DOI: 10.37863/umzh.v73i10.768

UDC 512.542

B. Hu, J. Huang (School Math. and Statistics, Jiangsu Normal Univ., Xuzhou, China), **N. M. Adarchenko** (Francisk Skorina Gomel State Univ., Belarus)

On П-PERMUTABLE SUBGROUPS IN FINITE GROUPS* ПРО П-ПЕРЕСТАВНІ ПІДГРУПИ СКІНЧЕННИХ ГРУП

Let $\sigma = \{\sigma_i | i \in I\}$ be some partition of the set of all primes \mathbb{P} and let Π be a nonempty subset of the set σ . A set \mathcal{H} of subgroups of a finite group G is said to be a *complete Hall* Π -set of G if every member of \mathcal{H} is a Hall σ_i -subgroup of G for some $\sigma_i \in \Pi$ and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every $\sigma_i \in \Pi$ such that $\sigma_i \cap \pi(G) \neq \emptyset$. A subgroup A of G is called (i) \mathcal{H}^G -permutable if $AH^x = H^xA$ for $H \in \mathcal{H}$ and $x \in G$; (ii) Π -permutable in G if A is \mathcal{H}^G -permutable for some complete Hall Π -set \mathcal{H} of G.

We study the influence of Π -permutable subgroups on the structure of G. In particular, we prove that if $\pi = \bigcup_{\sigma_i \in \Pi} \sigma_i$ and G = AB, where A and B are \mathcal{H}^G -permutable π -separable (respectively, π -closed) subgroups of G, then G is also π -separable (respectively, π -closed). Some known results are generalized.

Нехай $\sigma = \{\sigma_i | i \in I\}$ — деяке розбиття множини всіх простих чисел \mathbb{P} і П — непорожня підмножина множини σ . Множина \mathcal{H} підгруп скінченної групи G називається *повною холлівською* П-*множиною* в G, якщо кожен член з \mathcal{H} є холлівською σ_i -підгрупою в G для деякого $\sigma_i \in \Pi$ і \mathcal{H} містить точно одну холлівську σ_i -підгрупу з G для кожного $\sigma_i \in \Pi$ такого, що $\sigma_i \cap \pi(G) \neq \emptyset$. Підгрупа A з G називається: (i) \mathcal{H}^G -переставною, якщо $AH^x = H^x A$ для всіх $H \in \mathcal{H}$ і $x \in G$; (ii) П-переставною в G, якщо $A \in \mathcal{H}^G$ -переставною для деякої повної П-множини \mathcal{H} в G.

У цій статті вивчено вплив П-переставних підгруп на структуру групи G. Зокрема, доведено таке твердження: якщо $\pi = \bigcup_{\sigma_i \in \Pi} \sigma_i$ та G = AB, де A і B є \mathcal{H}^G -переставними π -сепарабельними (відповідно, π -замкненими) підгрупами G, то G також має бути π -сепарабельною (відповідно, π -замкненою). Крім того, узагальнено деякі відомі результати.

1. Introduction. Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi = \{p_1, \ldots, p_n\} \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G. They say that n is a π -number provided $\pi(n) \subseteq \pi$.

Before continuing, we recall some concepts of the theory of σ -properties in [1, 2].

In what follows, $\sigma = \{\sigma_i | i \in I\}$ is some partition of \mathbb{P} , that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for $i \neq j$; Π is always supposed to be a nonempty subset of the set σ , $\Pi' = \sigma \setminus \Pi$ and $\pi(\Pi) = \bigcup_{\sigma_i \in \Pi} \sigma_i$. The group G is called Π -primary if G is a σ_i -group for some $\sigma_i \in \Pi$.

© B. HU, J. HUANG, N. M. ADARCHENKO, 2021

^{*} Research was supported by an NNSF grant of China (Grant No. 11401264) and a TAPP of Jiangsu Higher Education Institutions (PPZY 2015A013).

ISSN 1027-3190. Укр. мат. журн., 2021, т. 73, № 10

By the analogy with the notations $\pi(n)$ and $\pi(G)$, we write $\sigma(n) = {\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset}, \sigma(G) = \sigma(|G|)$. The group G is called: a Π -group if $\sigma(G) \subseteq \Pi$; Π -soluble if every chief factor of G is either Π -primary or a Π' -group; Π -closed if G is $\pi(\Pi)$ -closed in the usual sense, that is, G has a normal Hall $\pi(\Pi)$ -subgroup; strongly Π -closed if G has a normal Hall σ_i -subgroup for $\sigma_i \in \Pi$.

A set \mathcal{H} of subgroups of G is said to be a *complete Hall* Π -set of G if every member of \mathcal{H} is a Hall σ_i -subgroup of G for some $\sigma_i \in \Pi$ and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every $\sigma_i \in \Pi \cap \sigma(G)$.

Let \mathcal{L} be some nonempty set of subgroups of G. Then a subgroup A of G is called \mathcal{L} -permutable [4] if AH = HA for $H \in \mathcal{L}$; \mathcal{L}^G -permutable [1] if $AH^x = H^xA$ for $H \in \mathcal{L}$ and $x \in G$.

Definition 1.1. Let \mathcal{H} be a complete Hall Π -set of G. Then we say that a subgroup A of G is Π -permutable in G [5], if A is \mathcal{H}^G -permutable for some complete Hall Π -set \mathcal{H} of G.

Example 1.1. (i) Let $\sigma^1 = \{\{2\}, \{3\}, \ldots\}$ (we use here the notations in [3]) and $\Pi = \{\{p_1\}, \ldots, \{p_n\}\}$, that is, $\pi(\Pi) = \{p_1, \ldots, p_n\}$. Then a subgroup A of G is Π -permutable in G if and only if it is π -permutable or π -quasinormal in G in the sense of Kegel [6], that is, A permutes with all Sylow p-subgroups of G for $p \in \pi$. Moreover, G is Π -soluble if and only if it is π -soluble, and G is strongly Π -closed if and only if it has a normal nilpotent Hall π -subgroup.

(ii) Let $\sigma^{\pi} = \{\pi, \pi'\}$ [3] and $\Pi = \{\pi\}$. Then a subgroup A of G is Π -permutable in G provided G has a Hall π -subgroup H such that $AH^x = H^xA$ for $x \in G$. It is clear also that G is σ^{π} -soluble if and only if it is π -separable.

Note that in the case when $\pi = \{2, 3\}$ and $G = A_5$ is the alternating group of degree 5, every subgroup A of G with $5 \in \pi(A)$ is Π -permutable in G, and in this case every subgroup A of G with 1 < A < G is not σ^{π} -permutable in G.

(iii) G is Π -soluble if and only if it is σ^* -soluble, where $\sigma^* = \Pi \cup \{\pi'\}$ and $\pi = \pi(\Pi)$. Our first observation is the following theorem.

Theorem A. Let $\pi = \pi(\Pi)$ and G = AB, where A and B are \mathcal{H}^G -permutable subgroups of G for some complete Hall Π -set \mathcal{H} of G. If A and B are π -separable (respectively, Π -soluble, (strongly) Π -closed), then G is also π -separable (respectively, Π -soluble, (strongly) Π -closed).

Corollary 1.1. The group G is π -separable if and only if G possesses a Hall π -subgroup (a Hall π '-subgroup) H and G = AB for some π -separable subgroups A and B which permute with all conjugates of H.

Proof. Sufficiency. We can assume without loss of generality that H is a Hall π -subgroup of G. Then A and B are \mathcal{H}^G -permutable, where $\mathcal{H} = \{H\}$ is a complete Hall Π -set of G and $\Pi = \{\pi\} \subseteq \{\pi, \pi'\} = \sigma^{\pi}$ (see Example 1.1 (ii)), so G is π -separable by Theorem A.

Necessity. We can take A = 1 and B = G and use the well-known properties of the Hall subgroups of π -separable groups [7] (VI, Hauptsatz 1.7).

In the case when $\sigma = \sigma^1$ we get from Theorem A also the following results.

Corollary 1.2 (see Theorem 1 in [8] or Theorem 1 in [9]). Let A and B be π -permutable subgroups of G and G = AB. If A and B are π -separable, then G is also π -separable.

Corollary 1.3 (see Theorem 1 in [10]). Let A and B be π -permutable subgroups of G and G = AB. If A and B are π -soluble, then G is also π -soluble.

Corollary 1.4. Let G = AB, where A and B are π -permutable in G. If the groups A and B possess normal nilpotent Hall π -subgroups, then G also possesses a normal nilpotent Hall π -subgroup.

Corollary 1.5. Let G = AB, where A and B are p'-permutable subgroups of G, that is, A and B permute with all Sylow q-subgroups of G for primes $q \neq p$. If A and B are p-nilpotent, then G is also p-nilpotent.

Now fix some ordering ϕ on \mathbb{P} . The record $p\phi q$ means that p precedes q in ϕ and $p \neq q$. The group G of order $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$ is called ϕ -dispersive whenever $p_1 \phi p_2 \phi \dots \phi p_n$ and for every i there is a normal subgroup of G of order $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_i^{\alpha_i}$.

Corollary 1.6. Let $\pi(G) = \{p_1, \ldots, p_n\}$, where $p_1\phi p_2\phi \ldots \phi p_n$, and let $p = p_n$. Suppose also that G = AB, where A and B are p'-permutable subgroups of G. If A and B are ϕ -dispersive, then G is also ϕ -dispersive.

Corollary 1.7 (see Theorem 3.2 in [11], Ch. 4). Let G = AB, where A and B are normal subgroups of G. If A and B are ϕ -dispersive, then G is also ϕ -dispersive.

Example 1.2. Let p, q be primes, where q divides p-1, and let P be a group of order p and Q a non-Abelian group of order q^3 of exponent q. Finally, let $V \neq W$ be maximal subgroups of Q and $G = P \wr Q = K \rtimes Q$, where K is the base group of the regular wreath product G. Then G = AB, where A = KV and B = KW are supersoluble normal subgroups of G with A', $B' \leq K$ and $K = F(G) = O_{p',p}(G) = O_p(G)$. Hence, G' is not p-nilpotent, so G is not p-supersoluble.

Example 1.2 shows that we can not obtain an analogue of Corollary 1.5 for the groups G = AB with *p*-nilpotent derived subgroups A' and B'. Nevertheless, we prove the following theorem.

Theorem B. Let G = AB, where A and B are p'-permutable subgroups of G with p-nilpotent derived subgroups A' and B'. If $G/O_{p',p}(G)$ is nilpotent and (|G : A|, |G : B|) = 1, then G' is p-nilpotent.

Since the product of any two meta-nilpotent normal subgroups is clearly meta-nilpotent, we get from Theorem B the following known result.

Corollary 1.8 (see Theorem 3.5 in [11], Ch. 4). Let G = AB, where A and B are normal subgroups of G with nilpotent derived subgroups A' and B'. If (|G : A|, |G : B|) = 1, then G' is nilpotent.

It is well-known (see also Example 1.2) that the product G = AB of two normal supersoluble subgroups A and B of G need not be supersoluble. Nevertheless, such a product is supersoluble if either the derived subgroup G' is nilpotent or (|G : A|, |G : B|) = 1. Using Theorem B we prove the following result which allows us to get the local versions of these two results.

Theorem C. Let G = AB, where A and B are p'-permutable p-supersoluble subgroups of G. If either G' is p-nilpotent or (|G : A|, |G : B|) = 1 and $G/O_{p',p}(G)$ is nilpotent, then G is p-supersoluble.

Corollary 1.9 (see [12] or [11], Ch. 4, Theorem 3.4). Let G = AB, where A and B are supersoluble normal subgroups of G. If (|G:A|, |G:B|) = 1, then G is supersoluble. **Corollary 1.10** (R. Baer [11], Theorem 1.13). Let G = AB, where A and B are supersoluble normal subgroups of G. If G' is nilpotent, then G is supersoluble.

2. Basic lemmas.

Lemma 2.1. Suppose that G has a complete Hall Π -set $\mathcal{H} = \{H_1, \ldots, H_t\}$ such that the subgroups $A \leq E$ and B of G are \mathcal{H}^G -permutable. Let R be a normal subgroup of G. Then:

(1) $\mathcal{H}^0 = \{H_1R/R, \dots, H_tR/R\}$ is a complete Hall Π -set of G/R and AR/R is $(\mathcal{H}^0)^{G/R}$ -permutable;

(2) $\mathcal{H}_0 = \{H_1 \cap E, \dots, H_t \cap E\}$ is a complete Hall Π -set of E and A is \mathcal{H}_0^E -permutable; (3) if BE = EB, then $B \cap E$ is \mathcal{H}_0^E -permutable.

Proof. Without loss of generality we can assume that H_i is a σ_i -group for i = 1, ..., t. (1) \mathcal{H}^0 is a complete Hall Π -set of G/R such that

$$(AR/R)(H_iR/R)^{xR} = AH_i^x R/R = H_i^x AR/R = (H_iR/R)^{xR}(AR/R)$$

for $xR \in G/R$ and i = 1, ..., t, that is, AR/R is $(\mathcal{H}^0)^{G/R}$ -permutable.

(2) Since $EH_i = H_iE$ is a subgroup of G and H_i is a Hall σ_i -subgroup of G, $|EH_i : H_i| = |E : E \cap H_i|$ is a σ'_i -number. Hence $E \cap H_i$ is a Hall σ_i -subgroup of E for $i = 1, \ldots, t$, so \mathcal{H}_0 is a complete Hall Π -set of E. Now, for any $x \in E$, we have $AH_i^x = H_i^x A$, which implies that

$$E \cap AH_i^x = A(E \cap H_i^x) = A(E \cap H_i)^x = (E \cap H_i)^x A,$$

that is, A is \mathcal{H}_0^E -permutable.

(3) In view of part (2), we obtain only to show that for any *i* and for $x \in E$ the following holds: $E \cap H_i^x B = (E \cap H_i^x)(E \cap B) = (E \cap H_i)^x(E \cap B) = (E \cap B)(E \cap H_i)^x$. But first we show that $D = (D \cap H_i^x)(D \cap B)$, where $D = E \cap H_i^x B$. Note that $DH_i^x = EH_i^x \cap H_i^x B$ is a subgroup of *G*, so $DH_i^x = H_i^x D$ and, hence, $D \cap H_i^x$ is a Hall σ_i -subgroup of *D*. Similarly, DB = BD is a subgroup of *G*. On the other hand, $|H_i^x B : B| = |H_i^x : H_i^x \cap B|$ is a σ_i -number and so $|BD : B| = |D : D \cap B|$ is a σ_i -number since $BD \leq H_i^x B$. But then $D = (D \cap H_i^x)(D \cap B)$. Finally, we have

$$E \cap H_i^x B = D = (D \cap H_i^x)(D \cap B) = (E \cap H_i^x B \cap H_i^x)(E \cap H_i^x B \cap B) = (E \cap H_i^x)(E \cap B).$$

The lemma is proved.

In fact, the following lemma can be proved by the direct calculations.

Lemma 2.2. Let A, B and H be subgroups of G. If HA = AH and HB = BH, then $H\langle A, B \rangle = \langle A, B \rangle H$.

We say that an \mathcal{H}^G -permutable subgroup A of G is a maximal \mathcal{H}^G -permutable subgroup of G if A < G and for every \mathcal{H}^G -permutable subgroup B of G with $A \leq B < G$ we have A = B.

Lemma 2.3. Let $\mathcal{H} = \{H_1, \ldots, H_t\}$ be a complete Hall Π -set of G and A a maximal \mathcal{H}^G -permutable subgroup of G. Then one of the following statements is true:

- (1) A is normal in G;
- (2) $H_i^G \leq A \text{ for } i = 1, ..., t;$
- (3) there exists i such that $G = AH_i$ and $H_i^G \leq A$ for $j \neq i$.

Proof. Assume that A is not normal in G, and, for some i, we get $H_i^G \nleq A$. Then $A < AH_i^G$ and AH_i^G is \mathcal{H}^G -permutable, so $G = AH_i^G$ by the maximality of A. It follows that, for some $x \in G$ and $y \in H_i^x$, we have $y \notin N_G(A)$. Then A^y is \mathcal{H}^G -permutable and $A < \langle A, A^y \rangle$. Moreover, $\langle A, A^y \rangle$ is also \mathcal{H}^G -permutable by Lemma 2.2 and, hence, $\langle A, A^y \rangle = G$. But $A^y \leq AH_i^x$ and so $G = AH_i^x = AH_i$, which implies that, for every $z \in G$ and for every $j \neq i$, we obtain $H_j^z \leq A$, that is, $H_i^G \leq A$.

The lemma is proved.

Recall that $O_{\Pi}(G)$ [1] denotes the product of all normal Π -subgroups of G.

Lemma 2.4. Let $N, R \leq H$ be normal subgroups of G. Then:

(1) all quotients and all subgroups of a (strongly) Π -closed group are (strongly) Π -closed;

(2) if G/N and G/R are (strongly) Π -closed, then $G/(N \cap R)$ is (strongly) Π -closed;

(3) if $R \leq \Phi(G)$ and H/R is (strongly) Π -closed, then H is (strongly) Π -closed.

Proof. (1) This assertion directly follows from properties of Hall subgroups.

(2) Let A and B be any two (strongly) Π -closed groups. Then $O_{\Pi}(A)$ is a Hall $\pi(\Pi)$ -subgroup of A and $O_{\Pi}(B)$ is a Hall $\pi(\Pi)$ -subgroup of B. Hence, $O_{\Pi}(A \times B) = O_{\Pi}(A) \times O_{\Pi}(B)$ is a Hall $\pi(\Pi)$ -subgroup of $A \times B$, so $A \times B$ is (strongly) Π -closed. Finally, $G/(N \cap R)$ is isomorphic to some subgroup of $(G/N) \times (G/R)$ by [7] (Ch. I, Hilfssatz 9.6), so we have (2).

(3) It is enough to prove that if H/R has a normal Hall σ_i -group V/R for some $\sigma_i \in \Pi$, then H also has a normal Hall σ_i -subgroup.

First note that V is normal in G since V/R is characteristic in H/R. Let $D = O_{\sigma_i'}(V)$. Then, since $R \leq \Phi(G)$, D is a Hall σ_i '-subgroup of V. Hence, by the Schur-Zassenhaus theorem, V has a Hall σ_i -subgroup, say E. It is clear that V is σ'_i -soluble, so any two Hall σ_i -subgroups of V are conjugated in V. Therefore, by the Frattini argument we have $G = VN_G(E) = (RE)N_G(E) =$ $= N_G(E)$. Thus, E is a normal Hall σ_i -subgroup of H.

The lemma is proved.

Lemma 2.5. (1) If $G/\Phi(G)$ is p-supersoluble, then G is p-supersoluble (see [7], IV, Satz 8.6).

(2) Let N and R be distinct minimal normal subgroups of G. If G/N and G/R are p-supersoluble, then G is p-supersoluble.

(3) Let $A = G/O_{p'}(G)$. Then G is p-supersoluble if and only if $A/O_p(A)$ is an Abelian group of exponent dividing p - 1, p is the largest prime dividing |A| and $F(A) = O_p(A)$ is a normal Sylow subgroup of A.

Proof. (2) This follows from the G-isomorphism $NR/N \simeq R$.

(3) Since G is p-supersoluble if and only if $G/O_{p'}(G)$ is p-supersoluble, we may assume without loss of generality that $O_{p'}(G) = 1$.

First assume that G is p-supersoluble. In this case $G/C_G(H/K)$ is an Abelian group of exponent dividing p-1 for any chief factor H/K of G with |H/K| = p. On the other hand,

$$O_{p',p}(G) = O_p(G) = \bigcap \left\{ C_G(H/K) \mid H/K \text{ is a chief factor of } G \text{ with } |H/K| = p \right\}$$

by [11] (Appendixes, Theorem 3.2). Hence $G/O_p(G)$ is an Abelian group of exponent dividing p-1. Thus, p is the largest prime dividing |G| and $F(G) = O_p(G)$ is a normal Sylow p-subgroup of G.

Finally, if $G/O_p(G)$ is an Abelian group of exponent dividing p-1, then every chief factor H/K of G below $O_p(G)$ is cyclic by [11] (Ch. 1, Theorem 1.4). Hence, G is supersoluble.

The lemma is proved.

3. Proofs of the results.

Proposition 3.1. If A is a Π -permutable subgroup of G, then $O_{\Pi}(A) \leq O_{\Pi}(G)$.

Proof. Assume that this proposition is false and G be a counterexample with |G| + |G : A| minimal. Then $O_{\Pi}(A) \neq 1$ and A is not normal in G. Moreover, $\Pi \cap \sigma(G) \neq \emptyset$. Let $\mathcal{H} = \{H_1, \ldots, H_t\}$ be a complete Hall Π -set of G such that A is \mathcal{H}^G -permutable. We can assume without loss of generality that H_i is a σ_i -group of G for $i = 1, \ldots, t$.

Let R be a minimal normal subgroup of G. Then the hypothesis holds for (G/R, RA/R) by Lemma 2.1(1), so the choice of G implies that $O_{\Pi}(A)R/R \leq O_{\Pi}(G/R)$. If $R \leq O_{\Pi}(G)$, then $O_{\Pi}(G)/R = O_{\Pi}(G/R)$ and so $O_{\Pi}(A) \leq O_{\Pi}(G)$. Therefore, $O_{\Pi}(G) = 1$.

Now let E be a maximal \mathcal{H}^G -permutable subgroup of G containing A. Then A is Π -permutable in E by Lemma 2.1(2), so $O_{\Pi}(A) \leq O_{\Pi}(E)$ by the choice of G. On the other hand, in the case when A < E we have $O_{\Pi}(E) \leq O_{\Pi}(G)$ by the choice of |G| + |G : A|, which implies that $O_{\Pi}(A) \leq O_{\Pi}(G)$. Hence, A = E.

If $D := H_1^G \dots H_t^G \leq A$, then $O_{\Pi}(A) \leq O_{\Pi}(D) \leq O_{\Pi}(G) = 1$ since $O_{\Pi}(D)$ is characteristic in D and so normal in G. Finally, assume that $D \not\leq A$. Then, by Lemma 2.3, there exists i such that $V := H_1^G \dots H_{i-1}^G H_{i+1}^G \dots H_t^G \leq A$ and $G = AH_i$. Hence, $O_{\Pi}(A) \cap V \leq O_{\Pi}(V) \leq O_{\Pi}(G) = 1$, so $O_{\Pi}(A) = O_{\sigma_i}(A)$. Then $O_{\sigma_i}(A) \leq H_i^x$ for $x \in G$, so $O_{\sigma_i}(A) \leq (H_i)_G \leq O_{\Pi}(G) = 1$. Therefore, $O_{\Pi}(A) = 1$, a contradiction.

The proposition is proved.

Corollary 3.1. Let G = AB, where A and B are \mathcal{H}^G -permutable subgroups of G for some complete Hall Π -set \mathcal{H} of G. If A and B are Π -closed, then G is also Π -closed.

Proof. By Proposition 3.1, $O_{\Pi}(A) \leq O_{\Pi}(G)$, where $O_{\Pi}(A)$ is a Hall $\pi(\Pi)$ -subgroup of A by hypothesis. Then $A/O_{\Pi}(A) = A/(A \cap O_{\Pi}(G))$ is a Π' -group. Similarly, $B/O_{\Pi}(B) = B/(B \cap O_{\Pi}(G))$ is a Π' -group. Hence, $G/O_{\Pi}(G) = (AO_{\Pi}(G)/O_{\Pi}(G))(O_{\Pi}(G)B/O_{\Pi}(G))$ is a Π' -group.

The corollary is proved.

Proof of Theorem A. In view of Corollary 3.1, it is enough to show that if A and B are π -separable (respectively, Π -soluble, strongly Π -closed), then G is also π -separable (respectively, Π -soluble, strongly Π -closed). Assume that this is false and let G be a counterexample with |G| + |G : A| + |G : B| minimal. Then $A \neq 1 \neq B$ and $\Pi \cap \sigma(G) \neq \emptyset$. Let $\mathcal{H} = \{H_1, \ldots, H_t\}$. We can assume without loss of generality that H_i is a σ_i -group of G for $i = 1, \ldots, t$. Let R be a minimal normal subgroup.

(1) A and B are maximal \mathcal{H}^G -permutable subgroups of G.

It is clear that A < G, so, for some maximal \mathcal{H}^G -permutable subgroup E of G, we have $A \leq E$. Since G = AB, we get $E = A(B \cap E)$, where $B \cap E$ is π -separable (respectively, Π -soluble, strongly Π -closed (see Lemma 2.4 (1))). Moreover, $\mathcal{H}_0 = \{H_1 \cap E, \ldots, H_t \cap E\}$ is a complete Hall Π -set of E and the subgroups A and $B \cap E$ are \mathcal{H}_0^E -permutable by Lemma 2.1 (2), (3). Therefore, the hypothesis holds for $(E, A, B \cap E)$. Note also that $|E: B \cap E| = |A: A \cap B| = |G: B|$ and so $|E| + |E: A| + |E: B \cap E| < |G| + |G: A| + |G: B|$, which implies that E is π -separable (respectively, Π -soluble, strongly Π -closed). Therefore, if A < E, then the choice of (G, A, B) implies that G is π -separable (respectively, Π -soluble, strongly Π -closed), a contradiction. Hence, A = E is a maximal \mathcal{H}^G -permutable subgroup of G. Similarly, B is a maximal \mathcal{H}^G -permutable subgroup of G.

(2) G/R is π -separable (respectively, Π -soluble, strongly Π -closed). Therefore, R is the unique minimal normal subgroup of G and $R \nleq \Phi(G)$ (this follows from Lemmas 2.1(1), 2.4 and the choice of G).

(3) G is π -separable (respectively, Π -soluble).

Assume that this is false. Then $O_{\Pi}(G) = 1 = O_{\Pi'}(G)$ (respectively, $O_{\Pi'}(G) = 1 = O_{\sigma_i}(G)$ for $\sigma_i \in \Pi$) by Claim (2), so $A_G = 1 = B_G$. Therefore from Lemma 2.3 and Claim (1) it follows that t = 1 and $G = AH_1 = BH_1$. In this case we get also that $O_{\Pi}(G) = O_{\sigma_1}(G) = 1$. On the other hand, we have $O_{\Pi}(A) \leq O_{\Pi}(G)$ by Proposition 3.1. Therefore $O_{\Pi}(A) = O_{\sigma_1}(A) = 1$ and so we have $W := O_{\sigma'_1}(A) \neq 1$ since $A \neq 1$ is π -separable, where $\pi = \pi(\Pi)$. From $G = AH_1 = BH_1$ it follows that $|G:B| = |A:B \cap A|$ is a σ_1 -number and hence $1 < W \leq B \cap A$, so $W^G = W^{AB} = W^B \leq B$. Therefore, $B_G \neq 1$. This contradiction completes the proof of (3).

Now assume that A and B are strongly Π -closed.

(4) G is strongly Π -closed.

Assume that this is false. First note that by Corollary 3.1, G is Π -closed, that is, $O_{\Pi}(G)$ is a Hall π -subgroup of G. Moreover, $O_{\Pi}(G) \neq 1$ since $\Pi \cap \sigma(G) \neq \emptyset$. On the other hand, G is Π -soluble by Claim (3) since every strongly Π -closed group is Π -soluble. Therefore $O_{\Pi}(G)$ is σ -soluble. Hence R is a σ_i -group for some $\sigma_i \in \Pi$ and $O_{\sigma_j}(G) = 1$ for $j \neq i$ by Claim (2). Hence $O_{\sigma_j}(A) = 1$ for every $\sigma_j \in \Pi \setminus \sigma_i$ by Proposition 3.1, so $O_{\Pi}(A) = O_{\sigma_i}(A)$ is a Hall π -subgroup of A since A is Π -closed by hypothesis. Similarly, $O_{\Pi}(B) = O_{\sigma_i}(B)$ is a Hall π -subgroup of B. Therefore, $O_{\Pi}(G) = O_{\sigma_i}(G)$ is a Hall π -subgroup of G and so G is strongly Π -closed, a contradiction.

The theorem is proved.

Proof of Theorem B. Assume that this theorem is false and let G be a counterexample with |G| + |G: A| + |G: B| minimal. Then $A \neq 1 \neq B$ and p divides |G|. Let P be a Sylow p-subgroup of G and Q_i a Sylow q_i -subgroup of G for i = 1, ..., t, where $\{q_1, ..., q_t\} = \pi(G) \setminus \{p\}$. Let R be a minimal normal subgroup. Since $G/O_{p',p}(G)$ is nilpotent by hypothesis, G is p-soluble and so R is either a p-group or a p'-group.

(1) A and B are maximal p'-permutable subgroups of G.

It is clear that A < G, so, for some maximal p'-permutable subgroup E of G, we have $A \le E$. First we show that E' is p-nilpotent. Since $E = A(B \cap E)$, where $|E| + |E:A| + |E: B \cap E| < |G| + |G:A| + |G:B|$ (see Claim (1) in the proof of Theorem A), it is enough to show that the hypothesis holds for $(E, A, B \cap E)$.

Let $O = O_{p',p}(G)$. Then $O \cap E \leq O_{p',p}(E)$ by Lemma 2.4(1) and $OE/O \simeq E/(O \cap E)$ is nilpotent since G/O is nilpotent by hypothesis. Therefore $E/O_{p',p}(E)$ is nilpotent. Similarly, $(B \cap E)'$ is *p*-nilpotent. It is clear also that $(|E : A|, |E : B \cap E|) = 1$. Finally, the subgroups A and $B \cap E$ are *p'*-permutable (see Claim (1) in the proof of Theorem A). Hence, the hypothesis holds for $(E, A, B \cap E)$ and so the choice of (G, A, B) implies that E' is *p*-nilpotent.

If A < E, then |G|+|G: E|+|G: B| < |G|+|G: A|+|G: B|. On the other hand, the hypothesis holds for (G, E, B), so the choice of (G, A, B) implies that G' is p-nilpotent, a contradiction. Hence, A = E is a maximal p'-permutable subgroup of G. Similarly, it can be proved that B is a maximal p'-permutable subgroup of G.

(2) The derived subgroup (G/R)' of G/R is *p*-nilpotent for every minimal normal subgroup R of G.

Note that G/R = (AR/R)(BR/R), where AR/R and BR/R are p'-permutable in G/R by Lemma 2.1(1). It is clear also that (|G/R:AR/R|, |G/R:BR/R|) = 1. Also, by Lemma 2.4(2), we get $O_{p',p}(G)R/R \le O_{p',p}(G/R)$, so $(G/R)/O_{p',p}(G/R)$ is nilpotent. Finally, (AR/R)' =

 $= A'R/R \simeq A'/(A' \cap R)$ and $(BR/R)' \simeq B'/(B' \cap R)$ are *p*-nilpotent. Therefore, the hypothesis holds for G/R, so we have (2) by the choice of G.

(3) $R = C_G(R) = O_p(G) = O_{p',p}(G)$ is the unique minimal normal subgroup of G. Hence G/R is nilpotent.

Claim (2) implies that $(G/R)' = G'R/R \simeq G'/(G' \cap R)$ is *p*-nilpotent. On the other hand, G' is not *p*-nilpotent. Hence $R \leq G'$ and G'/R is *p*-nilpotent. Moreover, R is not a p'-group, so R is a *p*group. Now note that if $N \neq R$ is a minimal normal subgroup of G, then $G' \simeq G'/(R \cap N) = G'/1$ is *p*-nilpotent by Lemma 2.4(2). Hence R is the unique minimal normal subgroup of G. Moreover, $R \not\leq \Phi(G)$ by Lemma 2.4(3). Therefore for some maximal subgroup M of G we have $G = R \rtimes M$ and $M_G = 1$. But $C_G(R) \cap M$ is clearly normal in G and so $R = C_G(R) = O_p(G) = O_{p',p}(G)$ since $O_{p',p}(G) \leq C_G(R)$ by [11] (Appendixes, Theorem 3.2). Hence, $G/R = G/O_{p',p}(G)$ is nilpotent by hypothesis.

(4) $O_{p'}(A) = 1 = O_{p'}(B)$. Hence the subgroups A and B are p-closed (this follows from Proposition 3.1 and Claim (3)).

(5) $R \leq A \cap B$. Hence A and B are normal in G.

Assume, for example, that $R \nleq A$. Then G = AR by the maximality of A, so $Q_1^G \le A$ by Lemma 2.1(2) since R is a p-group by Claim (3). But then $R \le Q_1^G \le A$, again by Claim (3), a contradiction. Hence $R \le A \cap B$, so A and B are subnormal in G since G/R is nilpotent by Claim (3). But then the maximality of A and B implies that A and B are normal in G.

The final contradiction. Since (|G:A|, |G:B|) = 1, we have either $P \le A$ or $P \le B$ by Claim (5). Then P = R is normal in G since A and B are normal p-closed subgroups of G by Claims (4) and (5). Now for any i we obtain either $Q_i \le A$ or $Q_i \le B$. It follows that $Q_i R/R \simeq Q_i$ is Abelian by Claim (4). Hence every Sylow subgroup of the nilpotent group G/R is Abelian. Hence, G/R is Abelian, so G' is nilpotent, a contradiction.

The theorem is proved.

Proof of Theorem C. Assume that this theorem is false and let G be a counterexample of minimal order. Then p divides |G|. Let P be a Sylow p-subgroup of G.

By Lemma 2.5, $A/O_{p',p}(A)$ and $B/O_{p',p}(B)$ are Abelian groups of exponent dividing p-1. Hence G' is p-nilpotent by Theorem B, so G is p-soluble.

Now let R be a minimal normal subgroup of G. The hypothesis holds for G/R by Lemma 2.1(1), so the choice of G implies that G/R is p-supersoluble. It follows that R is not a p'-group and Ris the unique minimal normal subgroup of G with $R \nleq \Phi(G)$. Hence $O_{p'}(G) = 1$ and R = $= C_G(R) = O_p(G) = O_{p',p}(G)$ (see the proof of Theorem B). Therefore, G' is a p-group since $O_{p'}(G')$ is characteristic in G' and so normal in G. But then P is normal in G. Hence P == R and so G/R is an Abelian irreducible automorphism group of R, which implies that G/R == (AR/R)(BR/R) is cyclic. Hence, for every Sylow q-subgroup Q of G, where $q \neq p$, we have either $QR/R \leq AR/R \simeq A/(A \cap R) = A/(A \cap P)$ or $QR/R \leq BR/R \simeq B/(B \cap R) = B/(B \cap P)$.

From Proposition 3.1 it follows that $O_{p',p}(A) = O_p(A) = A \cap P$ is a Sylow *p*-subgroup of *A* and $O_{p',p}(B) = O_p(B) = B \cap P$ is a Sylow *p*-subgroup of *B*. Therefore $A/(A \cap P)$ and $B/(B \cap P)$ are Abelian groups of exponent dividing p-1 by Lemma 2.5. Hence, for every Sylow *q*-subgroup Q of *G*, where $q \neq p$, $Q \simeq QR/R$ is a cyclic group of exponent dividing p-1. But then G/R is a cyclic group of exponent dividing p-1 and so |R| = p [11] (Ch. 1, Theorem 1.4). Therefore *G* is *p*-supersoluble, a contradiction.

The theorem is proved.

On Π-PERMUTABLE SUBGROUPS IN FINITE GROUPS

References

- 1. A. N. Skiba, On σ -subnormal and σ -permutable subgroups of finite groups, J. Algebra, **436**, 1–16 (2015).
- 2. A. N. Skiba, A generalization of a Hall theorem, J. Algebra and Appl., 15, № 4, 21–36 (2015).
- 3. A. N. Skiba, Some characterizations of finite σ -soluble $P\sigma T$ -groups, J. Algebra, 495, 114–129 (2018).
- 4. A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of finite groups*, Walter de Gruyter, Berlin, New York (2010).
- 5. A. N. Skiba, *On some results in the theory of finite partially soluble groups*, Commun. Math. Stat., **4**, № 3, 281–309 (2016).
- 6. O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78, 205-221 (1962).
- 7. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin etc. (1967).
- 8. K. Corradi, P. Z. Hermann, L. Hethelyi, *Separability properties of finite groups hereditary for certain products*, Arch. Math., 44, 210–215 (1985).
- 9. P. Z. Hermann, On π -quasinormal subgroups in finite groups, Arch. Math., 53, 228–234 (1989).
- 10. Ren Yongcai, Notes on π-quasinormal subgroups in finite groups, Proc. Amer. Math. Soc., 117, № 3, 631–636 (1993).
- 11. M. Weinstein (ed.), Between nilpotent and solvable, Polygonal Publ. House (1982).
- 12. D. Friesen, Products of normal supersoluble subgroups, Proc. Amer. Math. Soc., 30, 46-48 (1971).

Received 04.03.19