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CLASSES OF HARMONIC FUNCTIONS
DEFINED BY EXTENDED SALAGEAN OPERATOR *

KJIACH TAPMOHIYHUX ®YHKIIIN, SIKI BUSHAYEHI
POSHIUPEHUM OITEPATOPOM CAJIAJJ/KAHA
The object of the present paper is to investigate classes of harmonic functions defined by the extended Séldgean operator.

By using the extreme points theory we obtain coefficients estimates and distortion theorems for these classes of functions.
Some integral mean inequalities are also pointed out.

JloCi Ky OTECS KIIacH TapMOHIYHUX (YHKIIIH, SIKi BU3HA4YCHI po3MIMpeHuM oreparopoM CanapkaHa. 3a TOMOMOTOK TEOpii
EKCTpEeMaTbHUX TOUOK OTPHUMAHO OLIHKH A1 KoedilieHTiB Ta TeopeMu aedopmartii st kiacis GyHkuiil. Takox HaBeneHO
JiesiKi HEepIBHOCTI JUIS iIHTErpabHUX CEepesHiX.

1. Introduction. A complex-valued harmonic mapping f in the open unit disk U := U(1), where
U(r) :={z € C: |z| <}, has a canonical decomposition

f=h+3, (M

where h and ¢ are analytic functions in U. We call i the analytic part and g the coanalytic part of
f, respectively. Throughout this paper, we will discuss harmonic mappings that are sense-preserving
in U. By a theorem of Lewy [16], necessary and sufficient condition for f to be locally univalent
and sense-preserving in U is

|1 (2)| > |4 (2)

Let H denote the class of sense-preserving harmonic functions in the unit disc U. Any function

, zel. (2

f € H can be written in the form
f(z) = Z anz" + Z bpz", zeU. 3)
n=0 n=1

Let Ny := {l,l+1,...}, N:= Ny, k£ € Ny. We denote by Sy, (k) the class of function f € H of
the form

oo

f(z):z—l—Z(anz”—i—W), zel, @)

n=k
which are univalent in U.
We say that a function f € Sy (k) is harmonic starlike in U(r) if gt(argf (re)) > 0,
0 <t < 2m, ie., f maps the circle 9U(r) onto a closed curve that is starlike with respect to the
origin. It is easy to verify, that the condition (5) is equivalent to the following:
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34 J. DZIOK

>0, |z]=mr,

where

Dy f(2) =20 (2) — 29/ (2), 2€U.
For \,7 € C, |7| =1 and f = h+g € H of the form (1), we consider the linear operator J;}L’T :
‘H — H defined by

o o0
J;}[Tf(z) =z 4+ ananz" + TZnAbnE", zcU.
n=2 n=2

For the analytic definition of the above case, see Sdldgean operator [20]. The operator JQ’T for
A=neN, 7= (—1)" was investigated in [17] (see also [5, 9, 11, 22]).

We say that a function f € H is subordinate to a function F' € H, and write f(z) < F(z)
(or simply f < F') if there exists a complex-valued function w which maps U into oneself with
w(0) = 0 such that f(z) = F(w(z)), z € U.

Let A, B be complex parameters, A # B. We denote by S%’T(k:; A, B) the class of functions
f € Sy (k) such that

IR (z) 14+ Az
JAT =7 + Bz’
H f(z)

)

Also, by R;\f(k:; A, B) we denote the class of functions f € Sy (k) such that

A6 PRERC
z 14+ Bz’

In particular, if we put A =n € Ny, 7 = (—1)", then we obtain the classes
Sp(k; A, B) == SiUV" (k; A, B), Ry,(k; A, B) := R,V (k; A, B)

studied in [8]. The classes Sy (k;A,B) = S%(k:; A,B), Ky(k;A,B) = S}_[(k:; A, B) and
Ru(k; A,B) := Rj,(k; A, B) are defined in [5] (see also) with restrictions —B < A < B < 1,
k=2.

In this paper, we obtain some necessary and sufficient conditions for defined classes of functions.
Some topological properties and extreme points of the classes are also considered. By using extreme
points theory we obtain coefficients estimates, distortion theorems, integral mean inequalities for
these classes of functions.

2. Dual sets. For functions fi, fo € H of the form

fi) =2+ an2"+ ) bz, z€D, 1eN, (6)
n==k n==k

we define the Hadamard product or convolution of f; and fo by

o0

(frefa)(z) =) <a1,ka2,k2’k + bl,ka,kzk) , 2€l.

k=0
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Let V C H, Uy := U~ {0} . Motivated by Ruscheweyh [19] we define the dual set of V by

V* = {fGSH(k): N (fxq) () #0, ZGUQ}.

qey

The object of the section is to show that the defined classes of functions can be presented as dual
sets.
Theorem 1.

Sy U A, B) = {1y (we) + 16 =1},

where

ve(2) ::z(B_A)(ij;FAE)Z _z2+(A+(Bl)_§Z_)2(1+A§)Z’ Lel. ™

Proof. Let f € H. Then f € H*(A, B) if and only if and the condition (5) holds or equivalently

I ) 14+ AC N

Now for J;Ylh(z) = J}h(z) x 2/ (1 — 2)? and Jh(z) = Jyh(2) * z/(1 — z), the above inequality
(8) yields

(14 BC) J3 T f(2) — (14 AQ) Jn f(2) =

= (1+ BC) J3, ™ h(z) — (1 + AQ) Jah(2)—
— (=DM BO () + (14 AQ) T2 =

_Ji\lh(@*((l—i-BC)z (1+AC)z>_

(1-2)? 1—2

(DM g (o) ((1+BC)Z n (1 +AC)Z>

(1—7%)? 1-%
= J5f(2) * ¢ (2:¢) #0.

Let f € Sy (k) be of the form (1). Then f € S;\{’T(k:;A,B) if and only if it satisfies (5) or
equivalently

IV T R(z) 1+ A
#* , z2¢€Uy, |&=1. ©
Ry T rese 0 K
Since
TN = Ty Th(z) x ———5, JNTh(z) = JyTh(z) * ——,
(1—=2) 1-=2
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36 J. DZIOK
the above inequality yields
0% (14 BE) Jy ™ 7Tf (2) — (1+ A& ) f (2) =

= (1+ BE) Jy T Th(2) — (1+ A€) Ty h(z)—

—7 [(L+ B I T glz) + (L4 A8) TTh(z)| =

- B¢) z Aé) z
— JNTh(z) % <(1(1+_f))2 _ (11_5) >_

— (1+B)z (1+AQ)z
_Tg(z)*< (1_2)2 4 - >
= f(2) % e (2), z€Up, €] =1.

Thus, f € Sy (k;A, B) if and only if f(z) * Jy ¢ (2) # 0 for z € Uy, €] = 1, ie,

AT AT . *
Sy (ks A, B) = { Ty (ve) 1 [€] = 1}
Similarly as Theorem 1 we prove the following theorem.

Theorem 2.
AT (.. _ I el =1V
Ry (ks A, B) = {17 (5e) « 1gl =1},
where
1+BE—(1+ A5 (11— 1+B
0e(2) ==z + B (144 Z)—FTZ +7§, zeU. (10)
1-=2 1-%
If weput A\ =0or A =1, 7 = (—1)" in Theorems 1 and 2 we obtain the following results
(see [5]).
Theorem 3.

where ¢ is defined by (7).

Theorem 4.
Kn(k; A, B) = {¢¢: [§] = 1}7,
where
gl m [ BAETCH AT Bz 2+ A4 BIEHB-NE
(1—-2) (1-%)
Theorem 5.
Ry (k; A, B) = {o¢ ¢ [¢] = 1},
where

2
21+B§—(1+A§)(1—z) _51+B§ o

be(2) = o T
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3. Correlated coefficients. Let us consider the function ¢ € H of the form
oo oo
p=u+1v, u(z)= Zunzn, v(z) = Zvnz”m, z e U. (11)
n=1

We say that a function f € H of the form (4) has coefficients correlated with the function ¢ if
Unp, = — |up||an|, vpbn = |vn| |bn], n € Np. (12)

In particular, if there exists a real number 7 such that

[e.9]

2177
<p(z) _ — einz T § : (ez(n—l)nzn + ez(n-i—l)nzn) . 2€l,

then we obtain functions with varying coefficients defined by Jahangiri and Silverman [12] (see also
[8]). Moreover, if we take

(e 9]

=> (z"+7"), z€l,

n=1

©(z) = 2Re .

—Z

then we obtain functions with negative coefficients introduced by Silverman [21]. These functions
were intensively investigated by many authors (see, for example, [4, 5, 8—10, 12, 14, 24]).

Let 7N (k,7n) denote the class of functions f € H with coefficients correlated with respect to
the function

2in—
_ AT z e’z inn—=1), A n in(n+1) )\n
o(z) = J3; (1—e’i77z+1—ei772) g e n'z +7’§2€ niz zeU. (13)
n

Moreover, let us define
837 (k,m; A, B) == TN (k,n) NSy (k; A, B), Ry (kym; A, B) := T (k,n) N Ry (k; A, B),
where 7, A, and B are real parameters with B > max{0, A}. Finally, let us assume
’n)“ > ‘1&( >1, neN. (14)

Theorem 6. If a function f € H of the form (4) satisfies the condition

o0

> (el |an| + |Bnl [ba]) < B — 4, (15)
n=~k
where
=0 " {n(1+B) —(1+A4)}, Bo=n {n(1+B)+(1+A)}, (16)

then f € S;_f(k;A, B).
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38 J. DZIOK

Proof. 1t is clear that the theorem is true for the function f(z) = z. Let f € H be a function of
the form (4) and let there exist n € Ny, such that a,, # 0 or b, # 0. By (14) we have

’an| ‘Bn‘
> >
A2 B_A:=™ n € Ny, 17)
Thus, by (15) we get
o
> (nlan] +nlba]) < 1 (18)
n=k
and
()] = 1g'(2)] =1 =) nlaal 2" =Y nlbal 2" 2 1= |2] Y (nlan| +nlba]) =
n==k n=~k n==k

B
L= nllan] + [Ballbn]) > 1 - , _
B_A;ﬂa llan| + Bl [bn]) 2| >0, €U

v

Therefore, by (2) the function f is locally univalent and sense-preserving in U. Moreover, if 21, 22 €
€ U, 21 # 29, then

20— 20
ol 1 Z<Z\zl|“ "t <n, neN.

21 — 22

Hence, by (18) we have

[f (z1) = f(z2)] = |h(21) = h(22)] =g (21) — g (22)] =

[e.9]
Zl—ZQ—Zan(Z?—Zg) -
n=~k

> n (21 — 25)| 2

oo
> |21 — 2| = Y lan] |2} — 2 \—Zlb |21 — 23]
n==k

21—25L>>

21 — 22

> z
= |z1 — 29 (1 — Z lan|
n=~k

- Z |bn|
n=k

o0 o0
> |21 — 2] (1 — > nlan| - ann|) > 0.
n==k

n=k

This leads to the univalence of f, i.e., f € Sy. Therefore, f € Sf}’T(k:; A, B) if and only if there
exists a complex-valued function w, w(0) = 0, |w(z)| < 1, z € U, such that

J%H’_T(z) 1+ Aw(z)

= , z€el,
J;_‘[Tf(z) 14 Bw(z)
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CLASSES OF HARMONIC FUNCTIONS DEFINED BY EXTENDED SALAGEAN OPERATOR 39

or equivalently

Dy (137 ) (2) = T £(2)
BDy (J371) (2) = A(JT [(2) (2)

<1, zel. (19)

Thus, it is suffice to prove that

Dw (1) () = I £2) <0, zeU\{0}.

- ‘BDH (Jﬁf f) (2) — AT f (2)

Indeed, letting |z| =7, 0 < r < 1, we have

D (F71) ) = B )| = | BDw (F71) (2) = AT 1 ()] =

oo o0 _
= Z(n —Dnta,z" — Z(n + 1)tnrb,z" | —
n=k n=k

(B—A)z+ Z (Bn — A)nta,2™ + Z (Bn + A) 70 b,z"
n=~k n=~k

< i(n -1) )n’\an
n=~k

<

" —(B—-A)r+

o0
r" + Z(n +1) ‘n’\bn
n=~k

r’ + Z(Bn + A) ’n)‘bn

n=~k

o
+ Z(Bn —A) ‘n’\an r" <
n==k

o
<r {Z (lon [an| + |Bn [bnl) "l — (B - A)} <0,
n=~k

whence f € S;;’T(k;A, B).

The next theorem, shows that the condition (15) is also the sufficient condition for a function
f € H of correlated coefficients to be in the class Sf}’T(k, n; A, B).

Theorem 7. Let f € TV (k,n) be a function of the form (4). Then f € S;’T(k, n; A, B) if and
only if the condition (15) holds true.

Proof. In view of Theorem 6 we need only show that each function f € S;’T(k, n; A, B) satisfies
the coefficient inequality (15). If f € S%’T(k:, n; A, B), then it is of the form (4) with (12) and it
satisfies (19) or equivalently

Zoo_k(n — Dntanz" — (n + 1)mn’ b, 7"
(B—A)z+ Zoo_k {(Bn — A)ynta,z" — (Bn + A)Tmnz"}

<1, zeDl.

Therefore, putting z = re”, 0 < r < 1, by (13) and (12) we obtain

o
S =1 [ lanl + (o D)ol

(B=4) =" {(Br—A)|n*|lan] + (Br+ 4) [0 [balr"}

<1 (20)
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40 J. DZIOK

It is clear that the denominator of the left-hand side cannot vanish for » € (0,1). Moreover, it is
positive for » = 0, and in consequence for r € (0,1). Thus, by (20) we have

o0

> (omllan] + |Ballbn]) "t < B—A, 0<r<1. (21)
n==k

The sequence of partial sums {S,,} associated with the series Zoo ) (lom] |an| + |Bnl |br]) is non-
n=

decreasing sequence. Moreover, by (21) it is bounded by B — A. Hence, the sequence {S,} is
convergent and

o0
Z (lanl lan| +18nl [bn]) = nh_?gosn <B-A,
n=~k

which yields the assertion (15).

The following result may be proved in much the same way as Theorem 7.

Theorem 8. Let f € TN (k,n) be a function of the form (4). Then f € R;‘-’T(k‘, n; A, B) if and
only if

- B-A
A
Zk\n | (lanl + lbu]) < T

By Theorems 7 and 8 we have the following corollary.
1+ A

1+ B

= E n zn , [ ,
9(2) Z+n_k(n—az +n+az> :

Corollary 1. Let a = and

w(z):z+Z((n—a)z”+(n+a)§”), zeU.

n=~k

Then
feRY (k,m; A, B) & fx ¢ €Sy (k,m; A, B),
F eS8y (kyn; A, B) & fxwe Ry (k,n; A, B).
In particular,
RET(k,m; —1, B) = 837 (k,m; —1, B).

4. Topological properties. We consider the usual topology on H defined by a metric in which
a sequence {f,} in H converges to f if and only if it converges to f uniformly on each compact
subset of U. It follows from the theorems of Weierstrass and Montel that this topological space is
complete.

Let F be a subclass of the class H. A functions f € F is called an extreme point of F if the
condition
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CLASSES OF HARMONIC FUNCTIONS DEFINED BY EXTENDED SALAGEAN OPERATOR 41

f=21+Q=")fa, fi,foeF, 0<y<I,

implies fi = fo = f. We shall use the notation EF to denote the set of all extreme points of F. It
is clear that EF C F.

We say that F is locally uniformly bounded if for each r, 0 < r < 1, there is a real constant
M = M(r) so that

f() <M, feF, |z
We say that a class F is convex if

Moreover, we define the closed convex hull of F as the intersection of all closed convex subsets of
‘H that contain F. We denote the closed convex hull of F by coF.
A real-valued functional 7 : H — R 1is called convex on a convex class F C H if

JOf+0=7)9) <vI(f)+1-1T(9), fgeF, 0<y<1L

The Krein—Milman theorem (see [15]) is fundamental in the theory of extreme points. In parti-
cular, it implies the following lemma.

Lemma 1[5, p. 45]. Let F be a nonempty compact convex subclass of the class H and [J :
H — R be a real-valued, continuous and convex functional on F. Then

max{J(f): f e F} =max{J(f): f € EF}.

Since H is a complete metric space, Montel’s theorem implies the following lemma.

Lemma 2. A class F C ‘H is compact if and only if F is closed and locally uniformly bounded.
Theorem 9. The class S;‘—’T(k, n; A, B) is convex and compact subset of H.

Proof. Let f1, fo € SZ}’T(k, n; A, B) be functions of the form (6), 0 <~ < 1. Since

Th(2) + (1 - —z+2{w1n — )azn) " + (b1 + (1= 7o) 2"}

and by Theorem 7 we have

o0
> Alanl vavn + (1 = 7azal + [Bal Ybrn + (1 =) ban2"[} <
=k

<VZ{|analn|+|Bnbln‘}+ 1_ Z{|O‘na2n|+|ﬁn

n=~k
<y(B-A)+(1-7)(B-A4)=B-A4,
the function ¢ = v f1 + (1 — 7) f2 belongs to the class S;‘-’T(k, n; A, B). Hence, the class is convex.

Furthermore, for f € S;’T(k:,n;A,B), |z| <7, 0 <r <1, we obtain

FI<r+ Y (anl + [bal) 7™ <7+ (lan] |an] + [Bal [ba]) <7+ (B - A).
n=~k n=k
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42 J. DZIOK

Thus, we conclude that the class S;’T(k,n;A,B) is locally uniformly bounded. By Lemma 2,
we only need to show that it is closed, i.e., if f; € S;‘JT(k,n;A,B), [ € N,and f; — f, then
fe S;’T(k, n; A, B). Let f; and f are given by (6) and (4), respectively. Using Theorem 7 we get

o0

> (|onain| + Babinl) <B—A, 1€N. (22)
n=~k
Since f; — f, we conclude that |a;,,| — |a,| and |b;,,| — |b,| as | — oo, n € N. The sequence of
partial sums {S,,} associated with the series Zoo i (|anan| 4 |Bnbn|) is nondecreasing sequence.
n—=
Moreover, by (22) it is bounded by B — A. Therefore, the sequence {S,,} is convergent and

o0

Eymwﬂ+mmnzgn&gB—A
n=~k

This gives the condition (15), and, in consequence, f € 8;‘-’7(14:, n; A, B), which completes the proof.
Theorem 10.

ESy" (k,m; A, B) = {hn:n € Np_1} U {g,: n € Ny},

where

B-A B-A _,
hk_l(z’) =2z, hn(z) =z — WZ s gn(Z) =z+ Wz 5 z e U. (23)

Proof. Suppose that 0 < v < 1 and
gn=7f1+ (1 =7)f,

where f1, fo € SS\JT(k:, n; A, B) are functions of the form (6). Then, by (15) we have |by | = |b2n| =
—A

= W, and, in consequence, aj; = az; = 0 for [ € Ny, and by ; = by; = 0 for I € N\ {n}.
n
It follows that g, = f1 = fo, and consequently g, € ES3(k,n; A, B). Similarly, we verify that the

functions h,, of the form (23) are the extreme points of the class Sé\—’T(k, n; A, B). Now, suppose that

a function f belongs to the set ESé\-’T(k, n; A, B) and f is not of the form (23). Then there exists
m € N, such that

B-A B—-A
0 < |am| < or 0< |by| < .
|ovm] |Brm]
If 0 < |ap| < ﬁ, then putting
m
|t G| 1
= - (f—~h
Y=g oA ¥ 1_,y(f Yhin) ,

we have that 0 < v < 1, h,, # ¢ and
f=7hm + (1 =)
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Thus, f ¢ ES)‘T(k n; A, B). Similarly, if 0 < |by,| < , then putting

\Bn!

_ ‘mem| _ 1 -

1

we have that 0 < v < 1, g, # ¢ and
f=79m+ (1 —=7)9.

It follows that f ¢ ES;‘—’T(k:, n; A, B), and the proof is completed.
5. Applications. It is clear that if the class

F={fn€eH:neN},

is locally uniformly bounded, then

[e.e] o0
coF = {Z'ynfn: Zvnzl, Yn > 0, nGN}.
n=1 n=1

Thus, by Theorem 7 we have the following corollary.

Corollary 2.
837 (k.m; A, B) = { > (mhn+6ngn) © D (Yn+0n) =1 (6p—1 = 0,7n, 6n > 0)} ;
n=k—1 n=k—1

where h,,, g, are defined by (23).
For each fixed value of m,n € N, z € U, the following real-valued functionals are continuous
and convex on H:

J(f) =lanl, T(f)=bul, T)=1f(2)] T(f) =Duf(z)], [feH.
Moreover, for v > 1, 0 < r < 1, the real-valued functional

o 1/
;ﬂ/’f(rew)’vcw , f[€eH,
0

is also continuous and convex on H.
Therefore, by Lemma 1 and Theorem 7 we have the following corollaries.

Corollary 3. Let [ € Sf}’T(k, n; A, B) be a function of the form (4). Then

B-A . _ B4
’ 1Bl

where ,, Bn, are defined by (16). The result is sharp. The functions hy,, gy of the form (23) are the
extremal functions.

n € N,
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Corollary 4. Let f € S;’T(k,n;A, B), |z| =7 < 1. Then

S IO Y Rt ‘
TN k—1+kB—4) SYEIETT RN G -1+ kB-A)
k(B — A) k(B — A) i

" <Dy f(2)] <7+

r —

K\ (k— 1+ kB — A) BN (k— 1+ kB — A)

The result is sharp. The function hy, of the form (23) is the extremal function.
Corollary 5. Let0<r <1, y>1.1If f € SF)}’T(k‘,n; A, B), then

2 27
1 o |7 1 i0 ’A
_ <
QW/‘f(re )‘ o < QW/’hk(re )| as,
0 0

21 21
1 1 1Y
~ D Tdo < — ‘D h “‘" 0
or [ 1Dt a8 < o [ | Duttre™ | o,
0 0

where hy, is the function defined by (23).
The following covering result follows from Corollary 4.
Corollary 6. If | € S;‘-’T(k:,n;A, B), then U(r) C f(U), where

B-A

—1- .
" KA (k— 1+ kB — A)

By using Corollary 1 and the results above we obtain corollaries listed below.
Corollary 7. The class R;‘-’T(k‘, n; A, B) is convex and compact subset of H. Moreover,

ER;‘.’T(k,n;A,B) ={hn:n €Np_1} U{gn: n € Ny}

and
R%\’T(k naAB { Z 'Ynhn'i‘(sngn . Z ’Yn"‘(s (5k—1:0,'7n75n20)}7
n=k—1 n=k—1
where

(B A)einn

(B_A>ei(n+1)n7n
(1+ B)n? =

7(1+ B)n? =

z e U.
(24)

hi_1(z) =2z, hp(z)=2— gn(2) =z +

Corollary 8. Let [ € R;‘—’T(k, n; A, B) be a function of the form (4). Then

< DA < B4 en

a"*<1+B>rnA\’ =B T
B—A B—A o

- e — = 1
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k(B—A) |, k(B—A) |,
_ Y k< < S S’ -
r (1—|—B)\k:’\\r *|DHf(Z)|*T+(1+B)\k/\]r’ |z| =r <1,
1 2w 1 2 N
/‘f(reie)‘7d9< /‘hk(rew)) e,
27 2
0 0
1 2m 1 27
ion |7 ‘ i0 )7
= < — .
QW/’DHf(re )( df < QW/ Dahi(re®)|” do
0 0

The results are sharp. The functions hy, g, of the form (24) are the extremal functions.
Corollary 9. Let us assume (14). If f € R)%T(k:, n; A, B), then U(r) C f(U), where

__B-4A
k(1+ B)

The class S;_‘[(T, n; A, B) generalize classes of starlike functions of complex order. The class
CS# (V) := Sy (p;1 —27,1) (v € C~ {0}) was defined by Yalgin and Oztiirk [23]. In particular,

200 — 1 + €™
ca-lter 1) studied by

if ty = .
if we put ~y T o

—_— a .
T o then we obtain the class RSy (a,n) := Sy <

Yalgin et al. [24]. It is the class of functions f € H such that

Re{(l—kem)D?égz)—em}>a, zeU, nekR

The classes Sy (k; A, B) and R}, (k; A, B) are related to harmonic starlike functions, harmonic
convex functions and harmonic Janowski functions.

The classes Sy(a) := 8%(2;2a — 1,1) and Ky () := S},(2;2c0 — 1,1) were investigated by
Jahangiri [10] (see also [2, 18]). They are the classes of starlike and convex functions of order
o, respectively. The classes Ny(a) := R3,(2;2c — 1,1) and Ry () := R3,(2;2a — 1,1) were
studied in [1] (see also [14]). Finally, the classes Sy := S(0) and Ky := Kx(0) are the classes of
functions which are starlike and convex in U(r), respectively, for all » € (0,1). We should notice
that the classes S(A, B) := Sy(A,B) N A and R(A, B) := Ry(A, B) N A were introduced by
Janowski [13].

Using obtained results to the classes defined above we can obtain new and also well-known
results (see, for example, [1-9, 10— 14, 18, 21 -24]).

Remark . The results obtained in classes of harmonic functions can be transfered to correspon-
ding classes of analytic functions.
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