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On \bfPi -PERMUTABLE SUBGROUPS IN FINITE GROUPS*

ПРО \bfPi -ПЕРЕСТАВНI ПIДГРУПИ СКIНЧЕННИХ ГРУП

Let \sigma = \{ \sigma i| i \in I\} be some partition of the set of all primes \BbbP and let \Pi be a nonempty subset of the set \sigma . A set \scrH of
subgroups of a finite group G is said to be a complete Hall \Pi -set of G if every member of \scrH is a Hall \sigma i -subgroup of
G for some \sigma i \in \Pi and \scrH contains exactly one Hall \sigma i -subgroup of G for every \sigma i \in \Pi such that \sigma i \cap \pi (G) \not = \varnothing . A
subgroup A of G is called (i) \scrH G -permutable if AHx = HxA for H \in \scrH and x \in G; (ii) \Pi -permutable in G if A is
\scrH G -permutable for some complete Hall \Pi -set \scrH of G.

We study the influence of \Pi -permutable subgroups on the structure of G. In particular, we prove that if \pi =
\bigcup 

\sigma i\in \Pi 
\sigma i

and G = AB, where A and B are \scrH G -permutable \pi -separable (respectively, \pi -closed) subgroups of G, then G is also
\pi -separable (respectively, \pi -closed). Some known results are generalized.

Нехай \sigma = \{ \sigma i| i \in I\} — деяке розбиття множини всiх простих чисел \BbbP i \Pi — непорожня пiдмножина множини
\sigma . Множина \scrH пiдгруп скiнченної групи G називається повною холлiвською \Pi -множиною в G, якщо кожен член
з \scrH є холлiвською \sigma i -пiдгрупою в G для деякого \sigma i \in \Pi i \scrH мiстить точно одну холлiвську \sigma i -пiдгрупу з G для
кожного \sigma i \in \Pi такого, що \sigma i \cap \pi (G) \not = \varnothing . Пiдгрупа A з G називається: (i) \scrH G -переставною, якщо AHx = HxA
для всiх H \in \scrH i x \in G; (ii) \Pi -переставною в G, якщо A є \scrH G -переставною для деякої повної \Pi -множини
\scrH в G.

У цiй статтi вивчено вплив \Pi -переставних пiдгруп на структуру групи G. Зокрема, доведено таке твердження:
якщо \pi =

\bigcup 
\sigma i\in \Pi 

\sigma i та G = AB, де A i B є \scrH G -переставними \pi -сепарабельними (вiдповiдно, \pi -замкненими)

пiдгрупами G, то G також має бути \pi -сепарабельною (вiдповiдно, \pi -замкненою). Крiм того, узагальнено деякi
вiдомi результати.

1. Introduction. Throughout this paper, all groups are finite and G always denotes a finite group.
Moreover, \BbbP is the set of all primes, \pi = \{ p1, . . . , pn\} \subseteq \BbbP and \pi \prime = \BbbP \setminus \pi . If n is an integer, the
symbol \pi (n) denotes the set of all primes dividing n; as usual, \pi (G) = \pi (| G| ), the set of all primes
dividing the order of G. They say that n is a \pi -number provided \pi (n) \subseteq \pi .

Before continuing, we recall some concepts of the theory of \sigma -properties in [1, 2].

In what follows, \sigma = \{ \sigma i| i \in I\} is some partition of \BbbP , that is, \BbbP =
\bigcup 

i\in I
\sigma i and \sigma i\cap \sigma j = \varnothing for

i \not = j ; \Pi is always supposed to be a nonempty subset of the set \sigma , \Pi \prime = \sigma \setminus \Pi and \pi (\Pi ) =
\bigcup 

\sigma i\in \Pi 
\sigma i.

The group G is called \Pi -primary if G is a \sigma i-group for some \sigma i \in \Pi .
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By the analogy with the notations \pi (n) and \pi (G), we write \sigma (n) = \{ \sigma i| \sigma i \cap \pi (n) \not = \varnothing \} ,
\sigma (G) = \sigma (| G| ). The group G is called: a \Pi -group if \sigma (G) \subseteq \Pi ; \Pi -soluble if every chief factor of
G is either \Pi -primary or a \Pi \prime -group; \Pi -closed if G is \pi (\Pi )-closed in the usual sense, that is, G has
a normal Hall \pi (\Pi )-subgroup; strongly \Pi -closed if G has a normal Hall \sigma i-subgroup for \sigma i \in \Pi .

A set \scrH of subgroups of G is said to be a complete Hall \Pi -set of G if every member of \scrH is
a Hall \sigma i-subgroup of G for some \sigma i \in \Pi and \scrH contains exactly one Hall \sigma i-subgroup of G for
every \sigma i \in \Pi \cap \sigma (G).

Let \scrL be some nonempty set of subgroups of G. Then a subgroup A of G is called \scrL -permutable
[4] if AH = HA for H \in \scrL ; \scrL G-permutable [1] if AHx = HxA for H \in \scrL and x \in G.

Definition 1.1. Let \scrH be a complete Hall \Pi -set of G. Then we say that a subgroup A of G is
\Pi -permutable in G [5], if A is \scrH G-permutable for some complete Hall \Pi -set \scrH of G.

Example 1.1. (i) Let \sigma 1 = \{ \{ 2\} , \{ 3\} , . . .\} (we use here the notations in [3]) and \Pi = \{ \{ p1\} , . . .
. . . , \{ pn\} \} , that is, \pi (\Pi ) = \{ p1, . . . , pn\} . Then a subgroup A of G is \Pi -permutable in G if and
only if it is \pi -permutable or \pi -quasinormal in G in the sense of Kegel [6], that is, A permutes with
all Sylow p-subgroups of G for p \in \pi . Moreover, G is \Pi -soluble if and only if it is \pi -soluble, and
G is strongly \Pi -closed if and only if it has a normal nilpotent Hall \pi -subgroup.

(ii) Let \sigma \pi = \{ \pi , \pi \prime \} [3] and \Pi = \{ \pi \} . Then a subgroup A of G is \Pi -permutable in G provided
G has a Hall \pi -subgroup H such that AHx = HxA for x \in G. It is clear also that G is \sigma \pi -soluble
if and only if it is \pi -separable.

Note that in the case when \pi = \{ 2, 3\} and G = A5 is the alternating group of degree 5, every
subgroup A of G with 5 \in \pi (A) is \Pi -permutable in G, and in this case every subgroup A of G

with 1 < A < G is not \sigma \pi -permutable in G.

(iii) G is \Pi -soluble if and only if it is \sigma \ast -soluble, where \sigma \ast = \Pi \cup \{ \pi \prime \} and \pi = \pi (\Pi ).

Our first observation is the following theorem.

Theorem A. Let \pi = \pi (\Pi ) and G = AB, where A and B are \scrH G-permutable subgroups of
G for some complete Hall \Pi -set \scrH of G. If A and B are \pi -separable (respectively, \Pi -soluble,
(strongly) \Pi -closed), then G is also \pi -separable (respectively, \Pi -soluble, (strongly) \Pi -closed).

Corollary 1.1. The group G is \pi -separable if and only if G possesses a Hall \pi -subgroup (a Hall
\pi \prime -subgroup) H and G = AB for some \pi -separable subgroups A and B which permute with all
conjugates of H.

Proof. Sufficiency. We can assume without loss of generality that H is a Hall \pi -subgroup
of G. Then A and B are \scrH G-permutable, where \scrH = \{ H\} is a complete Hall \Pi -set of G and
\Pi = \{ \pi \} \subseteq \{ \pi , \pi \prime \} = \sigma \pi (see Example 1.1 (ii)), so G is \pi -separable by Theorem A.

Necessity. We can take A = 1 and B = G and use the well-known properties of the Hall
subgroups of \pi -separable groups [7] (VI, Hauptsatz 1.7).

In the case when \sigma = \sigma 1 we get from Theorem A also the following results.

Corollary 1.2 (see Theorem 1 in [8] or Theorem 1 in [9]). Let A and B be \pi -permutable sub-
groups of G and G = AB. If A and B are \pi -separable, then G is also \pi -separable.

Corollary 1.3 (see Theorem 1 in [10]). Let A and B be \pi -permutable subgroups of G and G =

= AB. If A and B are \pi -soluble, then G is also \pi -soluble.
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Corollary 1.4. Let G = AB, where A and B are \pi -permutable in G. If the groups A and
B possess normal nilpotent Hall \pi -subgroups, then G also possesses a normal nilpotent Hall \pi -
subgroup.

Corollary 1.5. Let G = AB, where A and B are p\prime -permutable subgroups of G, that is, A and
B permute with all Sylow q-subgroups of G for primes q \not = p. If A and B are p-nilpotent, then G

is also p-nilpotent.

Now fix some ordering \phi on \BbbP . The record p\phi q means that p precedes q in \phi and p \not = q. The
group G of order p\alpha 1

1 p\alpha 2
2 . . . p\alpha n

n is called \phi -dispersive whenever p1\phi p2\phi . . . \phi pn and for every i

there is a normal subgroup of G of order p\alpha 1
1 p\alpha 2

2 . . . p\alpha i
i .

Corollary 1.6. Let \pi (G) = \{ p1, , . . . , pn\} , where p1\phi p2\phi . . . \phi pn, and let p = pn. Suppose also
that G = AB, where A and B are p\prime -permutable subgroups of G. If A and B are \phi -dispersive,
then G is also \phi -dispersive.

Corollary 1.7 (see Theorem 3.2 in [11], Ch. 4). Let G = AB, where A and B are normal sub-
groups of G. If A and B are \phi -dispersive, then G is also \phi -dispersive.

Example 1.2. Let p, q be primes, where q divides p - 1, and let P be a group of order p and Q

a non-Abelian group of order q3 of exponent q. Finally, let V \not = W be maximal subgroups of Q and
G = P \wr Q = K \rtimes Q, where K is the base group of the regular wreath product G. Then G = AB,

where A = KV and B = KW are supersoluble normal subgroups of G with A\prime , B\prime \leq K and
K = F (G) = Op\prime ,p(G) = Op(G). Hence, G\prime is not p-nilpotent, so G is not p-supersoluble.

Example 1.2 shows that we can not obtain an analogue of Corollary 1.5 for the groups G = AB

with p-nilpotent derived subgroups A\prime and B\prime . Nevertheless, we prove the following theorem.

Theorem B. Let G = AB, where A and B are p\prime -permutable subgroups of G with p-nilpotent
derived subgroups A\prime and B\prime . If G/Op\prime ,p(G) is nilpotent and (| G : A| , | G : B| ) = 1, then G\prime is
p-nilpotent.

Since the product of any two meta-nilpotent normal subgroups is clearly meta-nilpotent, we get
from Theorem B the following known result.

Corollary 1.8 (see Theorem 3.5 in [11], Ch. 4). Let G = AB, where A and B are normal sub-
groups of G with nilpotent derived subgroups A\prime and B\prime . If (| G : A| , | G : B| ) = 1, then G\prime is
nilpotent.

It is well-known (see also Example 1.2) that the product G = AB of two normal supersoluble
subgroups A and B of G need not be supersoluble. Nevertheless, such a product is supersoluble if
either the derived subgroup G\prime is nilpotent or (| G : A| , | G : B| ) = 1. Using Theorem B we prove
the following result which allows us to get the local versions of these two results.

Theorem C. Let G = AB, where A and B are p\prime -permutable p-supersoluble subgroups of
G. If either G\prime is p-nilpotent or (| G : A| , | G : B| ) = 1 and G/Op\prime ,p(G) is nilpotent, then G is
p-supersoluble.

Corollary 1.9 (see [12] or [11], Ch. 4, Theorem 3.4). Let G = AB, where A and B are super-
soluble normal subgroups of G. If (| G : A| , | G : B| ) = 1, then G is supersoluble.
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Corollary 1.10 (R. Baer [11], Theorem 1.13). Let G = AB, where A and B are supersoluble
normal subgroups of G. If G\prime is nilpotent, then G is supersoluble.

2. Basic lemmas.

Lemma 2.1. Suppose that G has a complete Hall \Pi -set \scrH = \{ H1, . . . ,Ht\} such that the
subgroups A \leq E and B of G are \scrH G-permutable. Let R be a normal subgroup of G. Then:

(1) \scrH 0 = \{ H1R/R, . . . ,HtR/R\} is a complete Hall \Pi -set of G/R and AR/R is (\scrH 0)G/R-
permutable;

(2) \scrH 0 = \{ H1 \cap E, . . . ,Ht \cap E\} is a complete Hall \Pi -set of E and A is \scrH 0
E -permutable;

(3) if BE = EB, then B \cap E is \scrH 0
E -permutable.

Proof. Without loss of generality we can assume that Hi is a \sigma i-group for i = 1, . . . , t.

(1) \scrH 0 is a complete Hall \Pi -set of G/R such that

(AR/R)(HiR/R)xR = AHx
i R/R = Hx

i AR/R = (HiR/R)xR(AR/R)

for xR \in G/R and i = 1, . . . , t, that is, AR/R is (\scrH 0)G/R-permutable.

(2) Since EHi = HiE is a subgroup of G and Hi is a Hall \sigma i-subgroup of G, | EHi : Hi| =
= | E : E \cap Hi| is a \sigma \prime 

i-number. Hence E \cap Hi is a Hall \sigma i-subgroup of E for i = 1, . . . , t, so \scrH 0

is a complete Hall \Pi -set of E. Now, for any x \in E, we have AHx
i = Hx

i A, which implies that

E \cap AHx
i = A(E \cap Hx

i ) = A(E \cap Hi)
x = (E \cap Hi)

xA,

that is, A is \scrH 0
E -permutable.

(3) In view of part (2), we obtain only to show that for any i and for x \in E the following
holds: E \cap Hx

i B = (E \cap Hx
i )(E \cap B) = (E \cap Hi)

x(E \cap B) = (E \cap B)(E \cap Hi)
x. But first we

show that D = (D \cap Hx
i )(D \cap B), where D = E \cap Hx

i B. Note that DHx
i = EHx

i \cap Hx
i B is

a subgroup of G, so DHx
i = Hx

i D and, hence, D \cap Hx
i is a Hall \sigma i-subgroup of D. Similarly,

DB = BD is a subgroup of G. On the other hand, | Hx
i B : B| = | Hx

i : Hx
i \cap B| is a \sigma i-number and

so | BD : B| = | D : D \cap B| is a \sigma i-number since BD \leq Hx
i B. But then D = (D \cap Hx

i )(D \cap B).

Finally, we have

E \cap Hx
i B = D = (D \cap Hx

i )(D \cap B) = (E \cap Hx
i B \cap Hx

i )(E \cap Hx
i B \cap B) = (E \cap Hx

i )(E \cap B).

The lemma is proved.

In fact, the following lemma can be proved by the direct calculations.

Lemma 2.2. Let A, B and H be subgroups of G. If HA = AH and HB = BH, then
H\langle A,B\rangle = \langle A,B\rangle H.

We say that an \scrH G-permutable subgroup A of G is a maximal \scrH G-permutable subgroup of G

if A < G and for every \scrH G-permutable subgroup B of G with A \leq B < G we have A = B.

Lemma 2.3. Let \scrH = \{ H1, . . . ,Ht\} be a complete Hall \Pi -set of G and A a maximal \scrH G-
permutable subgroup of G. Then one of the following statements is true:

(1) A is normal in G;

(2) HG
i \leq A for i = 1, . . . , t;

(3) there exists i such that G = AHi and HG
j \leq A for j \not = i.
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Proof. Assume that A is not normal in G, and, for some i, we get HG
i \nleq A. Then A < AHG

i

and AHG
i is \scrH G-permutable, so G = AHG

i by the maximality of A. It follows that, for some
x \in G and y \in Hx

i , we have y \not \in NG(A). Then Ay is \scrH G-permutable and A < \langle A,Ay\rangle . Moreover,
\langle A,Ay\rangle is also \scrH G-permutable by Lemma 2.2 and, hence, \langle A,Ay\rangle = G. But Ay \leq AHx

i and so
G = AHx

i = AHi, which implies that, for every z \in G and for every j \not = i, we obtain Hz
j \leq A,

that is, HG
j \leq A.

The lemma is proved.
Recall that O\Pi (G) [1] denotes the product of all normal \Pi -subgroups of G.

Lemma 2.4. Let N, R \leq H be normal subgroups of G. Then:
(1) all quotients and all subgroups of a (strongly) \Pi -closed group are (strongly) \Pi -closed;
(2) if G/N and G/R are (strongly) \Pi -closed, then G/(N \cap R) is (strongly) \Pi -closed;
(3) if R \leq \Phi (G) and H/R is (strongly) \Pi -closed, then H is (strongly) \Pi -closed.
Proof. (1) This assertion directly follows from properties of Hall subgroups.
(2) Let A and B be any two (strongly) \Pi -closed groups. Then O\Pi (A) is a Hall \pi (\Pi )-subgroup

of A and O\Pi (B) is a Hall \pi (\Pi )-subgroup of B. Hence, O\Pi (A\times B) = O\Pi (A)\times O\Pi (B) is a Hall
\pi (\Pi )-subgroup of A \times B, so A \times B is (strongly) \Pi -closed. Finally, G/(N \cap R) is isomorphic to
some subgroup of (G/N)\times (G/R) by [7] (Ch. I, Hilfssatz 9.6), so we have (2).

(3) It is enough to prove that if H/R has a normal Hall \sigma i-group V/R for some \sigma i \in \Pi , then
H also has a normal Hall \sigma i-subgroup.

First note that V is normal in G since V/R is characteristic in H/R. Let D = O\sigma i
\prime (V ). Then,

since R \leq \Phi (G), D is a Hall \sigma i\prime -subgroup of V. Hence, by the Schur – Zassenhaus theorem, V has
a Hall \sigma i-subgroup, say E. It is clear that V is \sigma \prime 

i-soluble, so any two Hall \sigma i-subgroups of V are
conjugated in V. Therefore, by the Frattini argument we have G = V NG(E) = (RE)NG(E) =

= NG(E). Thus, E is a normal Hall \sigma i-subgroup of H.

The lemma is proved.
Lemma 2.5. (1) If G/\Phi (G) is p-supersoluble, then G is p-supersoluble (see [7], IV, Satz 8.6).
(2) Let N and R be distinct minimal normal subgroups of G. If G/N and G/R are p-

supersoluble, then G is p-supersoluble.
(3) Let A = G/Op\prime (G). Then G is p-supersoluble if and only if A/Op(A) is an Abelian group

of exponent dividing p  - 1, p is the largest prime dividing | A| and F (A) = Op(A) is a normal
Sylow subgroup of A.

Proof. (2) This follows from the G-isomorphism NR/N \simeq R.

(3) Since G is p-supersoluble if and only if G/Op\prime (G) is p-supersoluble, we may assume without
loss of generality that Op\prime (G) = 1.

First assume that G is p-supersoluble. In this case G/CG(H/K) is an Abelian group of exponent
dividing p - 1 for any chief factor H/K of G with | H/K| = p. On the other hand,

Op\prime ,p(G) = Op(G) =
\bigcap \Bigl\{ 

CG(H/K) | H/K is a chief factor of G with | H/K| = p
\Bigr\} 

by [11] (Appendixes, Theorem 3.2). Hence G/Op(G) is an Abelian group of exponent dividing
p - 1. Thus, p is the largest prime dividing | G| and F (G) = Op(G) is a normal Sylow p-subgroup
of G.

Finally, if G/Op(G) is an Abelian group of exponent dividing p  - 1, then every chief factor
H/K of G below Op(G) is cyclic by [11] (Ch. 1, Theorem 1.4). Hence, G is supersoluble.

The lemma is proved.
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3. Proofs of the results.

Proposition 3.1. If A is a \Pi -permutable subgroup of G, then O\Pi (A) \leq O\Pi (G).

Proof. Assume that this proposition is false and G be a counterexample with | G| + | G : A| 
minimal. Then O\Pi (A) \not = 1 and A is not normal in G. Moreover, \Pi \cap \sigma (G) \not = \varnothing . Let \scrH =

= \{ H1, . . . ,Ht\} be a complete Hall \Pi -set of G such that A is \scrH G-permutable. We can assume
without loss of generality that Hi is a \sigma i-group of G for i = 1, . . . , t.

Let R be a minimal normal subgroup of G. Then the hypothesis holds for (G/R,RA/R) by
Lemma 2.1(1), so the choice of G implies that O\Pi (A)R/R \leq O\Pi (G/R). If R \leq O\Pi (G), then
O\Pi (G)/R = O\Pi (G/R) and so O\Pi (A) \leq O\Pi (G). Therefore, O\Pi (G) = 1.

Now let E be a maximal \scrH G-permutable subgroup of G containing A. Then A is \Pi -permutable
in E by Lemma 2.1(2), so O\Pi (A) \leq O\Pi (E) by the choice of G. On the other hand, in the case
when A < E we have O\Pi (E) \leq O\Pi (G) by the choice of | G| + | G : A| , which implies that
O\Pi (A) \leq O\Pi (G). Hence, A = E.

If D := HG
1 . . . HG

t \leq A, then O\Pi (A) \leq O\Pi (D) \leq O\Pi (G) = 1 since O\Pi (D) is characteristic
in D and so normal in G. Finally, assume that D \nleq A. Then, by Lemma 2.3, there exists i such that
V := HG

1 . . . HG
i - 1H

G
i+1 . . . H

G
t \leq A and G = AHi. Hence, O\Pi (A) \cap V \leq O\Pi (V ) \leq O\Pi (G) = 1,

so O\Pi (A) = O\sigma i(A). Then O\sigma i(A) \leq Hx
i for x \in G, so O\sigma i(A) \leq (Hi)G \leq O\Pi (G) = 1.

Therefore, O\Pi (A) = 1, a contradiction.

The proposition is proved.

Corollary 3.1. Let G = AB, where A and B are \scrH G-permutable subgroups of G for some
complete Hall \Pi -set \scrH of G. If A and B are \Pi -closed, then G is also \Pi -closed.

Proof. By Proposition 3.1, O\Pi (A) \leq O\Pi (G), where O\Pi (A) is a Hall \pi (\Pi )-subgroup of A by
hypothesis. Then A/O\Pi (A) = A/(A \cap O\Pi (G)) is a \Pi \prime -group. Similarly, B/O\Pi (B) = B/(B \cap 
\cap O\Pi (G)) is a \Pi \prime -group. Hence, G/O\Pi (G) = (AO\Pi (G)/O\Pi (G))(O\Pi (G)B/O\Pi (G)) is a \Pi \prime -group.

The corollary is proved.

Proof of Theorem A. In view of Corollary 3.1, it is enough to show that if A and B are \pi -
separable (respectively, \Pi -soluble, strongly \Pi -closed), then G is also \pi -separable (respectively, \Pi -
soluble, strongly \Pi -closed). Assume that this is false and let G be a counterexample with | G| + | G :
A| + | G : B| minimal. Then A \not = 1 \not = B and \Pi \cap \sigma (G) \not = \varnothing . Let \scrH = \{ H1, . . . ,Ht\} . We can
assume without loss of generality that Hi is a \sigma i-group of G for i = 1, . . . , t. Let R be a minimal
normal subgroup.

(1) A and B are maximal \scrH G-permutable subgroups of G.

It is clear that A < G, so, for some maximal \scrH G-permutable subgroup E of G, we have A \leq E.

Since G = AB, we get E = A(B \cap E), where B \cap E is \pi -separable (respectively, \Pi -soluble,
strongly \Pi -closed (see Lemma 2.4 (1))). Moreover, \scrH 0 = \{ H1 \cap E, . . . ,Ht \cap E\} is a complete Hall
\Pi -set of E and the subgroups A and B \cap E are \scrH E

0 -permutable by Lemma 2.1 (2), (3). Therefore,
the hypothesis holds for (E,A,B \cap E). Note also that | E : B \cap E| = | A : A \cap B \cap E| = | A :
A \cap B| = | G : B| and so | E| + | E : A| + | E : B \cap E| < | G| + | G : A| + | G : B| , which implies
that E is \pi -separable (respectively, \Pi -soluble, strongly \Pi -closed). Therefore, if A < E, then
the choice of (G,A,B) implies that G is \pi -separable (respectively, \Pi -soluble, strongly \Pi -closed),
a contradiction. Hence, A = E is a maximal \scrH G-permutable subgroup of G. Similarly, B is a
maximal \scrH G-permutable subgroup of G.
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(2) G/R is \pi -separable (respectively, \Pi -soluble, strongly \Pi -closed). Therefore, R is the unique
minimal normal subgroup of G and R \nleq \Phi (G) (this follows from Lemmas 2.1(1), 2.4 and the choice
of G).

(3) G is \pi -separable (respectively, \Pi -soluble).
Assume that this is false. Then O\Pi (G) = 1 = O\Pi \prime (G) (respectively, O\Pi \prime (G) = 1 = O\sigma i(G) for

\sigma i \in \Pi ) by Claim (2), so AG = 1 = BG. Therefore from Lemma 2.3 and Claim (1) it follows that
t = 1 and G = AH1 = BH1. In this case we get also that O\Pi (G) = O\sigma 1(G) = 1. On the other hand,
we have O\Pi (A) \leq O\Pi (G) by Proposition 3.1. Therefore O\Pi (A) = O\sigma 1(A) = 1 and so we have
W := O\sigma \prime 

1
(A) \not = 1 since A \not = 1 is \pi -separable, where \pi = \pi (\Pi ). From G = AH1 = BH1 it follows

that | G : B| = | A : B\cap A| is a \sigma 1-number and hence 1 < W \leq B\cap A, so WG = WAB = WB \leq B.

Therefore, BG \not = 1. This contradiction completes the proof of (3).
Now assume that A and B are strongly \Pi -closed.
(4) G is strongly \Pi -closed.
Assume that this is false. First note that by Corollary 3.1, G is \Pi -closed, that is, O\Pi (G) is a Hall

\pi -subgroup of G. Moreover, O\Pi (G) \not = 1 since \Pi \cap \sigma (G) \not = \varnothing . On the other hand, G is \Pi -soluble by
Claim (3) since every strongly \Pi -closed group is \Pi -soluble. Therefore O\Pi (G) is \sigma -soluble. Hence
R is a \sigma i-group for some \sigma i \in \Pi and O\sigma j (G) = 1 for j \not = i by Claim (2). Hence O\sigma j (A) = 1

for every \sigma j \in \Pi \setminus \sigma i by Proposition 3.1, so O\Pi (A) = O\sigma i(A) is a Hall \pi -subgroup of A since
A is \Pi -closed by hypothesis. Similarly, O\Pi (B) = O\sigma i(B) is a Hall \pi -subgroup of B. Therefore,
O\Pi (G) = O\sigma i(G) is a Hall \pi -subgroup of G and so G is strongly \Pi -closed, a contradiction.

The theorem is proved.
Proof of Theorem B. Assume that this theorem is false and let G be a counterexample with

| G| + | G : A| + | G : B| minimal. Then A \not = 1 \not = B and p divides | G| . Let P be a Sylow p-subgroup
of G and Qi a Sylow qi-subgroup of G for i = 1, . . . , t, where \{ q1, . . . , qt\} = \pi (G) \setminus \{ p\} . Let R
be a minimal normal subgroup. Since G/Op\prime ,p(G) is nilpotent by hypothesis, G is p-soluble and so
R is either a p-group or a p\prime -group.

(1) A and B are maximal p\prime -permutable subgroups of G.
It is clear that A < G, so, for some maximal p\prime -permutable subgroup E of G, we have A \leq 

\leq E. First we show that E\prime is p-nilpotent. Since E = A(B \cap E), where | E| + | E : A| + | E :
B \cap E| < | G| + | G : A| + | G : B| (see Claim (1) in the proof of Theorem A), it is enough to show
that the hypothesis holds for (E,A,B \cap E).

Let O = Op\prime ,p(G). Then O \cap E \leq Op\prime ,p(E) by Lemma 2.4 (1) and OE/O \simeq E/(O \cap E)

is nilpotent since G/O is nilpotent by hypothesis. Therefore E/Op\prime ,p(E) is nilpotent. Similarly,
(B \cap E)\prime is p-nilpotent. It is clear also that (| E : A| , | E : B \cap E| ) = 1. Finally, the subgroups A and
B \cap E are p\prime -permutable (see Claim (1) in the proof of Theorem A). Hence, the hypothesis holds for
(E,A,B \cap E) and so the choice of (G,A,B) implies that E\prime is p-nilpotent.

If A < E, then | G| +| G : E| +| G : B| < | G| +| G : A| +| G : B| . On the other hand, the hypothesis
holds for (G,E,B), so the choice of (G,A,B) implies that G\prime is p-nilpotent, a contradiction. Hence,
A = E is a maximal p\prime -permutable subgroup of G. Similarly, it can be proved that B is a maximal
p\prime -permutable subgroup of G.

(2) The derived subgroup (G/R)\prime of G/R is p-nilpotent for every minimal normal subgroup R

of G.

Note that G/R = (AR/R)(BR/R), where AR/R and BR/R are p\prime -permutable in G/R by
Lemma 2.1(1). It is clear also that (| G/R : AR/R| , | G/R : BR/R| ) = 1. Also, by Lemma 2.4 (2),
we get Op\prime ,p(G)R/R \leq Op\prime ,p(G/R), so (G/R)/Op\prime ,p(G/R) is nilpotent. Finally, (AR/R)\prime =
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= A\prime R/R \simeq A\prime /(A\prime \cap R) and (BR/R)\prime \simeq B\prime /(B\prime \cap R) are p-nilpotent. Therefore, the hypothesis
holds for G/R, so we have (2) by the choice of G.

(3) R = CG(R) = Op(G) = Op\prime ,p(G) is the unique minimal normal subgroup of G. Hence
G/R is nilpotent.

Claim (2) implies that (G/R)\prime = G\prime R/R \simeq G\prime /(G\prime \cap R) is p-nilpotent. On the other hand, G\prime is
not p-nilpotent. Hence R \leq G\prime and G\prime /R is p-nilpotent. Moreover, R is not a p\prime -group, so R is a p-
group. Now note that if N \not = R is a minimal normal subgroup of G, then G\prime \simeq G\prime /(R\cap N) = G\prime /1

is p-nilpotent by Lemma 2.4 (2). Hence R is the unique minimal normal subgroup of G. Moreover,
R \nleq \Phi (G) by Lemma 2.4 (3). Therefore for some maximal subgroup M of G we have G = R\rtimes M

and MG = 1. But CG(R)\cap M is clearly normal in G and so R = CG(R) = Op(G) = Op\prime ,p(G) since
Op\prime ,p(G) \leq CG(R) by [11] (Appendixes, Theorem 3.2). Hence, G/R = G/Op\prime ,p(G) is nilpotent by
hypothesis.

(4) Op\prime (A) = 1 = Op\prime (B). Hence the subgroups A and B are p-closed (this follows from
Proposition 3.1 and Claim (3)).

(5) R \leq A \cap B. Hence A and B are normal in G.

Assume, for example, that R \nleq A. Then G = AR by the maximality of A, so QG
1 \leq A by

Lemma 2.1(2) since R is a p-group by Claim (3). But then R \leq QG
1 \leq A, again by Claim (3),

a contradiction. Hence R \leq A \cap B, so A and B are subnormal in G since G/R is nilpotent by
Claim (3). But then the maximality of A and B implies that A and B are normal in G.

The final contradiction. Since (| G : A| , | G : B| ) = 1, we have either P \leq A or P \leq B by
Claim (5). Then P = R is normal in G since A and B are normal p-closed subgroups of G by
Claims (4) and (5). Now for any i we obtain either Qi \leq A or Qi \leq B. It follows that QiR/R \simeq Qi

is Abelian by Claim (4). Hence every Sylow subgroup of the nilpotent group G/R is Abelian. Hence,
G/R is Abelian, so G\prime is nilpotent, a contradiction.

The theorem is proved.

Proof of Theorem C. Assume that this theorem is false and let G be a counterexample of
minimal order. Then p divides | G| . Let P be a Sylow p-subgroup of G.

By Lemma 2.5, A/Op\prime ,p(A) and B/Op\prime ,p(B) are Abelian groups of exponent dividing p  - 1.

Hence G\prime is p-nilpotent by Theorem B, so G is p-soluble.

Now let R be a minimal normal subgroup of G. The hypothesis holds for G/R by Lemma 2.1(1),
so the choice of G implies that G/R is p-supersoluble. It follows that R is not a p\prime -group and R

is the unique minimal normal subgroup of G with R \nleq \Phi (G). Hence Op\prime (G) = 1 and R =

= CG(R) = Op(G) = Op\prime ,p(G) (see the proof of Theorem B). Therefore, G\prime is a p-group since
Op\prime (G

\prime ) is characteristic in G\prime and so normal in G. But then P is normal in G. Hence P =

= R and so G/R is an Abelian irreducible automorphism group of R, which implies that G/R =

= (AR/R)(BR/R) is cyclic. Hence, for every Sylow q-subgroup Q of G, where q \not = p, we have
either QR/R \leq AR/R \simeq A/(A\cap R) = A/(A\cap P ) or QR/R \leq BR/R \simeq B/(B\cap R) = B/(B\cap P ).

From Proposition 3.1 it follows that Op\prime ,p(A) = Op(A) = A \cap P is a Sylow p-subgroup of A

and Op\prime ,p(B) = Op(B) = B\cap P is a Sylow p-subgroup of B. Therefore A/(A\cap P ) and B/(B\cap P )

are Abelian groups of exponent dividing p  - 1 by Lemma 2.5. Hence, for every Sylow q-subgroup
Q of G, where q \not = p, Q \simeq QR/R is a cyclic group of exponent dividing p - 1. But then G/R is a
cyclic group of exponent dividing p - 1 and so | R| = p [11] (Ch. 1, Theorem 1.4). Therefore G is
p-supersoluble, a contradiction.

The theorem is proved.
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