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ЛОКАЛЬНО МАКСИМАЛЬНI АТРАКТОРИ
РОЗТЯГУЮЧИХ ДИНАМIЧНИХ СИСТЕМ

We study locally maximal attractors of expanding dynamical systems. Our main result is a representation of these attractors
with the help of topological Markov chains corresponding to the Markov partitions of these attractors, which allows to
describe the system dynamics on them.

Ya. G. Sinai was the first who constructed and used Markov partitions for Anosov’s diffeomorphisms [Funk. Anal.
Prilozh., 2, No 1, 64 – 89; No 3, 70 – 80 (1968); English translation: Funct. Anal. Appl., 2, No 1, 61 – 82; No 3, 245 –
253 (1968)]. Expanding endomorphisms regarded as the simplest representatives of endomorphisms, were first studied by
M. Shub [Amer. J. Math., 91, No 1, 175 – 200 (1969)]. To construct Markov partitions for expanding endomorphisms, we
modernize Sinai’s method in a corresponding way.

A more detailed historical overview can be found in the work by O. M. Sharkovsky [Ukr. Mat. Zh., 74, No. 12,
1709 – 1718 (2023); English translation: Ukr. Math. J., 74, No. 12, 1950 – 1960 (2023)]. There Sharkovsky indicated that
the methods used to prove the main results [Dokl. Akad. Nauk SSSR, 170, No. 6, 1276 – 1278 (1966); English translation:
Soviet Math. Dokl., 7, No. 5, 1384 – 1386 (1966)] were, in fact, published in the collection of papers “Dynamical systems
and the problems of stability of solutions of differential equations” (1973) issued by the Institute of Mathematics of the
Academy of Sciences of Ukraine. This collection is difficult to access and it was never translated into English. However,
in the cited paper these methods were applied to somewhat different objects. To the best of the authors’ knowledge, there
is no information about publications of similar results. Given the outlined history and importance of this approach (based
on the Markov partitions and topological Markov chains) for the description of attractors’ construction it seems reasonable
to rеpublish these results in a new way.

Вивчаються локально максимальнi атрактори розтягуючих динамiчних систем. Основним результатом роботи є
зображення таких атракторiв топологiчними ланцюгами Маркова, що вiдповiдають марковським розбиттям цих
атракторiв, яке дозволяє описати динамiку системи на них.

Уперше марковськi розбиття побудував Я. Г. Сiнай [Функц. анализ и его прил., 2, № 1, 64 – 89; № 3, 70 – 80
(1968); English translation: Funct. Anal. and Appl., 2, № 1, 61 – 82; № 3, 245 – 253 (1968)] для дифеоморфiзмiв Аносова.
Розтягуючi ендоморфiзми, як найпростiшi представники ендоморфiзмiв, уперше розглянув М. Шуб [Amer. J. Math.,
91, № 1, 175 – 200 (1969)]. При побудовi марковських розбиттiв для розтягуючих ендоморфiзмiв ми вiдповiдним
чином модернiзуємо метод Я. Г. Сiная.

Бiльш повна iсторiя є в статтi О. М. Шарковського [Укр. мат. журн., 74, № 12, 1709 – 1718 (2023); English
translation: Ukr. Math. J., 74, № 12, 1950 – 1960 (2023)]. О. М. Шарковський зазначає, що методи доведення основних
результатiв [Докл. АН СССР, 170, № 6, 1276 – 1278 (1966); English translation: Soviet Math. Dokl., 7, № 5, 1384 –
1386 (1966)] були фактично опублiкованi ще в 1973 роцi у важкодоступнiй збiрцi статей Iнституту математики
АН України „Динамические системы и вопросы устойчивости решений дифференциальных уравнений”, хоча i
в застосуваннi вже до дещо iнших об’єктiв, i нiколи не були перекладенi англiйською мовою. Авторам невiдомi
аналогiчнi результати такого роду. Враховуючи таку iсторiю та важливiсть пiдходу (на основi марковських розбиттiв
i топологiчних ланцюгiв Маркова), для опису побудови атракторiв доцiльно цi результати по-новому опублiкувати.

1. Динамiчнi системи на компактах. Розглянемо спочатку деякi властивостi динамiчних
систем на довiльному компактi X, якi породжуються неперервним вiдображенням f : X \rightarrow X.

Асимптотична поведiнка траєкторiї визначається так званою \omega -граничною множиною, або,
по-iншому, атрактором траєкторiї; атрактор будемо позначати A.

Термiн „атрактор траєкторiї” було запропоновано О. М. Шарковським у його книзi [7].
Основна властивiсть, яка характеризує динамiчну систему на атракторi, — це його динамiчна

зв’язнiсть, сутнiсть якої розкривається у наступних твердженнях.

1 Вiдповiдальний за листування, e-mail: milabon1012@gmail.com.
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Теорема 1.1 [7, 8]. Нехай A — атрактор траєкторiї. Вiдображення f : X \rightarrow X на A

має таку властивiсть: якщо U \subset A, U \not = A i U є вiдкритою в A, то замикання f(U) не
мiститься в U.

У цьому сенсi на будь-якому атракторi траєкторiї спостерiгається „вiдсутнiсть стискання”.
Ця властивiсть динамiчної зв’язностi є не тiльки необхiдною, а й достатньою (!!): якщо

на деякiй замкненiй множинi M \subset X задано вiдображення, яке має вищевказану властивiсть
„вiдсутностi стискання”, то завжди є можливiсть продовжити це вiдображення на замкнену
множину M \prime \supseteq M таким чином, що множина M буде атрактором для динамiчної системи на
M \prime . Дану властивiсть було доведено в [7, c. 42 – 44] та [8].

Розглянемо ряд наслiдкiв цiєї теореми.

Наслiдок 1.1. Якщо U \subset A i f(U) = U, то U не може бути одночасно вiдкритою та
замкненою в A.

Наслiдок 1.2. Якщо A скiнченна, то точки множини A утворюють цикл.

Справдi, якщо A є скiнченною i f(A) = A, то A мiстить хоча б один цикл (або нерухому
точку). Точки цього циклу утворюють вiдкрито-замкнену множину в A, i, як наслiдок, цей цикл
мiстить всi точки множини A.

Наслiдок 1.3. Якщо множина A є нескiнченною, то кожна точка циклу, який належить
A (якщо такий iснує), повинна бути граничною для точок множини A.

Це безпосередньо випливає з наслiдку 1.1. Якщо мова йде про точки циклу з перiодом n,

то потрiбно розглянути вiдображення fn.
Iснують i менш тривiальнi наслiдки теореми 1.1.

Наслiдок 1.4. Якщо A не є циклом, то будь-яка вiдкрита в A нульвимiрна множина (якщо
така iснує) мiстить хоча б одну точку, яка не належить жодному циклу.

Зауважимо, що у випадку, коли атрактор A мiстить вiдкриту в X пiдмножину, iснує точка
x\prime \in A, для якої Ax\prime = A, оскiльки за вказаних умов для будь-якої точки x має iснувати
номер ix такий, що f ix \in A для i > ix. Тому, якщо X є вiдрiзком прямої, наслiдок 1.4 можна
уточнити: якщо множина A на вiдрiзку вiдрiзняється вiд циклу, то на A мають бути скрiзь
щiльними точки, якi не належать циклам. (Справдi, якщо множина A є нiде не щiльною на
вiдрiзку, то це твердження випливає з наслiдку 1.4. Якщо ж A мiстить iнтервал, то iснує точка
x \in A, для якої Ax = A, i в цьому випадку точки f ix, i = 0, 1, 2, . . . , розташованi в A скрiзь
щiльно.)

Наслiдок 1.5. Якщо iснує точка x\prime \in A, для якої Ax\prime = A, i замкнена множина F \subset A є
такою, що fF = F, то для будь-якої вiдкритої в A множини U, U \cap F = \varnothing , має iснувати
точка x \in U, для якої f ix \in A \setminus U при i > 0.

Зазначимо, що за умови виконання припущень цього наслiдку на множинi A будуть скрiзь
щiльними точки x, для яких Ax \not = A.

Повне доведення теореми 1.1, а також бiльш повний набiр її наслiдкiв мiстяться у [7, 8].
2. Атрактори траєкторiй розтягуючих динамiчних систем на багатовидах. Розгляне-

мо так званi розтягуючi динамiчнi системи, для яких є можливiсть отримати низку цiкавих
результатiв саме внаслiдок умови розтягування.

Нехай M є компактним диференцiйовним багатовидом класу Cr, r \geq 1, а f : M \rightarrow M —
розтягуючим ендоморфiзмом, тобто вiдображенням класу C1, для якого при деяких c > 0 та
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\lambda > 1 у деякiй метрицi Рiмана на M виконується нерiвнiсть

\| Dfmv\| \geq c\lambda m\| v\| для всiх m > 0 i v \in TM,

де TM — дотичне розшарування багатовиду M (внаслiдок умови компактностi M визначення
розтягуючого ендоморфiзму не залежить вiд вибору рiманової метрики).

Серед усiх атракторiв траєкторiй можна вирiзнити максимальнi та локально максимальнi.
Атрактор \scrA називається максимальним, якщо не iснує атракторiв \~\scrA \supset \scrA (тобто бiльших за \scrA ),
i локально максимальним, якщо iснує окiл \scrA , в якому немає атракторiв \~\scrA \supset \scrA .

В системах iз складною динамiкою в якостi найпростiшого прикладу атрактора, який не
є анi максимальним, анi локально максимальним, можна розглянути гомоклiнiчну траєкторiю
разом iз циклом, до якого ця траєкторiя прямує.

Далi будемо розглядати такi об’єкти:
\scrA (f) = \{ A\} — множина всiх атракторiв f ; у цiй роботi в якостi атракторiв розглядаються

\omega -граничнi множини.
\scrA \prime (f) — множина локально максимальних атракторiв f, при цьому \scrA \prime (f) \subset \scrA (f).

Наступна теорема дає можливiсть отримати апроксимацiю будь-якого атрактора за допомо-
гою локально максимального.

Теорема 2.1. Нехай f : M \rightarrow M — розтягуючий ендоморфiзм. Тодi для будь-яких атрак-
тора A \in \scrA (f) та околу U \supset A знайдеться локально максимальний атрактор A\prime \in \scrA \prime (f)

такий, що U \supset A\prime \supset A.

Нехай G є орiєнтовним графом iз скiнченною множиною вершин \{ 1, 2, . . . , N\} i \bfP =

\bfP [G] = (pij) — його матриця сумiжностi: pij = 1, якщо є ребро, що прямує з вершини i

у вершину j, i pij = 0, якщо такого ребра не iснує. Послiдовнiсть i1, i2, . . . , in називається
шляхом графа G з i у j, якщо i1 = i i in = j. Нескiнченна послiдовнiсть i1, i2, . . . , in, . . .

називається нескiнченним шляхом графа G, якщо pikik+1
= 1 для k = 1, 2, . . . .

Нехай \scrW G є множиною всiх нескiнченних шляхiв графа G, а \scrW N — простором усiх не-
скiнченних послiдовностей \{ ik\} натуральних чисел з N, у якому визначено слабку топологiю.
Множина \scrW G є замкненою у \scrW N й iнварiантною щодо неперервного вiдображення зсуву, яке
переводить послiдовнiсть \{ ik\} у \{ i\prime k\} , де i\prime k = ik+1. Тому \scrW G можна розглядати як тополо-
гiчний простiр, у якому зсув, позначений як TG, буде неперервним вiдображенням. У цьому
випадку TG називається топологiчним ланцюгом Маркова iз скiнченною множиною станiв G
[9, 10].

Нехай (G1, g1) i (G2, g2) — динамiчнi системи, якi визначенi на топологiчних просторах
G1 i G2 вiдповiдно за допомогою g1 : G1 \rightarrow G1 i g2 : G2 \rightarrow G2. Простiр G2 називають
еквiварiантним образом G1, якщо iснує вiдображення \psi : G1 \rightarrow G2, для якого \psi g1 = g2\psi .

Наступна теорема надає iнформацiю про те, як влаштованi локально максимальний атрактор
i динамiчна система на такому атракторi.

Теорема 2.2. Нехай f : M \rightarrow M — розтягуючий ендоморфiзм. Тодi будь-який локально
максимальний атрактор f є еквiварiантним образом простору \scrW G деякого топологiчного
ланцюга Маркова зi скiнченною множиною станiв G.

Наслiдок 2.1. У будь-якому локально максимальному атракторi розтягуючого ендоморфiз-
му f : M \rightarrow M множина перiодичних точок є щiльною.

Наслiдок 2.2. У будь-якому локально максимальному атракторi розтягуючого ендоморфiз-
му f : M \rightarrow M iснує щiльна траєкторiя.
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Доведення теореми 2.1. Розглянемо метрику Ляпунова на M, тобто метрику, в якiй для
розтягуючого ендоморфiзму f : M \rightarrow M виконується нерiвнiсть

\| Dfv\| > \lambda \| v\| , v \in TM, \lambda > 1.

Можливiсть побудови ляпуновської метрики для розтягуючого ендоморфiзму f доводиться
аналогiчно тому, як це зроблено в [11] для дифеоморфiзмiв Аносова.

Оскiльки f є накриваючим вiдображенням [3], то для будь-якої точки x \in M знайдеться
опуклий вiдкритий окiл Ux \subset M такий, що його повний прообраз f - 1(Ux) складається з
l компонент зв’язностi, якi позначають \frakC i(f

 - 1(Ux)), i = 1, . . . , l. Якщо неважливо, про яку
компоненту йдеться, iндекс i вказувати не будемо. Вiдкрита множина \frakC (f - 1(Ux)) є дифеоморф-
ною околу Ux. Будь-яку вiдкриту множину U \subset \frakC (f - 1(Ux)) будемо називати околом, у якому
ендоморфiзм f є локальним дифеоморфiзмом.

Лема 2.1. Нехай U — окiл, у якому розтягуючий ендоморфiзм f : M \rightarrow M є локальним
дифеоморфiзмом, i S \subset U. Тодi diam f(S) \geq \lambda diamS, де diamS = supx,y\in S d(x, y).

Доведення. Нехай h1 : [0, 1] \rightarrow Ux1 \supset f(S) — шлях, що з’єднує f(x) i f(y) (тобто h1(0) =
f(x) i h1(1) = f(y)), де x, y \in S (припускаємо, що \frakC (f - 1(Ux1)) \supset U ), а також нехай h1 має
мiнiмальну довжину. Розглянемо шлях

h0 = f
\bigm| \bigm| \bigm| 
Ux1

 - 1
h1 : [0, 1] \rightarrow \frakC (f - 1(Ux1)).

Тодi h0(0) = x, h0(1) = y i для розтягуючого ендоморфiзму f маємо

d(f(x), f(y)) =

1\int 
0

\| h\prime 1(t)\| dt =
1\int 

0

\bigm\| \bigm\| \bigm\| Df \bigm| \bigm| \bigm| h\prime 
0(t)

\frakC (f - 1(Ux1 ))

\bigm\| \bigm\| \bigm\| dt \geq \lambda 

1\int 
0

\| h\prime 0(t)\| dt \geq \lambda d(x, y).

Тому diam f(S) = supx,y\in S d(f(x), f(y)) \geq \lambda supx,y\in S d(x, y) \geq \lambda diamS.

Лему доведено.
Лема 2.2. Iснує \delta > 0 таке, що для будь-якої точки x \in M куля U\delta (x) з центром у

точцi x i дiаметром \delta є опуклою множиною, а її повний прообраз f - 1(U\delta (x)) складається з
l компонент зв’язностi \frakC i(f

 - 1(U\delta (x))), i = 1, . . . , l.

Доведення. Нехай \delta (x) — максимальний дiаметр кулi U\delta (x)(x), для якої f - 1(U\delta (x)(x)) є
сумою l компонент зв’язностi \frakC (f - 1(U\delta (x)(x))), а кожна з компонент є дифеоморфною U\delta (x)(x).

Потрiбно довести неперервнiсть \delta (x). Вiзьмемо точку y \not = x таку, що y \in U\delta (x)(x) i d(x, y) = \varepsilon .

Вкладення U\delta (x)(x) \subset U\delta (y)(y) неможливе, тому що куля U\delta (x)(x) є максимальною. З iншого
боку, U\delta (y)(y) \supset U\gamma (y), де \gamma = \delta (x) - \varepsilon . Тому | \delta (x) - \delta (y)| < \varepsilon . Отже, функцiя \delta (x) неперервна.

Оскiльки \delta (x) > 0, за теоремою Веєрштрасса iснує \delta 1 > 0 таке, що \delta (x) \geq \delta 1 для всiх
x \in M. Далi, згiдно з [12], iснує \delta 2 > 0, для якого будь-яка куля U\delta \prime (x) з дiаметром \delta \prime \leq \delta 2
буде опуклою множиною на M. Щоб завершити доведення, можна вибрати \delta = min(\delta 1, \delta 2).

Зауваження 2.1. Внаслiдок лем 2.1 i 2.2 для будь-якого S \subset U\delta (x) iснує y \in M таке, що
\frakC (f - 1(S)) \subset U\delta (y). Аналогiчно, для будь-якого m > 1 маємо \frakC (f - m(S)) \subset U\delta (y). Тому за
лемою 2.1 для будь-якого m \geq 1 отримуємо оцiнку

diam\frakC (f - m(S)) \leq 1

\lambda m
diamS.
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Скiнченним розбиттям багатовиду M називається скiнченне покриття цього багатовиду
замкненими пiдмножинами \{ Xi\} , i = 1, 2, . . . , n, якщо

intXi \not = \varnothing для i = 1, 2, . . . , n

i
Xi\prime \cap Xi\prime \prime \subset \partial Xi\prime \cap \partial Xi\prime \prime для будь-яких i\prime \not = i\prime \prime , 1 \leq i\prime , i\prime \prime \leq n,

де \partial X = X \setminus intX — межа X.
Для багатовиду M з ендоморфiзмом f : M \rightarrow M скiнченне розбиття \scrX = \{ Xi\} , i =

1, 2, . . . , n, називається марковським, якщо iснує таке m > 0, що з умови fm(intXi)\cap intXj \not =
\varnothing випливає fm(Xi) \supset Xj .

Лема 2.3. Нехай f : M \rightarrow M — розтягуючий ендоморфiзм. Тодi для будь-якого \varepsilon > 0 iснує
марковське розбиття \scrX = \{ Xi\} , i = 1, 2, . . . , n, таке, що diamXi < \varepsilon для всiх i й об’єднання
меж множин з \scrX має мiру нуль2.

Доведення. Нехай \{ U\beta (xi)\} , i = 1, 2, . . . , k, — скiнченне покриття багатовиду M замкне-
ними кулями U\beta (xi) = \{ x | d(x, xi) \leq \beta \} , де \beta \leq \delta для \delta з леми 2.2.

Скiнченне розбиття \scrX \beta = \{ Xj
\beta \} , oтримується з покриття \{ U\beta (xi)\} , якщо в якостi множин

Xj
\beta розглянути всiлякi перетини\bigcap 

i\in \scrI j

U\beta (xi), де \scrI j \subset \{ 1, 2, . . . , k\} i int
\bigcap 
i\in \scrI j

U\beta (xi) \not = \varnothing ,

а також множини

U\beta (xj) \setminus 
\bigcup 
i \not =j

U\beta (xi), де int

\left(  U\beta (xj) \setminus 
\bigcup 
i \not =j

U\beta (xi)

\right)  \not = \varnothing .

Скiнченне розбиття \scrX 0 = \{ X0
i \} , i = 1, 2, . . . , n, iндукується розбиттям \scrX \beta i складається

з усiх компонент \frakC (f - m(Xj
\beta )) для прообразiв Xj

\beta щодо f - m. З урахуванням зауваження 1
отримуємо оцiнку

diamX0
i = \varepsilon \prime \leq \beta 

\lambda m
. (1)

Для \scrX 0 розтягуючий ендоморфiзм f : M \rightarrow M є локальним дифеоморфiзмом у кожнiй множинi
X0

i \in \scrX 0.

Скiнченне розбиття \scrX 1 = \{ X1
i \} .

Нехай m > 0 — достатньо велике (вибiр m буде вказано пiзнiше) i X0
i1

\in \scrX 0. Визначимо
X1

i1
як

X1
i1 = \frakC 

\left(  f - m

\left(  \bigcup 
k\in \scrK i1

X0
k

\right)  \right)  , де \frakC 

\left(  f - m

\left(  \bigcup 
k\in \scrK i1

X0
k

\right)  \right)  \bigcap X0
i1 \not = \varnothing 

i k \in \scrK i1 лише за умови fm(intX0
i1
)
\bigcap 

intX0
k \not = \varnothing . Обернене вiдображення у цьому випадку є

визначеним з урахуванням вибраного \scrX 0.

Перебудуємо розбиття \scrX 0 = \{ X0
i \} , щоб отримати нове розбиття \scrX 0

i1
= \{ \widetilde X0

i \} . Нехай

2Мiра, яка породжується рiмановою метрикою багатовиду M.
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U(X1
i1) =

\bigcup 
k\in \scrK 

X0
k ,

де k \in \scrK лише за умови intX0
j

\bigcap 
X1

i1
\not = \varnothing . Поза множиною U(X1

i1
) елементи розбиття \scrX 0

залишимо без змiн (тобто \widetilde X0
i = X0

i , якщо i \not \in \scrK ), а для iнших покладемо \widetilde X0
i1

= X1
i1

i\widetilde X0
i = X0

i \setminus X1
i1
. В результатi отримаємо розбиття \scrX 0

i1
= \{ \widetilde X0

i \} , де елемент \widetilde X0
i1
\in \scrX 0

i1
має таку

властивiсть:
якщо fm(int \widetilde X0

i1)
\bigcap 

intX0
j \not = \varnothing , то fm( \widetilde X0

i1) \supset X0
j .

Нехай \widetilde X0
i2
\in \scrX 0

i1
i \widetilde X0

i2
\not = X1

i1
= \widetilde X0

i1
. З розбиттям \scrX 0

i1
та елементом \widetilde X0

i2
\in \scrX 0

i1
будемо дiяти

за алгоритмом, який є аналогiчним описаному вище для розбиття \scrX 0 та елемента X0
i1

\in \scrX 0.

Отримаємо нове розбиття \scrX 0
i1i2

, до того ж елемент X1
i1

не буде перебудований, тому X1
i1
\in \scrX 0

i1i2
.

Справдi, припустимо, що intX1
i1

\bigcap 
int \widetilde X1

i2
\not = \varnothing , де \widetilde X1

i2
визначається аналогiчно X1

i1
:

\widetilde X1
i2 = \frakC 

\left(  f - m

\left(  \bigcup 
k\in \scrK i2

\widetilde X0
k

\right)  \right)  .
Тут \widetilde X0

k \in \scrX 0
i1

i k \in \scrK i2 лише за умови fm(int \widetilde X0
i2
)
\bigcap 
int \widetilde X0

k \not = \varnothing . Тодi iснує елемент \widetilde X0
i \in \scrX 0

i1
такий, що

fm(intX1
i1)
\bigcap 

int \widetilde X0
i \not = \varnothing i fm(int \widetilde X1

i2)
\bigcap 

int \widetilde X0
i \not = \varnothing ,

а це неможливо, оскiльки у такому випадку

fm(int \widetilde X0
i1)
\bigcap 

int \widetilde X0
i \not = \varnothing i fm(int \widetilde X0

i2)
\bigcap 

int \widetilde X0
i \not = \varnothing , (2)

що суперечить умовi \widetilde X0
i1
, \widetilde X0

i2
\in \scrX 0. (У зв’язнiй множинi \widetilde X0

i1

\bigcup \widetilde X0
i2

розтягуючий ендоморфiзм

f : M \rightarrow M є локальним дифеоморфiзмом, тому з (2) випливає, що int \widetilde X0
i1

\bigcap 
int \widetilde X0

i2
\not = \varnothing .)

Елемент \widetilde X1
i2

має таку властивiсть:

якщо fm(int \widetilde X1
i2)
\bigcap 

intX0
k \not = \varnothing , то fm( \widetilde X1

i2) \supset X0
k .

Якщо продовжити процедуру перебору елементiв, то за скiнченне число крокiв будуть
вичерпанi всi елементи вихiдного розбиття, i в результатi отримаємо розбиття

\scrX 1 = \scrX 0
i1i2...in = \{ X1

i \} , i = 1, 2, . . . , n,

елементи якого мають таку властивiсть по вiдношенню до елементiв X0
j \in \scrX 0 :

якщо fm(intX1
i )
\bigcap 

intX0
j \not = \varnothing , то fm(X1

i ) \supset X0
j .

Скiнченне розбиття \scrX 2 = \{ X2
i \} .

Перехiд вiд \scrX 1 до \scrX 2 здiйснюється аналогiчно переходу вiд \scrX 0 до \scrX 1. Нехай

fm(X1
i ) =

\bigcup 
k\in \scrK i

X0
k , де \scrK i \subset \{ 1, 2, . . . , n\} .

Оскiльки при деякому m > 0 (яке буде вибране нижче) маємо intX1
i

\bigcap 
intX0

i \not = \varnothing для будь-
якого i = 1, 2, . . . , n, можна визначити
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X2
i = \frakC 

\left(  f - m

\left(  \bigcup 
k\in \scrK i

X1
k

\right)  \right)  
так, що

\frakC 

\left(  f - m

\left(  \bigcup 
k\in \scrK i

X1
k

\right)  \right)  \bigcap intX1
i \not = \varnothing .

Сiм’я \scrX 2 є покриттям.
Справдi, нехай x \in M i x \not \in X2

i для i = 1, 2, . . . , n, де X2
i \in \scrX 2. За побудовою точка

x \in X0
i для деякого X0

i \in \scrX 0. Маємо

fm(x) \in fm(X0
i ) \subset 

\bigcup 
k\in \scrK i

X0
k ,

тому

x \in X1
i = \frakC 

\left(  f - m

\left(  \bigcup 
k\in \scrK i

X0
k

\right)  \right)  .
З урахуванням визначення X2

i , якщо припустити, що fm(x) \in X1
k для деякого k \in \scrK i, прийде-

мо до суперечностi, оскiльки тодi x \in X2
i , тому що fm — локальний дифеоморфiзм X1

k . Якщо
ж fm(x) \not \in X1

k для всiх k \in \scrK i, то iснує цiле l таке, що fm(x) \in X1
k для деякого k \in \scrK l, до

того ж \left(  \bigcup 
k\in \scrK i

X1
k

\right)  \bigcap \left(  \bigcup 
k\in \scrK l

X1
k

\right)  \not = \varnothing i int

\left(  \bigcup 
k\in \scrK i

X1
k

\right)  \bigcap int

\left(  \bigcup 
k\in \scrK l

X1
k

\right)  = \varnothing .

Вiдображення fm є дифеоморфiзмом у (
\bigcup 

k\in \scrK i
X1

k)
\bigcup 
(
\bigcup 

k\in \scrK l
X1

k), а множини
\bigcup 

k\in \scrK i
X1

k i\bigcup 
k\in \scrK l

X1
k перетинаються тiльки по межi, тому за визначенням X2

l точка x належить X2
l .

При цьому

int\frakC 

\left(  f - m

\left(  \bigcup 
k\in \scrK i

X1
k

\right)  \right)  \bigcap X1
i \not = \varnothing .

Отже, \scrX 2 — покриття.
Покриття \scrX 2 є розбиттям.
Потрiбно довести, що intX2

i

\bigcap 
intX2

j = \varnothing для i \not = j, 1 \leq i, j \leq n. Якщо x \in intX2
i

\bigcap 
intX2

j ,

то знайдеться X1
l \in \scrX 1 таке, що

X1
l \subset 

\bigcup 
k\in \scrK i

X1
k i X1

l \subset 
\bigcup 

k\in \scrK j

X1
k , де fm(x) \in 

\bigcup 
k\in \scrK i

X1
k i fm(x) \in 

\bigcup 
k\in \scrK j

X1
k ,

тому l \in \scrK i i l \in \scrK j , а тодi

intX1
i

\bigcap 
intX1

j = \frakC 

\left(  f - m

\left(  \bigcup 
k\in \scrK i

X0
k

\right)  \right)  \bigcap \frakC 

\left(  f - m

\left(  \bigcup 
k\in \scrK j

X0
k

\right)  \right)  \not = \varnothing ,

що неможливо, оскiльки i \not = j. Отже, \scrX 2 — розбиття.
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Розбиття \scrX 2 = \{ X2
i \} , i = 1, 2, . . . , n, має таку властивiсть:

якщо fm(intX2
i )
\bigcap 

intX1
j \not = \varnothing , то fm(X2

i ) \supset X1
j .

Скiнченне розбиття \scrX 3, як i всi наступнi розбиття у цьому ланцюзi побудов, одержуємо
аналогiчно.

Послiдовнiсть скiнченних розбиттiв \scrX k = \{ Xk
i , i = 1, 2, . . . , n\} , k = 0, 1, 2, . . . , яку

отримуємо в результатi, має таку властивiсть:

якщо fm(intXk
i )
\bigcap 
Xk - 1

j \not = \varnothing , то fm(Xk
i ) \supset Xk - 1

j .

Розглянемо метричний простiр 2M , елементами якого є замкненi множини багатовиду M,

iз визначеною на ньому метрикою

dist (X1, X2) = max
\Bigl\{ 

sup
y\in X1

inf
x\in X2

d(x, y), sup
y\in X2

inf
x\in X1

d(x, y)
\Bigr\} 

для X1, X2 \in 2M .

Простiр 2M є компактним [13] i, як наслiдок, повним.
Для побудованої послiдовностi розбиттiв \scrX k = \{ Xk

i , i = 1, 2, . . . , n\} треба довести, що
при кожному i послiдовнiсть \{ Xk

i , k = 0, 1, . . .\} є фундаментальною в метрицi простору 2M .

Для цього оцiнимо вiдстань dist (Xk
i , X

k+1
i ). Враховуючи зауваження 1, маємо

\Delta (\scrX k,\scrX k+1) := max
i=1,2,...,n

dist (Xk
i , X

k+1
i )

= max
i=1,2,...,n

dist

\left(  f - m

\left(  \bigcup 
j\in \scrK i

Xk - 1
j

\right)  , f - m

\left(  \bigcup 
j\in \scrK i

Xk
j

\right)  \right)  

\leq 1

\lambda m
max

i=1,2,...,n
dist

\left(  \bigcup 
j\in \scrK i

Xk - 1
j ,

\bigcup 
j\in \scrK i

Xk
j

\right)  
\leq 1

\lambda m
max

i=1,2,...,n
dist (Xk - 1

j , Xk
j ) =

1

\lambda m
\Delta (\scrX k - 1,\scrX k).

З (1) випливає, що \Delta (\scrX k,\scrX k+1) \leq 1

\lambda m
\Delta (\scrX k - 1,\scrX k), k = 1, 2, . . . , i \Delta (\scrX 1,\scrX 0) \leq \varepsilon \prime 

\lambda m
за

побудовою множин X1
i . Таким чином,

\Delta (\scrX k,\scrX k+1) \leq \varepsilon \prime 

\lambda m(k - 1)
(3)

i тодi

dist (Xk
i , X

k+l
i ) \leq 

l - 1\sum 
j=0

dist (Xk+j
i , Xk+j+1

i ) \leq \varepsilon \prime 
l - 1\sum 
j=0

1

\lambda m(k+j+1)
. (4)

Отже, послiдовнiсть \{ Xk
i , k = 0, 1, 2, . . .\} є фундаментальною, тому

Xk
i  - \rightarrow 
k\rightarrow \infty 

X\infty 
i , i = 1, 2, . . . , n.

При цьому множини X\infty 
i будуть замкненi.
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Скiнченне розбиття \scrX \infty = \{ X\infty 
i \} , i = 1, 2, . . . , n.

Для доведення того, що це розбиття, визначимо деякi поняття [13]. Точка s належить до
нижньої границi послiдовностi множин S1, S2, . . . (це позначається як s \in Li

n\rightarrow \infty 
Sn), якщо будь-

який окiл точки s, починаючи з деякого n, перетинається з усiма множинами Sn. Точка s на-
лежить до верхньої границi послiдовностi множин S1, S2, . . . (це позначається як s \in Ls

n\rightarrow \infty 
Sn),

якщо будь-який окiл точки s перетинається з нескiнченним числом множин Sn. Послiдовнiсть
множин \{ Sn\} називається збiжною до множини S (це позначається як S = Lim

n\rightarrow \infty 
Sn), якщо

Li
n\rightarrow \infty 

Sn = S = Ls
n\rightarrow \infty 

Sn. Вiдомо, що Ls
n\rightarrow \infty 

Sn =
\bigcap \infty 

n=0

\bigcup \infty 
k=0 Sn+k.

Топологiя, яка задається збiжнiстю у сенсi даного означення, є еквiвалентною топологiї, яка
задається вказаною вище метрикою у просторi 2M [13].

У розглядуваному випадку X\infty 
i =

\bigcap \infty 
n=0

\bigcup \infty 
k=0X

n+k
i .

Сiм’я \scrX \infty є покриттям.
Справдi, нехай iснує точка x \in M, для якої x \not \in X\infty 

i при всiх i. Позначимо

\widetilde Xq
i =

\infty \bigcup 
k=0

Xq+k
i .

Для кожного i \in \{ 1, 2, . . . , n\} знайдеться таке qi, що x \not \in \widetilde Xqi
i . Тодi x \not \in Xj

i при будь-якому
j \geq qi. Нехай Q = maxi=1,2,...,n qi. Тодi x \not \in XQ

i при будь-якому i, що неможливо, оскiльки
\{ XQ

i \} , i = 1, 2, . . . , n, — розбиття.
Покриття \scrX \infty є розбиттям.
Якщо це не так, то iснують елементи X\infty 

i , X
\infty 
j \in \scrX \infty такi, що intX\infty 

i

\bigcap 
intX\infty 

j \not = \varnothing .
Вiдкриту кулю з дiаметром \varepsilon позначимо U\varepsilon i зауважимо, що iснує U\varepsilon \subset intX\infty 

i

\bigcap 
intX\infty 

j .

Оскiльки

intX\infty 
i = int

\infty \bigcap 
q=0

\widetilde Xq
i i \widetilde Xq+1

i \subset \widetilde Xq
i ,

маємо

int

\infty \bigcap 
q=0

\widetilde Xq
i \subset 

\infty \bigcap 
q=0

int \widetilde Xq+1
i .

Отже,

U\varepsilon \subset 
\infty \bigcap 
q=0

int \widetilde Xq+1
i ,

тобто U\varepsilon \subset int \widetilde Xq
i для кожного q = 1, 2, . . . . Так само маємо U\varepsilon \subset int \widetilde Xq

j для кожного
q = 1, 2, . . . .

Далi, iснує q1 > 0 таке, що \Delta (\scrX q+1,\scrX q) < \varepsilon для будь-якого q > q1. Тодi знайдеться куля
U\varepsilon 1 \subset U\varepsilon , \varepsilon 1 < \varepsilon , така, що U\varepsilon 1 \subset Xq

i для кожного q > q1.

Аналогiчнi мiркування щодо U\varepsilon 1 \subset \widetilde Xk
j дають можливiсть дiйти висновку, що iснує куля

U\varepsilon 2 \subset U\varepsilon 1 , \varepsilon 2 < \varepsilon 1, така, що U\varepsilon 2 \subset Xq
j для кожного q > q2.

Отже, для кожного q > max(q1, q2) є куля U\varepsilon 3 така, що U\varepsilon 3 \subset Xq
i i U\varepsilon 3 \subset Xq

j , але це
неможливо, якщо Xq

i i Xq
j є рiзними елементами розбиття \scrX q.

Розбиття \scrX \infty є марковським.
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З визначення \scrX l випливає, що кожне X l
i \in \scrX l можна подати у виглядi

fm(X l
i) =

\bigcup 
k\in \scrK i

X l - 1
k .

Переходячи до границi, маємо

Lim
l\rightarrow \infty 

fm(X l
i) = Lim

l\rightarrow \infty 

\bigcup 
k\in \scrK i

X l - 1
k .

З урахуванням властивостей такої гранницi [13], iз неперервностi fm : 2M \rightarrow 2M випливає, що

fm(X\infty 
i ) = fm

\biggl( 
Lim
l\rightarrow \infty 

X l
i

\biggr) 
=
\bigcup 
k\in \scrK i

Lim
l\rightarrow \infty 

X l - 1
k =

\bigcup 
k\in \scrK i

X\infty 
k .

Оцiнимо величину diamX\infty 
i для i = 1, 2, . . . , n. Маємо Xk

i \subset Ud(X
k - 1
i ), де Ud(X

k - 1
i ) —

d-окiл множини Xk - 1
i для d = dist (Xk

i , X
k - 1
i ), тобто

Ud(X
k - 1
i ) =

\bigcup 
x\in Xk - 1

i

Ud(x),

де Ud(x) — вiдкрита куля з радiусом d й центром у x. Аналогiчно Xk - 1
i \subset Ud(X

k
i ).

Таким чином,

diamXk
i \leq diamXk - 1

i + 2d i diamXk - 1
i \leq diamXk

i + 2d,

або
diamXk - 1

i  - 2d \leq diamXk
i \leq diamXk - 1

i + 2d.

Вiдповiдно до (3), (4),

\varepsilon \prime  - 2\varepsilon \prime 
k\sum 

j=1

\biggl( 
1

\lambda m

\biggr) j

\leq diamXk
i \leq \varepsilon \prime + 2\varepsilon \prime 

k\sum 
j=1

\biggl( 
1

\lambda m

\biggr) j

,

i в граничному випадку отримуємо

\varepsilon \prime  - 2\varepsilon \prime 
1

\lambda m  - 1
\leq diamX\infty 

i \leq \varepsilon \prime + 2\varepsilon \prime 
1

\lambda m  - 1
. (5)

Якщо вибрати m достатньо великим, можна зробити diamX\infty 
i як завгодно близьким до \varepsilon \prime ;

при цьому мається на увазi, що \varepsilon \prime < \varepsilon .

Доведемо, що

\mu 

\Biggl( 
n\bigcup 

i=1

\partial X\infty 
i

\Biggr) 
= 0,

де \mu (E) =

\int 
E
gij dxi \wedge dxj — мiра, породжена рiмановою метрикою gij багатовиду M. Мiра

\mu є неперервним вiдображенням простору 2M в R1. При цьому \mu (\partial Xk
i ) = 0 для будь-яких

i = 1, 2, . . . , n i k = 1, 2, . . . . Внаслiдок неперервностi \mu на 2M маємо

\mu (\partial X\infty 
i ) = \mu (Lim

k\rightarrow \infty 
\partial Xk

i ) = lim
k\rightarrow \infty 

\mu (\partial Xk
i ) = 0.

Лему доведено.

ISSN 1027-3190. Укр. мат. журн., 2024, т. 76, № 1



ЛОКАЛЬНО МАКСИМАЛЬНI АТРАКТОРИ РОЗТЯГУЮЧИХ ДИНАМIЧНИХ СИСТЕМ 27

Зауваження 2.2. Вiдомий стандартний процес переходу вiд марковського розбиття \scrX \infty =

\{ X\infty 
i \} , i = 1, 2, . . . , n, з числом m > 1 до марковського розбиття \scrX = \{ Xj\} , j = 1, 2, . . . , n,

з числом m = 1. Кожна множина має вигляд

Xj = X\infty 
i1

\bigcap 
f(X\infty 

i2 )
\bigcap 
f2(X\infty 

i3 )
\bigcap 
. . .
\bigcap 
fm - 1(X\infty 

im),

де iндекси il \in \{ 1, 2, . . . , n\} повиннi бути такими, що intXj \not = 0. Тодi

f(Xj) = f(X\infty 
i1 )
\bigcap 
f2(X\infty 

i2 )
\bigcap 
. . .
\bigcap 
fm - 1(X\infty 

im - 1
)
\bigcap 
fm(X\infty 

im),

i якщо використати формулу
fm(X\infty 

im) =
\bigcup 

ik\in \scrK im

X\infty 
ik
,

то
f(Xj) =

\bigcup 
ik\in \scrK im

\Bigl( 
X\infty 

ik

\bigcap 
f(X\infty 

i1 )
\bigcap 
f2(X\infty 

i2 )
\bigcap 
. . .
\bigcap 
fm - 1(X\infty 

im - 1
)
\Bigr) 
,

де \scrK im — скiнченна множина iндексiв.

Зауваження 2.3. Розглянемо простiр X скiнченних розбиттiв \scrX \mu = \{ X(\mu )
k \} , k = 1, 2, . . . , n,

з однаковою кiлькiстю елементiв. У просторi X визначимо метрику

\Delta (\scrX 1,\scrX 2) = max
i=1,2,...,n

dist (X
(1)
i , X

(2)
i ).

З оцiнки (5) випливає, що \scrX \infty \in X неперервно залежить вiд вибору \scrX 0 \in X.

Нехай A — атрактор розтягуючого ендоморфiзму f : M \rightarrow M, а U — окiл множини A. За
лемою 2.3 iснує марковське розбиття \scrX = \{ U1, . . . , Un\} з такою властивiстю: якщо Ui

\bigcap 
A \not = \varnothing ,

то Ui \subset U. Iснує точка x1 \in M, для якої Ax1 = A (тут i далi через Ax позначено атрактор
траєкторiї точки x). Нехай \scrX U = \{ Ui1 , Ui2 , . . . , Uim\} , де Uij \in \scrX U , якщо iснує (цiле) tj > 0

таке, що f tj (x1) \in Uij i Uij

\bigcap 
A \not = \varnothing . Також для кожної точки y \in A знайдеться множина

Uij \in \scrX U така, що y \in Uij . Нехай \Theta (x1) = \{ fp(x1), fp+1(x1), . . . , f
p+q(x1)\} — скiнченний

вiдрiзок траєкторiї точки x1. Виберемо його настiльки великим, що якщо y \in A i y \in intUij ,

то iснує tj < q таке, що fp+tj (x1) \in intUij , а якщо y \in \partial Uij\prime , то iснує tj\prime < q таке, що

fp+tj\prime (x1) \in Uij\prime . Вiдрiзок \Theta (x1) можна вибрати так, щоб fp(x1) \in Ui1 i fp+q(x1) \in Ui1 .

Розглянемо скiнченний впорядкований набiр множин Ui\prime 0
, Ui\prime 1

, . . . , Ui\prime q iз властивостями

fp(x1) \in Ui\prime 0
, fp+1(x1) \in Ui\prime 1

, . . . , fp+q(x1) \in Ui\prime q = Ui\prime 0
,

де Ui\prime k
\in \scrX U , i в цьому наборi зустрiчаються всi множини з \scrX U . Нехай для i\prime k1 виконується

умова

fp+k1 - j(x1)
\bigcap 

intUi\prime k1 - j
\not = \varnothing для j = 1, 2, . . . , k1 i fp+k1(x1)

\bigcap 
intUi\prime k1

= \varnothing .

Тодi точка fp+k1(x1) належить межi множини Uij1
.

Позначимо d1 = maxj=0,...,k1 - 1 d(f
p+j(x1), \partial Ui\prime j

).

Множина \{ x \in M | Ax = A\} є щiльною в M.

Справдi, нехай V \subset M є вiдкритою. За умови розтягування для будь-якої точки y1 \in M

такої, що Ay1 = A, iснує m > 0, для якого fm(V ) \ni y1. Тому знайдеться точка x \in V, для якої
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fm(x) = y1, i тодi Ax = A. Далi, знайдеться точка x2 така, що d(x2, x1) \leq 
d1

\lambda p+k1
i Ax2 = A,

до того ж точку x2 можна вибрати так, що fp+j(x2) \in intUij , j = 0, 1, . . . , k1. Тому вiдрiзок
траєкторiї \Theta (x2) буде належати до внутрiшнiх частин перших k1 множин Ui\prime 1

, Ui\prime 2
, . . . , Ui\prime k1

.

Серед решти, можливо, будуть множини Ui\prime j
, j > k1, до яких \Theta (x2) не потрапить. Цi множини

поки що вилучимо iз розгляду i отримаємо новий набiр множин \scrX (2)
U = \{ U (2)

i\prime j
\} \subset \scrX . Для \scrX (2)

U

аналогiчно отримаємо точку x3 та новий набiр \scrX (3)
U такi, що fp+k(x3) \in intU

(3)
ij

для j \leq k2.

За скiнченне число крокiв прийдемо до розбиття \widetilde \scrX U = \{ \widetilde Ui1 , . . . ,
\widetilde Uil\} , для якого iснує точка\widetilde x \in M така, що A\widetilde x = A i fp+j(\widetilde x) \in int \widetilde Uij

для j = 1, 2, . . . , l.

У процесi побудови могли бути вилученi множини Uij \in \scrX U , якi мають точку з A на своїй
межi, але не всерединi. Нехай Uij1

— вилучена множина. Iснує така точка xj1 , що fm(xj1) \in 
intUij1

при деякому m \geq 0, до того ж Axj1
= A. Марковське розбитя \scrX можна вибрати

так, щоб iснував елемент \widetilde U \in \scrX U , який мiстить деяку точку y \in A, i при цьому y \in int \widetilde U.
Справдi, вихiдне розбиття \scrX 0 можна вибрати так, щоб процедура iз зауваження 2.2 приводила
до розбиття \scrX 0, для якого y \in intX, де X \in \scrX 0. Розбиття \scrX \infty неперервно залежить вiд \scrX 0,

тому \scrX теж неперервно залежить вiд \scrX 0, так що можна вважати, що в марковському розбиттi
\scrX є елемент \widetilde U такий, що y \in int \widetilde U. З умов y \in A i y \in int \widetilde U випливає, що вiдрiзок траєкторiї
точки xj1 також пройде через int \widetilde U, оскiльки множина int \widetilde U є вiдкритою.

Таким чином, будь-якi двi множини з \scrX U можна зв’язати скiнченним вiдрiзком траєкторiї
так, щоб ця траєкторiя проходила по внутрiшнiх частинах множин Uj \in \scrX U .

Розбиття \scrX U назвемо марковським розбиттям для атрактора A в околi U.
Нехай G = G(\scrX U ) — скiнченний орiєнтовний граф з вершинами, якi заданi елементами

множини \scrX U , за припущення, що для Ui, Uj \in \scrX U ребро (Ui, Uj) iснує тодi й лише тодi, коли
f(Ui) \supset Uj .

Лема 2.4. Граф G = G(\scrX U ) є зв’язним.

Доведення. Зв’язнiсть графа G = G(\scrX U ) випливає з того, що будь-якi двi множини
Ui\prime , Ui\prime \prime \in \scrX U можна зв’язати скiнченними вiдрiзками траєкторiй, якi проходять через внут-
рiшнi частини множин Ui \in \scrX U .

Лема 2.5. Якщо граф G є зв’язним, то перiодичнi точки його марковського ланцюга TG
щiльнi у просторi \scrW G всiх нескiнченних шляхiв графа.

Доведення. Розглянемо точку (i1, i2, . . . , in, . . .) \in \scrW G i послiдовнiсть

xn = \{ i1, i2, . . . , in, . . . , i1, i2, . . . , in, . . . , i1, i2, . . . , in, . . .\} ,

де замiсть крапок мiж in i i1 кожен раз вписується один i той самий шлях, що йде з in
до i1, який iснує через те, що G є зв’язним. Зазначена послiдовнiсть є перiодичною точкою
марковського ланцюга TG. При цьому n можна вибирати як завгодно великим, i тодi xn \rightarrow x,

що доводить лему.
Лема 2.6. Якщо граф G є зв’язним, то його марковський ланцюг TG має скрiзь щiльну

траєкторiю.

Доведення. За лемою 2.5 достатньо побудувати траєкторiю, яка є щiльною на замиканнi
множини перiодичних точок марковського ланцюга TG. Багатовид M є компактним, тому
марковський ланцюг має злiченну кiлькiсть перiодичних точок. Занумеруємо їх натуральними
числами i складемо з них таку таблицю:
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У цiй таблицi k-й рядок вiдповiдає k-й перiодичнiй точцi (i1, i2, . . . , ink
, i1, i2, . . . , ink

, . . .).

Елемент akl позначає шлях akl = (i1, . . . , ink
, i1, . . . , ink

, . . . , i1, . . . , ink
), в якому послiдовнiсть

i1, i2, . . . , ink
повторюється l разiв. Вiдповiдно до стрiлок в таблицi складемо шлях

(a11 b1 a12 b2 a21 b3 a31 b4 a22 b5 a13 b6 . . .), (6)

де bn — шлях, що з’єднує останню вершину шляху aij злiва вiд bn з першою вершиною
шляху ai\prime j\prime справа вiд bn; шлях bn iснує внаслiдок зв’язностi G. Шлях (6) мiстить як завгодно
великий вiдрiзок будь-якої перiодичної траєкторiї, тому вiдповiдна цьому шляху (6) траєкторiя
буде скрiзь щiльною у \scrW G.

Розглянемо множину

\widetilde A = \{ x | x \in \scrX \prime 
U , f

m(x) \in \scrX \prime 
U для кожного m > 0\} ,

де

\scrX \prime 
U = \{ U \prime 

i1 , . . . , U
\prime 
im\} , U \prime 

ij =

\Biggl( 
int

m\bigcup 
k=1

Uik

\Biggr) \bigcap 
Uij , Uil \in \scrX U .

Кожному нескiнченному шляху (i1, i2, . . .) графа G = G(\scrX U ) вiдповiдає єдина точка x \in \widetilde A
така, що

x =
\infty \bigcap 

m=1

\frakC (f - m(Uim)),

де \frakC (f - m(Uim)) — компонента зв’язностi повного прообразу f - m(Uim), для якої

\frakC (f - m(Uim))
\bigcap 
Ui1 \not = \varnothing .

Те, що
\bigcap \infty 

m=1 \frakC (f
 - m(Uim)) складається з однiєї точки, випливає iз зауваження 2.1.

Таким чином, ми отримали вiдображення \psi : \scrW G \rightarrow \widetilde A таке, що \psi (\scrW G) = \widetilde A i \psi (i1, i2, . . .) =
x. При цьому \psi є неперервним. Справдi, нехай

xn = (i1, i2, . . . , in, in+1, . . .) i yn = (i1, i2, . . . , i
\prime 
n, i

\prime 
n+1, . . .)

є близькими точками простору \scrW G. Тодi \psi (xn), \psi (yn) \in 
\bigcap n

m=1 \frakC (f
 - m(Uim)) i неперервнiсть

\psi також випливає iз зауваження 2.1.
У пiдсумку \widetilde A — iнварiантна замкнена множина, \widetilde A \supset A i \widetilde A — еквiварiантний образ про-

стору \scrW G топологiчного марковського ланцюга TG зi скiнченною кiлькiстю станiв G. Граф G

є зв’язним, тому (за лемою 2.6) на множинi \widetilde A iснує скрiзь щiльна траєкторiя. Отже, \widetilde A є
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атрактором. З побудови видно, що множина \widetilde A в околi int
\bigcup m

k=1 Uik є локально максимальним
атрактором, який мiстить A.

Теорему доведено.
Доведення теореми 2.2 повторює доведення теореми 2.1, але потрiбно виходити з того, що

A є локально максимальним атрактором.
Доведення наслiдкiв 2.1 i 2.2 випливає з лем 2.5, 2.6 i теореми 2.2.

Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв.
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