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On IT-PERMUTABLE SUBGROUPS IN FINITE GROUPS *
ITPO II-TEPECTABHI HIAI'PYIIN CKIHYEHHUX I'PYII

Let o = {o;]i € I} be some partition of the set of all primes P and let IT be a nonempty subset of the set 0. A set H of
subgroups of a finite group G is said to be a complete Hall 11-set of G if every member of H is a Hall o;-subgroup of
G for some o; € II and H contains exactly one Hall o;-subgroup of G for every o; € II such that o; N 7(G) # @. A
subgroup A of G is called (i) HC -permutable if AH® = H®A for H € H and « € G; (ii) H-permutable in G if A is
HE -permutable for some complete Hall TI-set 7 of G.

We study the influence of IT-permutable subgroups on the structure of G. In particular, we prove that if 7 = U e
o€

and G = AB, where A and B are H-permutable 7-separable (respectively, m-closed) subgroups of G, then G is also
m-separable (respectively, m-closed). Some known results are generalized.

Hexait 0 = {o;|i € I} — nesike po36HTTS MHOXKHHHM BCiX mpocTux umcen P i II — HemopoxkHs migMHOXHHA MHOXKUHH
o. MHOXuHa H miarpyn ckindeHHol rpynu G Ha3MBA€THCS nO6HOIO Xonniécbkolo 11-mnoocunoro B GG, SKIIO KOXKEH 4iIeH
3 H € XOJUTBCBHKOIO 0 -MArpynoio B G mist mesikoro o; € I 1 H MICTUTH TOYHO OAHY XOJUIBCBKY o -miarpymy 3 G st
koxHoro o; € II taxoro, o o; N7(G) # @. Miarpyna A 3 G HaszuBaetbest: (i) HE -nepecmasnon, sxmo AH® = H* A
g eeix H € H iz € G; (i) Il-nepecmasnon ¢ G, saxmo A e HE -nepecraBHoro 11 AesKoi MOBHOI 11-MHOXKHHHU
H B G.

V wi#i crarTi BUB4eHO BIUIMB Il-mepecTaBHMX MiArpymn Ha CTPpyKTypy rpynu (. 30KpeMa, JOBEACHO TaKe TBEPIKCHHS:
SKIO0 T = U . o, TaG=AB,ne AiBe HG-HepeCTaBHI/IMI/I T-cemnapabenbHUMHA (BIIMOBIAHO, 7T-3aMKHEHHMH )

T

miarpynamu G, To G Takox Mae OyTH m-cenapabenbHOo (BIAMOBIAHO, 7T-3aMKHEeHOH0). KpiM Toro, yzaraibHEHO AesiKi
BIZIOMi pe3yJIbTaTH.

1. Introduction. Throughout this paper, all groups are finite and G always denotes a finite group.
Moreover, PP is the set of all primes, 7 = {p1,...,pn} C P and 7’ = P\ &. If n is an integer, the
symbol 7(n) denotes the set of all primes dividing n; as usual, 7(G) = 7(|G|), the set of all primes
dividing the order of G. They say that n is a w-number provided 7(n) C .

Before continuing, we recall some concepts of the theory of o-properties in [1, 2].

In what follows, o = {0;|i € I} is some partition of P, that is, P = Uz‘el o; and o;Noj = @ for

i # j; I is always supposed to be a nonempty subset of the set o, II' = o \II and 7(II) = U o

The group G is called II-primary if G is a o;-group for some o; € II.
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By the analogy with the notations 7(n) and 7(G), we write o(n) = {o;|o; N w(n) # T},
0(G) = o(|G]). The group G is called: a II-group if o(G) C II; II-soluble if every chief factor of
G is either II-primary or a II'-group; II-closed if G is 7(II)-closed in the usual sense, that is, G has
a normal Hall 7 (II)-subgroup; strongly 11-closed if G has a normal Hall o;-subgroup for o; € II.

A set H of subgroups of G is said to be a complete Hall 11-set of G if every member of H is
a Hall o;-subgroup of G for some o; € Il and H contains exactly one Hall o;-subgroup of G for
every o; € [INo(G).

Let £ be some nonempty set of subgroups of G. Then a subgroup A of G is called L-permutable
[4]if AH = HA for H € L; LE-permutable [1] if AH® = H*A for H € £ and z € G.

Definition 1.1. Let ‘H be a complete Hall 11-set of G. Then we say that a subgroup A of G is
-permutable in G [5], if A is HE -permutable for some complete Hall T-set H of G.

Example1.1. (i) Let o' = {{2},{3},...} (we use here the notations in [3]) and IT = {{p;}, ...
..y {pn}}, thatis, 7(II) = {p1,...,pn}. Then a subgroup A of G is II-permutable in G if and
only if it is w-permutable or w-quasinormal in G in the sense of Kegel [6], that is, A permutes with
all Sylow p-subgroups of G for p € w. Moreover, GG is II-soluble if and only if it is 7-soluble, and
G is strongly II-closed if and only if it has a normal nilpotent Hall 7-subgroup.

(ii) Let o™ = {m, 7'} [3] and IT = {7 }. Then a subgroup A of G is II-permutable in G provided
G has a Hall w-subgroup H such that AH® = H* A for x € G. It is clear also that G is o™ -soluble
if and only if it is 7w-separable.

Note that in the case when m = {2,3} and G = Aj is the alternating group of degree 5, every
subgroup A of G with 5 € w(A) is II-permutable in GG, and in this case every subgroup A of G
with 1 < A < G is not o™ -permutable in G.

(iii) G is II-soluble if and only if it is o*-soluble, where o* = ITU {7’} and 7 = =(II).

Our first observation is the following theorem.

Theorem A. Let 7 = n(Il) and G = AB, where A and B are HE -permutable subgroups of
G for some complete Hall 1l-set H of G. If A and B are w-separable (respectively, 1l-soluble,
(strongly) 1l-closed), then G is also w-separable (respectively, I1-soluble, (strongly) Il-closed).

Corollary 1.1. The group G is m-separable if and only if G possesses a Hall w-subgroup (a Hall
7' -subgroup) H and G = AB for some w-separable subgroups A and B which permute with all
conjugates of H.

Proof. Sufficiency. We can assume without loss of generality that H is a Hall w-subgroup
of G. Then A and B are H”-permutable, where H = {H} is a complete Hall II-set of G and
II={r} C{nm, 7'} = 0" (see Example 1.1 (ii)), so G is mw-separable by Theorem A.

Necessity. We can take A = 1 and B = G and use the well-known properties of the Hall
subgroups of w-separable groups [7] (VI, Hauptsatz 1.7).

1

In the case when o0 = o~ we get from Theorem A also the following results.

Corollary 1.2 (see Theorem 1 in [8] or Theorem 1 in [9]). Let A and B be mw-permutable sub-
groups of G and G = AB. If A and B are m-separable, then G is also mw-separable.

Corollary 1.3 (see Theorem 1 in [10]). Let A and B be mw-permutable subgroups of G and G =
= AB. If A and B are w-soluble, then G is also m-soluble.
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Corollary1.4. Let G = AB, where A and B are m-permutable in G. If the groups A and
B possess normal nilpotent Hall m-subgroups, then G also possesses a normal nilpotent Hall m-
subgroup.

Corollary1.5. Let G = AB, where A and B are p'-permutable subgroups of G, that is, A and
B permute with all Sylow q-subgroups of G for primes q # p. If A and B are p-nilpotent, then G
is also p-nilpotent.

Now fix some ordering ¢ on P. The record ppq means that p precedes ¢ in ¢ and p # q. The
group G of order pi"'p5?...p%" is called ¢-dispersive whenever pi¢pa¢p. .. ¢p, and for every i

there is a normal subgroup of G of order p'p5?...pJ".

Corollary1.6. Let w(G) = {p1,,...,Pn}, where p1dp2¢ ... ¢pn, and let p = p,. Suppose also
that G = AB, where A and B are p'-permutable subgroups of G. If A and B are ¢-dispersive,
then G is also ¢-dispersive.

Corollary 1.7 (see Theorem 3.2 in [11], Ch. 4). Let G = AB, where A and B are normal sub-
groups of G. If A and B are ¢-dispersive, then G is also ¢-dispersive.

Example1.2. Let p, q be primes, where ¢ divides p — 1, and let P be a group of order p and Q
a non-Abelian group of order ¢® of exponent ¢. Finally, let V' # W be maximal subgroups of () and
G =P1Q =K x(@Q, where K is the base group of the regular wreath product G. Then G = AB,
where A = KV and B = KW are supersoluble normal subgroups of G with A’, B’ < K and
K = F(G) = Oy ,(G) = O,(G). Hence, G’ is not p-nilpotent, so G is not p-supersoluble.

Example 1.2 shows that we can not obtain an analogue of Corollary 1.5 for the groups G = AB
with p-nilpotent derived subgroups A’ and B’. Nevertheless, we prove the following theorem.

Theorem B. Let G = AB, where A and B are p'-permutable subgroups of G with p-nilpotent
derived subgroups A" and B'. If G /Oy ,(G) is nilpotent and (|G : A|,|G : B|) = 1, then G’ is
p-nilpotent.

Since the product of any two meta-nilpotent normal subgroups is clearly meta-nilpotent, we get
from Theorem B the following known result.

Corollary 1.8 (see Theorem 3.5 in [11], Ch. 4). Let G = AB, where A and B are normal sub-
groups of G with nilpotent derived subgroups A’ and B'. If (|G : A|,|G : B|) = 1, then G’ is
nilpotent.

It is well-known (see also Example 1.2) that the product G = AB of two normal supersoluble
subgroups A and B of GG need not be supersoluble. Nevertheless, such a product is supersoluble if
either the derived subgroup G’ is nilpotent or (|G : A|,|G : B|) = 1. Using Theorem B we prove
the following result which allows us to get the local versions of these two results.

Theorem C. Let G = AB, where A and B are p'-permutable p-supersoluble subgroups of
G. If either G' is p-nilpotent or (|G : A|,|G : B|) = 1 and G /Oy ,(G) is nilpotent, then G is
p-supersoluble.

Corollary 1.9 (see [12] or [11], Ch. 4, Theorem 3.4). Let G = AB, where A and B are super-
soluble normal subgroups of G. If (|G : A|,|G : B|) = 1, then G is supersoluble.
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Corollary 1.10 (R. Baer [11], Theorem 1.13). Let G = AB, where A and B are supersoluble
normal subgroups of G. If G’ is nilpotent, then G is supersoluble.

2. Basic lemmas.

Lemma 2.1. Suppose that G has a complete Hall 11-set H = {H1,...,H;} such that the
subgroups A < E and B of G are HC -permutable. Let R be a normal subgroup of G. Then:

(1) H° = {H\R/R, ..., HiR/R} is a complete Hall Tl-set of G/R and AR/R is (H°)¢/E-
permutable;

Q) Ho={H,NE,...,H NE} is a complete Hall T-set of E and A is Ho"-permutable;

(3) if BE = EB, then BN E is Ho® -permutable.

Proof. Without loss of generality we can assume that H; is a o;-group for i = 1,...,t.

(1) H is a complete Hall II-set of G/ R such that

(AR/R)(H;R/R)* = AH?R/R = H*AR/R = (H;R/R)"®(AR/R)

for tR € G/Rand i = 1,...,t, thatis, AR/R is (H°)S/E-permutable.

(2) Since FH; = H;F is a subgroup of G and H; is a Hall o;-subgroup of G, |EH; : H;| =
= |E : EN H,| is a o}-number. Hence E N H; is a Hall o;-subgroup of E for i = 1,...,¢, so Ho
is a complete Hall II-set of E. Now, for any x € E, we have AH" = H A, which implies that

ENAH? = A(ENHY) = A(ENH,)* = (EN H;)"A,

that is, A is " -permutable.

(3) In view of part (2), we obtain only to show that for any ¢ and for x € E the following
holds: ENH!B = (ENHY)(ENB)=(ENH)*(ENB)=(ENB)(ENH;)". But first we
show that D = (D N HY)(D N B), where D = E N HB. Note that DHY = EH? N H'B is
a subgroup of G, so DH = HD and, hence, D N H is a Hall o;-subgroup of D. Similarly,
DB = BD is a subgroup of G. On the other hand, |H"B : B| = |H} : HF N B is a o;-number and
so |[BD : B| =|D : DN B| is a g;-number since BD < H’B. But then D = (DN H?)(D N B).
Finally, we have

EnNnH!B=D=(DNH")(DNB)=(ENH!BNH)(FNHBNB)=(ENH)(ENB).

The lemma is proved.

In fact, the following lemma can be proved by the direct calculations.

Lemma 2.2. Let A, B and H be subgroups of G. If HA = AH and HB = BH, then
H(A,B) = (A, B)H.

We say that an H-permutable subgroup A of G is a maximal HE -permutable subgroup of G
if A < G and for every H -permutable subgroup B of G with A < B < G we have A = B.

Lemma 2.3. Let H = {H,...,H;} be a complete Hall T-set of G and A a maximal HC -
permutable subgroup of G. Then one of the following statements is true:

(1) A is normal in G,

Q) HE <Afori=1,...,t

(3) there exists i such that G = AH; and H]G < A for j #£1.
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Proof. Assume that A is not normal in GG, and, for some i, we get HZG # A. Then A < AH 1G
and AHZ»G is HC-permutable, so G = AHZ»G by the maximality of A. It follows that, for some
r € G andy € HY, we have y & Ng(A). Then AY is HC-permutable and A < (A, AY). Moreover,
(A, AY) is also HC-permutable by Lemma 2.2 and, hence, (A, AY) = G. But AY < AH? and so
G = AH] = AH;, which implies that, for every z € G and for every j # i, we obtain HY < A,
that is, H]G < A.

The lemma is proved.

Recall that Or(G) [1] denotes the product of all normal II-subgroups of G.

Lemma 2.4. Let N, R < H be normal subgroups of G. Then:

(1) all quotients and all subgroups of a (strongly) 1l-closed group are (strongly) 1l-closed;

(2) if G/N and G/R are (strongly) Il-closed, then G/(N N R) is (strongly) M-closed;

(3) if R < ®(G) and H/R is (strongly) 1l-closed, then H is (strongly) Il-closed.

Proof. (1) This assertion directly follows from properties of Hall subgroups.

(2) Let A and B be any two (strongly) II-closed groups. Then Orr(A) is a Hall 7(II)-subgroup
of A and Ori(B) is a Hall w(II)-subgroup of B. Hence, Or1(A x B) = O (A) x O (B) is a Hall
7(IT)-subgroup of A x B, so A x B is (strongly) II-closed. Finally, G/(N N R) is isomorphic to
some subgroup of (G/N) x (G/R) by [7] (Ch. 1, Hilfssatz 9.6), so we have (2).

(3) It is enough to prove that if H/R has a normal Hall o;-group V/R for some o; € II, then
H also has a normal Hall o;-subgroup.

First note that V' is normal in G since V/R is characteristic in H/R. Let D = O,,/(V'). Then,
since R < ®(G), D is a Hall ;' -subgroup of V. Hence, by the Schur—Zassenhaus theorem, V' has
a Hall o;-subgroup, say E. It is clear that V' is o}-soluble, so any two Hall o;-subgroups of V' are
conjugated in V. Therefore, by the Frattini argument we have G = VNg(E) = (RE)Ng(E) =
= Ng(F). Thus, E is a normal Hall o;-subgroup of H.

The lemma is proved.

Lemma 2.5. (1) If G/®(G) is p-supersoluble, then G is p-supersoluble (see [7], IV, Satz 8.6).

(2) Let N and R be distinct minimal normal subgroups of G. If G/N and G/R are p-
supersoluble, then G is p-supersoluble.

(3) Let A = G /Oy (G). Then G is p-supersoluble if and only if AJOy(A) is an Abelian group
of exponent dividing p — 1, p is the largest prime dividing |A| and F(A) = Oy(A) is a normal
Sylow subgroup of A.

Proof. (2) This follows from the G-isomorphism NR/N ~ R.

(3) Since G is p-supersoluble if and only if G/O,/ (G) is p-supersoluble, we may assume without
loss of generality that O,/ (G) = 1.

First assume that G is p-supersoluble. In this case G/Cq(H/K) is an Abelian group of exponent
dividing p — 1 for any chief factor H/K of G with |H/K| = p. On the other hand,

Op p(G) = 0,(G) = ﬂ {Cg(H/K) | H/K is a chief factor of G with |H/K|= p}

by [11] (Appendixes, Theorem 3.2). Hence G/O,(G) is an Abelian group of exponent dividing
p — 1. Thus, p is the largest prime dividing |G| and F/(G) = O,(G) is a normal Sylow p-subgroup
of G.

Finally, if G/O,(G) is an Abelian group of exponent dividing p — 1, then every chief factor
H/K of G below O,(G) is cyclic by [11] (Ch. 1, Theorem 1.4). Hence, G is supersoluble.

The lemma is proved.
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3. Proofs of the results.
Proposition 3.1. [f A is a Il-permutable subgroup of G, then Or(A) < On(G).

Proof. Assume that this proposition is false and G be a counterexample with |G| 4 |G : A|
minimal. Then Op(A) # 1 and A is not normal in G. Moreover, II N o(G) # @. Let H =
= {Hy,...,H;} be a complete Hall TI-set of G' such that A is H“-permutable. We can assume
without loss of generality that H; is a o;-group of G for i =1,...,¢.

Let R be a minimal normal subgroup of G. Then the hypothesis holds for (G/R, RA/R) by
Lemma 2.1(1), so the choice of G implies that O(A)R/R < On(G/R). If R < Op(G), then
On(G)/R = On(G/R) and so On(A) < On(G). Therefore, O (G) = 1.

Now let E be a maximal H“-permutable subgroup of G containing A. Then A is II-permutable
in £ by Lemma 2.1(2), so Or1(A) < On(E) by the choice of G. On the other hand, in the case
when A < E we have Op(E) < Opn(G) by the choice of |G| + |G : A|, which implies that
On(A) < On(G). Hence, A = E.

If D:=HF...HY < A, then Or(A) < On(D) < On(G) = 1 since Or(D) is characteristic
in D and so normal in G. Finally, assume that D j{ A. Then, by Lemma 2.3, there exists ¢ such that
V:=H{. . .HZ HZ, .. .HF < Aand G = AH,. Hence, Or;(A) NV < Op(V) < On(G) = 1,
so On(A) = Oy, (A). Then Oy, (A) < HY for z € G, so Oy, (A) < (Hi)a < On(G) = 1.
Therefore, Or1(A) = 1, a contradiction.

The proposition is proved.

Corollary3.1. Let G = AB, where A and B are HC -permutable subgroups of G for some
complete Hall 1l-set H of G. If A and B are ll-closed, then G is also 1l-closed.

Proof. By Proposition 3.1, Or(A) < O(G), where Or(A) is a Hall 7(IT)-subgroup of A by
hypothesis. Then A/On(A) = A/(ANOn(G)) is a I'-group. Similarly, B/On(B) = B/(B N
NO(Q)) is a IT'-group. Hence, G/On(G) = (A0 (G)/On(G))(On(G)B/On(G)) is a I’ -group.

The corollary is proved.

Proof of Theorem A. In view of Corollary 3.1, it is enough to show that if A and B are 7-
separable (respectively, II-soluble, strongly II-closed), then G is also w-separable (respectively, I1-
soluble, strongly II-closed). Assume that this is false and let G be a counterexample with |G| + |G :
Al 4+ |G: B| minimal. Then A # 1 # B and INo(G) # @. Let H = {Hy,...,H;}. We can
assume without loss of generality that H; is a o;-group of G for i = 1,...,t¢. Let R be a minimal
normal subgroup.

(1) A and B are maximal H®-permutable subgroups of G.

It is clear that A < G, so, for some maximal H& -permutable subgroup E of G, we have A < E.
Since G = AB, we get E = A(BN E), where BN E is w-separable (respectively, II-soluble,
strongly II-closed (see Lemma 2.4 (1))). Moreover, Hyo = {H1 N E,..., H N E} is a complete Hall
II-set of E and the subgroups A and B N E are HE -permutable by Lemma 2.1 (2), (3). Therefore,
the hypothesis holds for (E, A, BN E). Note also that |[E: BNE| = |[A: ANBNE| = |A:
ANB| =|G:B|and so |E|+ |E: Al+ |E: BN E| < |G|+ |G: A| + |G: B|, which implies
that E is m-separable (respectively, II-soluble, strongly II-closed). Therefore, if A < E, then
the choice of (G, A, B) implies that G is w-separable (respectively, II-soluble, strongly II-closed),
a contradiction. Hence, A = F is a maximal % -permutable subgroup of G. Similarly, B is a
maximal H& -permutable subgroup of G.
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(2) G/R is mw-separable (respectively, IT-soluble, strongly II-closed). Therefore, R is the unique
minimal normal subgroup of G and R £ ®(G) (this follows from Lemmas 2.1(1), 2.4 and the choice
of G).

(3) G is w-separable (respectively, II-soluble).

Assume that this is false. Then O (G) = 1 = O (G) (respectively, O (G) = 1 = O, (G) for
o; € II) by Claim (2), so Ag = 1 = Bg. Therefore from Lemma 2.3 and Claim (1) it follows that
t =1and G = AH; = BH,. In this case we get also that Or;(G) = O, (G) = 1. On the other hand,
we have Or(A) < O (G) by Proposition 3.1. Therefore Or(A) = Oy, (A) = 1 and so we have
W= Oy (A) # 1 since A # 1 is m-separable, where 7 = (Il). From G = AH; = BH, it follows
that |G : B| = |A: BNA|is a oy-number and hence 1 < W < BNA, so W& = WAB = W8 < B.
Therefore, B # 1. This contradiction completes the proof of (3).

Now assume that A and B are strongly II-closed.

(4) G is strongly II-closed.

Assume that this is false. First note that by Corollary 3.1, G is II-closed, that is, O (G) is a Hall
m-subgroup of G. Moreover, Or(G) # 1 since IINo(G) # @. On the other hand, G is TI-soluble by
Claim (3) since every strongly II-closed group is II-soluble. Therefore Or(G) is o-soluble. Hence
R is a oj-group for some o; € Il and O,,;(G) = 1 for j # i by Claim (2). Hence Oy, (A) = 1
for every o; € II \ o; by Proposition 3.1, so Or(A) = O,,(A) is a Hall w-subgroup of A since
A is Il-closed by hypothesis. Similarly, O (B) = O, (B) is a Hall m-subgroup of B. Therefore,
On(G) = Oy, (G) is a Hall w-subgroup of G and so G is strongly II-closed, a contradiction.

The theorem is proved.

Proof of Theorem B. Assume that this theorem is false and let G be a counterexample with
|G|+ |G : Al+|G: B| minimal. Then A # 1 # B and p divides |G|. Let P be a Sylow p-subgroup
of G and Q; a Sylow ¢;-subgroup of G for i = 1,...,t, where {q1,...,q:} = 7n(G) \ {p}. Let R
be a minimal normal subgroup. Since G/O, ,,(G) is nilpotent by hypothesis, G is p-soluble and so
R is either a p-group or a p’-group.

(1) A and B are maximal p’-permutable subgroups of G.

It is clear that A < G, so, for some maximal p’-permutable subgroup E of G, we have A <
< E. First we show that E’ is p-nilpotent. Since F = A(B N E), where |E| + |E: A| + |E:
BNE|<|G|+|G: Al +|G: B| (see Claim (1) in the proof of Theorem A), it is enough to show
that the hypothesis holds for (£, A, BN E).

Let O = Oy ,(G). Then ON E < Op ,(E) by Lemma 2.4(1) and OE/O ~ E/(O N E)
is nilpotent since G'/O is nilpotent by hypothesis. Therefore £/O,s ,(F) is nilpotent. Similarly,
(BN E) is p-nilpotent. It is clear also that (|E: A|,|E: BN E|) = 1. Finally, the subgroups A and
BN FE are p’-permutable (see Claim (1) in the proof of Theorem A). Hence, the hypothesis holds for
(E, A, BN E) and so the choice of (G, A, B) implies that E’ is p-nilpotent.

If A < E, then |G|+|G: E|+|G: B| < |G|+|G: A|+|G: B|. On the other hand, the hypothesis
holds for (G, E, B), so the choice of (G, A, B) implies that G’ is p-nilpotent, a contradiction. Hence,
A = F is a maximal p’-permutable subgroup of G. Similarly, it can be proved that B is a maximal
p/-permutable subgroup of G.

(2) The derived subgroup (G/R)’ of G/R is p-nilpotent for every minimal normal subgroup R
of G.

Note that G/R = (AR/R)(BR/R), where AR/R and BR/R are p’-permutable in G/R by
Lemma 2.1(1). It is clear also that (|G/R: AR/R|,|G/R: BR/R|) = 1. Also, by Lemma 2.4 (2),
we get Op ,(G)R/R < Oy ,(G/R), so (G/R)/Oy »(G/R) is nilpotent. Finally, (AR/R)" =
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=A'R/R~A"/(ANR)and (BR/R)' ~ B'/(B' N R) are p-nilpotent. Therefore, the hypothesis
holds for G/R, so we have (2) by the choice of G.

(3) R = Cg(R) = Oy(G) = Op ,(G) is the unique minimal normal subgroup of G. Hence
G/R is nilpotent.

Claim (2) implies that (G/R)’ = G'R/R ~ G'/(G' N R) is p-nilpotent. On the other hand, G’ is
not p-nilpotent. Hence R < G’ and G’/ R is p-nilpotent. Moreover, R is not a p’-group, so R is a p-
group. Now note that if N # R is a minimal normal subgroup of G, then G’ ~ G'/(RNN) = G'/1
is p-nilpotent by Lemma 2.4 (2). Hence R is the unique minimal normal subgroup of GG. Moreover,
R £ ®(G) by Lemma 2.4 (3). Therefore for some maximal subgroup M of G we have G = R x M
and Mg = 1. But Cg(R)NM is clearly normal in G and so R = Cg(R) = O,(G) = Oy ,,(G) since
Op p(G) < Cg(R) by [11] (Appendixes, Theorem 3.2). Hence, G/R = G/O, ,(G) is nilpotent by
hypothesis.

(4) Op(A) =1 = Op(B). Hence the subgroups A and B are p-closed (this follows from
Proposition 3.1 and Claim (3)).

(5) R < AN B. Hence A and B are normal in G.

Assume, for example, that B £ A. Then G = AR by the maximality of A, so Qf < A by
Lemma 2.1(2) since R is a p-group by Claim (3). But then R < Q¥ < A, again by Claim (3),
a contradiction. Hence R < AN B, so A and B are subnormal in G since G/R is nilpotent by
Claim (3). But then the maximality of A and B implies that A and B are normal in G.

The final contradiction. Since (|G: A|,|G: B|) = 1, we have either P < A or P < B by
Claim (5). Then P = R is normal in GG since A and B are normal p-closed subgroups of G by
Claims (4) and (5). Now for any 7 we obtain either Q; < A or ; < B. It follows that Q; R/R ~ Q);
is Abelian by Claim (4). Hence every Sylow subgroup of the nilpotent group G/ R is Abelian. Hence,
G/R is Abelian, so G’ is nilpotent, a contradiction.

The theorem is proved.

Proof of Theorem C. Assume that this theorem is false and let G be a counterexample of
minimal order. Then p divides |G|. Let P be a Sylow p-subgroup of G.

By Lemma 2.5, A/O,s ,(A) and B/O, ,(B) are Abelian groups of exponent dividing p — 1.
Hence G’ is p-nilpotent by Theorem B, so G is p-soluble.

Now let R be a minimal normal subgroup of GG. The hypothesis holds for G/R by Lemma 2.1(1),
so the choice of G implies that G/R is p-supersoluble. It follows that R is not a p’-group and R
is the unique minimal normal subgroup of G with R £ ®(G). Hence Oy (G) = 1 and R =
= Cg(R) = Op(G) = Oy p»(G) (see the proof of Theorem B). Therefore, G’ is a p-group since
O, (G') is characteristic in G’ and so normal in G. But then P is normal in G. Hence P =
= R and so G/R is an Abelian irreducible automorphism group of R, which implies that G/R =
= (AR/R)(BR/R) is cyclic. Hence, for every Sylow g-subgroup @ of G, where g # p, we have
either QR/R < AR/R ~ A/(ANR) = A/(ANP) or QR/R < BR/R ~ B/(BNR) = B/(BNP).

From Proposition 3.1 it follows that O, ,(A) = O,(A) = AN P is a Sylow p-subgroup of A
and Oy ,(B) = Oy(B) = BN P is a Sylow p-subgroup of B. Therefore A/(ANP) and B/(BNP)
are Abelian groups of exponent dividing p — 1 by Lemma 2.5. Hence, for every Sylow ¢-subgroup
Q of G, where ¢ # p, Q ~ QR/R is a cyclic group of exponent dividing p — 1. But then G/R is a
cyclic group of exponent dividing p — 1 and so |R| = p [11] (Ch. 1, Theorem 1.4). Therefore G is
p-supersoluble, a contradiction.

The theorem is proved.
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