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IIpo Honose Briaenns o6roprywuoi aarebpn
B KiabpIe 3 gineHuam

In 1961 P. M. Cohn proved that the universal enveloping algebra of any Lie algebra over a fiekd-
can be embedded into a division ring. (The Lie algebra is not assumed to be finite dimensional.)
Cohn’s method is less than direct. We give a more explicit construction. These division rings
have recently found uses in the theory of skew linear groups.

B 1961 p. Kon nosiB, wo yHisepcasbra o6ropryioua anreGpa A0BiabHOT anre6pu JIi nax noiem Mo-
e GYTH posmHpeHa A0 Kixpus 3 aisenuam. (Anre6pa JIi He o6B’S3KOBO CKiHueHHOBHMipHA.)
Meron Kona (no6ynoBm Kinwns) ne nyxe npsaMuii. Mu nasonumo 6iabw siBHY Kouctpykiio. Ta-
ki KinbllA 3 AieHHSAM OCTAHHIM YacOM 3aCTOCOBYIOTHCH B Teopil JiHiAHHX Tpyn Hal TizamH.

Let F be a field, L a Lie F-algebra and U = U (L) the universal enveloping
algebra of L. In [1] P. M. Cohn constructs an embedding of U into a division
ring D. Recently there has been interest in this specific division ring in connec-
tion with matrix groups and matrix rings [2—4]. Cohn’s construction is less
than direct and it seemed useful to have a very explicit description of D, at
least for the benefit of group theorists.

My wish therefore was to analyse Cohn’s construction, to define the divi-
sion ring directly and explicitly and then simply to check that everything
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works. This turns out to be perfectly practicable, although certain checks,
for example that for the associative law of addition, become tedious. Fortu-
nately a slightly more devious approach avoids even this discomfort. I should
like to emphasize that all the main results below are contained in [1, 2] or [3].

It is a consequence of the Poincaré-Birkhoff-Witt theorem [5, p. 159]
that this universal enveloping algebra U has a valuation. Specifically there is
amap||: U—Z |J {oo} satisfying

(1) a) lab] = |a] -+ [,

b) fa + 6| = min {la|, [6]},

) |a| = oo if and only ifa = 0
for all a, b € U. Further we can choose the valuation so that |&| = 0 for all
o € F and |x| = —1 for all x in L\ {0}. The associated graded algebra of U is
a (commut ative) polynomial ring over F on a basis of L [5, p. 166]. These are
the only facts we need.

More generally let R be any ring with a valuation ||:R— Z {J {oo} satis-
fying (1) for alla, b € R. Set R; = {r € R : |r| = i}. We embed R into a divi-
sion ring under the assumption that the associated graded ring Gr R =
=@; (R;/Ri—,) satisfies

(2) GrR is a right Ore domain.

Now assumption (2) is equivalent to:

(3) for all @, bE RN\J{0} the map (x, y)}> lax — by |— |ax| of

(RN\{0})® to Z |J {oo} is unbounded above.
The equivalence of (2) and (3) is straightforward, and in any case is part of the
content of [1] (Theorem 4.2). Thus our basic assumptions on R are (1) and (3).
If || only takes the values 0 or oo then R is a right Ore domain by (2) and hence
R embeds into its division ring of right quotients. From now on assume this
is not the case. Then by renumbering we may assume that the image of R un-
der the valuation generates the additive subgroup of Z.

For all p=0 set S;p = (Ry\ Ri+1)/Rip = {X + Ripp: X € R\ Rit1}s s0
S;p is a set of cosets of Riy, in R and S;, ={R;} if R;> Riy; and S;, =
= & otherwise. We regard the S,;, as disjoint. Let S, = U;S;,. Since
the valuation preserves multiplication

Riyi\Ritj+1 = (R \Ri41)(Ry\Rjp1)

as subsets of R. Thus we can make S, into a multiplicative monoid with
identity 1 + R, and Siy;,=S,,-Sjp. (S, is just the set of homogeneous
elements of Gr R). Now S, satisfies the right Ore condition: given a, b€
€ R\{0} choose x, ye R\{0} by (3) with |ax —by|>|ax|+ p; using a
star to denote cosets in S,, this says that a'x’ =b'y" in S,. Then we
can form the group Q, == S,S," of right quotients. Note that S, embeds
into Z via R;|—1i, so Q, can be formally identified with {R;:i€Z}=Z,
where R; . R; = R;y; by definition.

Let p=1. Each element r of each coset in S;, satisfies |r*|=i.
Thus define | | on S, by setting |r*| =i for all r€S;,. Do this also for
p = 0. Clearly | | is multiplicative. Also for p=>1 there is a natural pro-
jection =m: S;,— S;,—1 obtained by factorizing by Rij,—1/Riyp. Specifically

a:r+ Rigp|—>r+ Riyp—r for i=|r].
Then n gives a monoid homomorphism of S, onto S,—; satisfying |xn|=
= |.r1tlflor any x€S,. Being homomorphisms | | and s extend uniguely to
Qp wi
lac™ | = la|—|c| and, for p=>1, (ac™")m = (an) (cm) .
These are well-defined and )
(4 |xn|=|x] for x€Qp, p=>1.
Define = on Q, by n:R;|— R;—; for each i.
Set Q = U p>0Q; and define an addition on Q as follows. Let x€Q, and
§E€Qp.. Assume p>=>p’. Since common denominators exist in Q, there exist
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¢, r, s€ R\{0} with valuations &, i, j respectively such that
(5) x=(r + Riyp) (¢ + Ruyp) ™ and y = (s + Rj4p:) €€ + Ruip) ™
Define x + § =y + x = (r + s+ Rumintitp.i4p'1) (€ + Rate) " €Qq
where ¢ = max{0, min{i + p, j+ p'} —|7 + s|}.
Note that 0 << g<Cp since by (1) we have
|7+ s|>min{|r, |s|} = min{, } >minfi + p, j+ p’}— p.
We need to check that addition is well defined. |

Clearly x-+y depends only the cosets r 4 Riip, s+ Rjip- and ¢ Ruyp
and not on the representatives r, s and ¢. Suppose also that

% =(u~+ Ruip)(d + Rigp) " and y = (v + Riot4p) € + R
By the Ore condition there exist e, f€ R\ {0} with
(¢ 4 Ruip) (€ + Ria4p) = (d + Ruayyp)  + Ripis0)-

Then ce -+ Rlcel—f—p == df + thfl—hu and re -+ Rirel—i-p = x(ce -+ R!ceﬁ-p): ”f +

-+ Rupyp. Applying n°~ yields ce + Rierrpr = df + Riajyrpr and then se+
+ Rise+pr = Uf + Ropitpor- Thus we reduce to the case where u =re, v = se
and d = ce. Since | | is multiplicative

max {0, min {| re| + p, |se|+ p'}—|re + se|} =g,
where ¢ is as in the definition of x 4y, and
(re - se + Rmin{ire|+-p, Isel+p*1) (ce + Rlcel+q)_l =(r+s+ Rminilﬂ-l—p. 151+p'“1) (e +

+ Riee) €+ Riage) " (€ + Rugg) " =x+ 1.
Therefore addition is well defined.

The rules of this addition are now easily checked. Suppose also that
z2€Qp. We can choose ¢, r and s as in (5) and also £€ R\ {0} such that for
k=|t|, z=(+ Retp) (¢ + Ruaypr) . Then (x4 +2z=(+s+1+
+ Rumintitp. it kto)) (€ + Rayg)”' where ¢ =max{0, min i+ p, j+ p’,
k4 p"y—|r -+ s+ ¢|}. Therefore addition is associative. It is easily seen
that

(6) xn 4+ yn = (x + y) =,
XN+ Yy =Xy or x4 yu
and for p* =0, : > 5
xift |y|=|x|+ p an
Y] rry={ . "

xn P otherwise.

Now define a negation on Q by setting — x=(—r-+Ri4p)(c + R;,.,_,,)"",
the notation being as in (5). Then with u, d, e and f as above

— x = (— re 4+ Rirei+p) (ce - Ri“"‘“”}_i

and negation is well defined. Clearly x + (— x) = Rix4,€Q, and if also
X' €Qp then (—x)x" = —(xx) = x(— x').

The maps n make {Qp:p =0} into an inverse system of groups. Let
G = limQp; G is the multiplicative group whose elements we can take in

[ S—
the form g = {gp €p€Qp, g, " = &p, p=0} (since the Q, are disjoint),
the multiplication being componentwise. Note that |g,| is independent of
p by (4). This constant value of | g,| we denote by |gT.

It is easy to see using (6) that for g, h in G the set gsh = {x +y : x € g,
Yy € h, x + y ¢ Qo} mis either empty or a member of G. Set D = G |J {0}. Then
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D becomes a division ring, where we add and multiply 0 in the obvious way,
the multiplication on G is just the group multiplication of G and we add
elements g, h of G by the rule -

g=h il gsh=+ &,

-
e+ {0 if geh=@.

This is explicit, but tedious to check that D is in fact a ring. The following al-
ternative construction of D requires less checking. o

Define left and right actions of G on Q via the multiplication on each (p,
viz for x € Qp and g € G set x.g = xg, € Q, and g.x = g,x. Then Q becomes a
G—G bisemi-module (satisfies all the axioms of a bimodule except that (Q, -+)
is only a commutative semigroup, not necessarily a commutative group.)
Only the distributative laws need checking. We check first the right distri-
butative law. _

Let x€Qp, y€Qy with p=p’ and let g ={g,:¢9=0}€G. There exist
s, ted ERK{O} with valuations i, j, k, h, I respectively such that (5)
holds and

(€4 Ruip)"'gp = @ + Reyo) (d + Rips) ™

(€ + Ratp) ' 8o = (¢ + Resp) (d + Ripp) ™
apply =#—#’). Then
28 + 9-g = (1t + Riyagod(d + Ripp)™" + (st + Ryparp) (d + Rigp) =
= (rt + s + Rupinjitp,i+p71+4) (@ + Rige) ™

forg = max {0, min{i + p, j + p'} +k—| ri-+st|}=max {0, min {i+p, j+p'}—
—|r + s[}, while -

(x4 9)-2 = (7 + s+ Ruingisp.ito1) (€ + Rorg) ™ g =
= (r + s + Rumin(itp.j4011) (¢ + Riio) (d + Ry '=xg+yeg
The left distributative law is proved similarly, the basic step being
(¢ + Rt (r + Ritp) + (F + Rt o) (s + Rigpr) = f + Rmpg) ™ X

X (r + s + Rumingito.i+0')

in the obvious notation, where g is as after (5). To see this note that there
exist r’, s’ and e with

¢ + Rap) ' (r + Rigp) = (' + Ririr) (€ + Riags) '
(¢ + Rupo) " (s + Rpgp) = (5" + Rj4p) (e + Rietp)
re + Riyjaqp = fr" + Rirymip and se + Rjporipr = 8" + Rjrimipr

Then
(r + s) e + Rmingitp.ji+o 1+ = F(r" 4+ 8") + Rumingir+p,i*+p*14m>

and

Thus

s0
(f + Ratd ' (r + s + Ramni+p.i+or)= (r' + 5" + Rumingir+p.j4+0"1) X
X (€ + Riate) ' = (F+ Rmyp) " (r + Rigp) + (F + Rmppr) "' (s + Rippr)

as claimed.
Let D, denote the set of all subsets of Q. Define addition, negation and

two G-actions on D, by
X4+Y={x+y:xcXandyeY},
— X ={—x:1x€X},
Xg={xg:x€X}
and g X = {g-x: x € X}. {
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Trivially D, is also a G—G bisemi-module. Also G is a subset of D, e -
the above G—G action on G is just given by the multiplication in the group G.

For each I€Z set H,={R,:i=1}=Q,, so H,€D,. Let D, denote the
subset of D, of all elements of the fnrm gUXor H UX for g€G, X
finite and IEZ Then D, is a G-G sub-bisemi-module of D,, closed under
negation: this follows from the following, whose claims are easy to verify.
SetQup = {z€Qy | x| =

(8) Let g ={gp: p>0} and h be elements of G and pick x€Q; and
I, meZ. Then

a) x+ H,={xn*: 0<<u<<max {0, i+ qg—1I}},

b)g+H=gUX for some finite subset X of Q,,

Q) x4 g={x+gp:p<i+qg—|g|}, x.g=xg,€Q and g.x€Q,

dDeg+-h=~krU X for mme k in G and X a finite subset of Q, or =
= H, for f o |g|=|h|,

e) Hi+ H,, = Huinjt,my, &H,=Hi1 g = H;.g and — H, = H, and
) —g={—gp€G g+ (—g) = Hy and gh€G.
Note that in a) and c) both x4+ H, and x -+ g are finite.

Define an equivalence relation ~ on D, by X &Y whenever the sym-
rmetic difference (X\Y)U (Y \ X) is finite. There is an obvious bijection
between D,/ ~ and D = G| {0} determined by the map gl X |—>g and
H,J X|—0 of D, onto D. Also the equivalence relation respects all four
operations by (8) above. Thus D,/ ~ and hence D becomes a G-G bisemi-
module with an additional operation negation such that for any g€G

g+0=g by 8), 04+ 0=0 by 8) and g 4+ (— g) =0 by 8f).
Therefore D is a division ring.

Define the map ¢: R—D by 0¢ = 0 and for r€ R\ {0} by ro={r+
+ Rjpip p=01€ G, where G is regarded as a subset of D. Certainly « is
a multiplicative man. If r, s€é R with r¢ = s¢ then r —s€ ,, R,, = {0}, so
¢ embeds R into D. Further ¢ is additive, for (— )¢ = —(r¢) by defini-
tion, so r¢ +(—r)¢ = 0= (r + (—r)) @, and if s=— r then | r 4 s|<<co and

rg+sp={r+ s+ Ryistp: p=0}=(r +s)o.

Therefore @ embeds the ring R into the division ring D and the main theorem is
proved. i

Suppose F is a central subfield of R, for example suppose R is the univer-
sal enveloping algebra U (L) of the Lie F-algebra L. Then ¢ also embeds F into
D and clearly (F\ {0} is central in G. Therefore D too becomes an F-algebra.
We could have carried the F-structure right through the construction. If
a € FN{0} define

@. (7 + Riyp) (€ + Ruto) ™' = (ar 4 Rjari+») (€ + Rutp)

This gives an action of F\ {0} on Q that is well defined. If |e|=0 for
all o€ F\ {0} then this even satisfies (¢ 4 B).x=ax 4 px for o, p, a4 p
all non-zero. Put 0.x = Ry, for x€0,. Setting a.X = {ax: x € X} defines
an action on D,. This in turn gives an action of F on D, and then on
(DJ ~) = D. The resulting action of F on D is simply the one given above.

We have already defined the map| | :G — Z satisfying |gh| = |g| 4 |
and | —g| = |g]. Set |0| = oo. Then this defines a valuation on D. This will

follow from our computation below of the graded ring of D but it is also easily
checked directly as follows. We have only to see that |g -+ A| > min {|g],
|k|} for all g, h € G.

Assume the notation of (5). Then

lx+y|l=min{i+p,j+ p’, |r 4+ s|}—h and always |r + s| >min{, j}

Thus|x 4+ y|>min{i, }—h =min{| x|, | y|}. Hence
min{| g, |, |y} for all p>>0,
min{{gl 1A} = { <|gp + hp| for all p>0,
|g + k| for all large enough p,
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unless g + A= 0 in D, in which case Ig,, + hy| < |g + A trivially. Clearly
| mp | = | r| for all r € R; that is this valuation of D extends the qgiven valua-
tion on R. )

We now compute the graded ring GrD = @ (Dy/D;yy) of this valuation
on D, where D; ={d€D:|d|>1i}. Denote the ring of right quotients of
Gr R, which exists by (2) note, by E. Now Q,, U {Rn1} is additively a
group, for if we assume the notation of (5) with x, y€Qpy, s0 i =j=h-+
+ m, then

x4 y=(+s+Rir) ¢+ Rud™

which either lies in Q,,, or |r 4+ s|>1i and it equals R, (In fact this
additive group is isomorphic to the additive subgroup Q,, U {0} of E.)
Suppose x€Q, and y€Q, with p=p’. Then

(9) x=y if and only if p=p’ and [x|=|y|<|x—yl—0p,
if and only if p=p’, |x|=|y| and x — y € Q,.
For suppose p = p’ and |x|=|y|<{|x— y|— p. Then in the notation of (5)

x—y=(r—s + Ripp)(c + Ruyg)”
and
lr—s|=>|x—y|+h=|x|+h+p=i+p

Hence r —s€Ri1p, 7+ Rirp =5+ Riyp and x = y. Now suppose p=p
and |x|=|g|. Then

x—yeQu&r—sERyp|r—s|=i+pe|x—y|=i+ p—h=|x|+p.

If x = y the claims of (9) are trivial and this completes the proof of (9).
Consinder the map ¢,:g|—g, of G onto Q,. Let g, heG. Always
lgp—hyp|<<|g —h|, with equality unless g, —h,€Q, Hence by (9) we
have g, =h, if and only if |g|—=|A|<|g—h|—p. Thus ¢, induces
bijections of U ; (D;\ Di1)/Diyp, with Q, and of D\ Dy, with Q; U {0},
and the second bijection respects addition and multiplication. Thus (10)

GrD = @;D;/Dy.y can be identified with the subring &;(Q; U {0) =
=@, (S; U {0) — GrP

of E. In particular GrD is a right Ore domain with ring of right quotients E.

(11) The following are immediate.

a) GrD is a domain, so the map | | on D is a valuation, as we have seen.

‘b) By Theorem 4.2 of [1] for all @, b € D \ {0} the map (x, y) | > |ax—
— by | — | ax | of (DN\{0)® to Z |J {oo} is unbounded.

¢) If xy —yx| > |xy|for all x, v € R\ {0} then GrRis commutative,
so- Gr D is commutative and | xy — yx | > | xy | for all x, y € D\ {0}.

Property (11c¢) is fundamental to [2]. The filtration {D; : i € Z} determines
a Hausdorff topology on D so that D becomes a topological ring with each D;
open. If we topologize Z |J {oc} by taking all {i} and all {j : i <Cj<C oc} for
i € Z as a basis of the open sets, then the valuation is a continuous map. The
fibres of the map ¢, : G — Q, have the form g 4 D4 ,. Thus the induced to-
pology on G is the topology given by the inverse limit G = lim @, with the

discrete topology on the Q,. By definition G is complete in the latter. Conse-
quently D is complete. Clearly ¢, maps (R\{0}) (R\{0H—! onto Q,. Hence
(RNA0}) (RN {0})—1'is dense in G and so R (R\ {0})—" is dense as a subset of D.
This gives an alternative approach to (11b) and, since the topology is given by
a Z-valued valuation, (11c).

We now consider the residue class division ring Dy/D, of D. We have seen
above that Dy/D, can be identified with Q,, U {0}. Now S; = [J,;S;, is the set
of homogeneous elements in GrR and so E = U;S,;S;;' = Qu. Suppose for
the moment that R = U (L) for L a non-zero Lie F-algebra, F a field and
choose any F-basis B of L. Then GrR is isomorphic to the polynomial ring
F [Bl, where S., is identified with the set of homogeneous polynomials of
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total degree i. (Here S;,, = & if i > 0). This identifies Qy U {0} and hence
Dy/D, with the subfield.

K = {0, flg : [, g € F Bl with f, g homogeneous of the same degree} of
the rational function field F (B). Pick any b, in B. If f, g € F [B] are-homoge-
neous of degree n then f/g = b,—"-f/by—"-g and b,—"-f and by—*-g are just poly-
nomials in bg—! (BN\ {b,}). Thus K, Qo; U {0} and Dy/D, are purely transcenden-
tal extension fields of F with transcendence bases bijective with

by (B N\ {bo}) in an obvious way. In particular D¢/D, has transcendence degree
(dimgL) — 1 over F.

We now return to our general ring satisiying (1) and (2). Since || is a valu-
ation on D, so D, is a valuation ring, whose only ideals, left or right, are the
D,for i >0, D; =u’D, = Dou’ for any u € D,\ D, and i >>1, D, is a princi-
pal left and a principal right ideal domain and in particular is Noetherian and
(left and right) Ore and D is the division ring of quotients of D,. Suppose now
that R too is right Ore with division ring D of right quotients. Then Dy can
be identified in a natural way with a subringof D and since the subset
R-(R\{0})~* ci D lies in Dp, the latter is dense in D. The valuation on D res-
tricts to a valuation on Dy, in fact to the unique extension of || on R to Dg,
and D is just the completion of Dy with respect to the valuation topology. In
particular Dg = D if and only if (Dg, | |) is complete.

Finally we consider extensions of the ground field. Let K be an exten-
sion field of the field F and suppose L is a Lie F-algebra with universal

enveloping algebra R = U(L). Then L* = K @rL is a Lie K-algebra and
U (L™ and R® == K @ R are naturally isomorphic. The valuation on R¥
via R® == U (L") is simply the unique extension of the valuation on R su-
bject to |a| =0 for all @€ K\ {0}. Repeat the above construction with R¥,

thus obtaining a division over-ring Dx say of R¥. Both K and D can be
regarded as subrings of Dk, the latter being identified with the closure of R,
(RN\{0)"! in Dg, and the subring of Dx generated by K and D vyields an
embedding of K ®#D into Dk. In particular K ® D is a domain, a fact
made use of in [4]. If R is now just an F-algebra satisfying (1) and (2) it
is easy to see that K ® D is a domain whenever K ®r(D,/D,) is a domain.
Indeed this holds if K is just a division F-algebra and for the same reason.
If R=U(L) again then K ®r(D,/D,) is just a subring of the rational
function field over K in (dimp L)—1 variables. This yields a second proof
that K @r D is a domain in this case.
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