiру, утворюють множину додатної мiри Лебега. Це означає, що
стохастична турбулентнiсть фiзично реалiзовна.

6. Заключнi зауваження. Ми окреслили концепцiю iдеальної турбулентностi лише в найза-
гальнiших рисах, проте сподiваємося, змогли переконливо показати її широкi спроможностi для
математичного моделювання складної просторово-часової динамiки. Формування всебiчного
уявлення про природу реальної турбулентностi неможливе без глибокого розумiння механiзмiв
iдеальної турбулентностi. Особливо це стосується явищ самоорганiзацiї (виникнення каскадної
iєрархiї структур) i автостохастичностi (розвинення розподiленого хаосу, що допускає ймовiр-
нiсний опис), якi в моделях iдеальної турбулентностi виникають цiлком органiчно й можуть
бути легко поясненi. Концепцiя iдеальної турбулентностi потребує подальшого розвитку задля
застосування до крайових задач, що зводяться до бiльш складних рiзницевих рiвнянь та рiв-
нянь, спорiднених iз рiзницевими, скажiмо, диференцiально-функцiональних. Також важливе
створення стандартної теорiї збурень для крайових задач, якi моделюють динамiку середовищ
iз малим внутрiшнiм опором.

Цю роботу було пiдтримано Фондом Сiмонса (грант № 1030291).

Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв.
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