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FATOU AND JULIA LIKE SETS

МНОЖИНИ, ПОДIБНI ДО МНОЖИН ФАТУ ТА ЖУЛIА

For a family of holomorphic functions on an arbitrary domain, we introduce Fatou and Julia like sets, and establish some
of their interesting properties.

Для сiм’ї голоморфних функцiй на довiльних областях визначено множини, що є подiбними до множин Фату та
Жyлiа, i встановлено деякi цiкавi властивостi цих множин.

1. Introduction and main results. Throughout, we shall denote by \scrH (D) the class of all holomor-
phic functions on a domain D \subseteq \BbbC . A subfamily \scrF of \scrH (D) is said to be normal if every sequence
in \scrF contains a subsequence that converges locally uniformly on D. \scrF is said to be normal at a
point z0 \in D if it is normal in some neighborhood of z0 in D (see [12, 15]).

Let f be an entire function and let fn := f \circ f \circ . . . \circ f\underbrace{}  \underbrace{}  
n - times

, n \geq 1, be the nth iterate of f. The

Fatou set of f, denoted by F (f), is defined as

F (f) = \{ z \in \BbbC : \{ fn\} is a normal family in some neighborhood of z\} 

and the complement \BbbC \setminus F (f) of F (f) is called the Julia set of f and is denoted by J(f). F (f)

is an open subset of \BbbC and J(f) is a closed subset of \BbbC , and both are completely invariant sets
under f. The study of Fatou and Julia sets of holomorphic functions is a subject matter of Complex
Dynamics for which one can refer to [2, 4, 14].

For a given domain D and a subfamily \scrF of \scrH (D), we denote by F (\scrF ), a subset of D on
which \scrF is normal and J(\scrF ) := D \setminus F (\scrF ). If \scrF happens to be a family of iterates of an entire
function f, then F (\scrF ) and J(\scrF ) reduce to the Fatou set of f and the Julia set of f, respectively,
therefore, it is reasonable to call F (\scrF ) and J(\scrF ) as Fatou and Julia like sets. Note that Julia set
of an entire function is always nonempty (see [2]) whereas Julia like set J(\scrF ) can be empty. For
example, consider the family

\scrF := \{ f(az + b) : a, b \in \BbbC , a \not = 0\} ,

where f is a normal function on \BbbC (see [12, p. 179]). Then since f is a normal function on \BbbC , \scrF is
a normal family on \BbbC , that is, F (\scrF ) = \BbbC and, hence, J(\scrF ) = \phi .

Also, it is interesting to note that Julia set of any meromorphic function is an uncountable set
(see [2]) but Julia like set is not so, for example, J(\scrF ) = \{ 0\} , where \scrF := \{ nz : n \in \BbbN \} \subset \scrH (\BbbD ),
where \BbbD is the open unit disk.

If \scrF and \scrG are two subfamilies of \scrH (D), then J(\scrF \cap \scrG ) \subset J(\scrF )\cap J(\scrG ), however J(\scrF \cap \scrG ) =
= J(\scrF ) \cap J(\scrG ) may not hold in general. For example, let

\scrF = \{ nz : n \in \BbbN \} \cup \{ n(z  - 1) : n \in \BbbN \} 
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and

\scrG = \{ n(z  - 1) : n \in \BbbN \} \cup \{ enz : n \in \BbbN \} 

be the families of entire functions. Then J(\scrF \cap \scrG ) = \{ 1\} and J(\scrF ) \cap J(\scrG ) = \{ 0, 1\} .
This paper is devoted to the problem of normality of families of mappings that have been actively

studied recently (see [5, 8 – 11]). In particular, we give some interesting properties of Fatou and Julia
like sets.

Theorem 1.1. (a) If \scrF 1 and \scrF 2 are two subfamilies of \scrH (D), then J(\scrF 1 \cup \scrF 2) = J(\scrF 1) \cup 
\cup J(\scrF 2).

(b) If z0 \in J(\scrF ) and N is any neighborhood of z0, then \BbbC \setminus U contains at most one point,
where U =

\bigcup 
f\in \scrF 

f(N).

Example 1.1. For \alpha \in \BbbC , consider one-parameter family of entire functions \scrF \alpha := \{ n(z  - \alpha ) :
n \in \BbbN \} . Then \scrF \alpha is not normal at z = \alpha , that is, \scrF \alpha is not normal in any open set containing
z = \alpha . Consider the family of entire functions \scrF = \cup | \alpha | \leq 1\scrF \alpha . Then we show that J(\scrF ) = \{ z :
| z| \leq 1\} and, hence, \mathrm{I}\mathrm{n}\mathrm{t}(J(\scrF )) \not = \phi and J (\scrF ) \not = \BbbC . The inclusion \{ z : | z| \leq 1\} \subset J(\scrF ) holds
trivially. To show the other way inclusion, let z0 \in \BbbC such that | z0| > 1 and let \{ fn\} be a sequence
in \scrF . Then we have two cases:

Case I: When \{ fn\} has a subsequence \{ fnk
\} which is locally bounded at z0.

In this case by Montel’s theorem \{ fnk
\} further has a subsequence which converges uniformly

in some neighborhood of z0. Thus, \{ fn\} has a subsequence which converges uniformly in some
neighborhood of z0, that is, z0 \in F (\scrF ).

Case II: When \{ fn\} has no subsequence which is locally bounded at z0.

Since fn(z) = mn(z  - \alpha n), where mn \in \BbbN and | \alpha n| \leq 1 for each n \in \BbbN , it follows that \{ mn\} 
has an increasing subsequence \{ mnk

\} which converges to \infty . Let N \subset \{ z : | z| > 1\} be a small
neighborhood of z0 . Then \{ fnk

\} converges uniformly to \infty in N. Thus \{ fn\} has a subsequence
which converges uniformly in some neighborhood of z0, that is, z0 \in F (\scrF ) .

Thus in both the cases we find that J(\scrF ) \subset \{ z : | z| \leq 1\} . Hence, J(\scrF ) = \{ z : | z| \leq 1\} .
Note that for a family of iterates of an entire function f, J(f) = \BbbC or J(f) has empty inte-

rior [2] (Lemma 3).

A set A \subset D is said to be forward invariant (backward invariant) under the family \scrF if, for
each f \in \scrF , f(A) \subset A

\bigl( 
f - 1(A) \subset A

\bigr) 
.

If \scrF 0 is a semigroup of entire functions, then F (\scrF 0) is forward invariant and J(\scrF 0) is back-
ward invariant under the family \scrF 0 (see [7]), whereas for an arbitrary subfamily \scrG of \scrH (D),

F (\scrG ) and J(\scrG ) may not be forward invariant or backward invariant. For example, J (\scrG ) is not
forward invariant as well as backward invariant for \scrG = \{ nz : n \in \BbbN \} \cup \{ zn : n \in \BbbN \} . Forward
invariance of J(\scrF ) and F (\scrF ) for the family \scrF , implies the following theorem.

Theorem 1.2. Let \scrF be a subfamily of \scrH (D). Then the following statements hold:

(a) If J(\scrF ) is forward invariant, then J(\scrF ) = D or \mathrm{I}\mathrm{n}\mathrm{t}(J(\scrF )) = \phi . In particular, if \BbbC \setminus D

contains at least two points, then \mathrm{I}\mathrm{n}\mathrm{t}(J(\scrF )) = \phi .

(b) If J(\scrF ) contains at least two points and F (\scrF ) is forward invariant, then J(\scrF ) is a perfect
set.
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Example 1.2. Let \scrF 1 = \{ nz : n \in \BbbN \} , \scrF 2 = \{ zn : n \in \BbbN \} . Then J(\scrF 1\cup \scrF 2) = \{ z : | z| = 1\} \cup 
\cup \{ 0\} . Clearly, J (\scrF 1 \cup \scrF 2) is not perfect and F (\scrF 1 \cup \scrF 2) is not forward invariant.

Example 1.2 shows that the condition, “F (\scrF ) is forward invariant” in Theorem 1.2 can not be
dropped.

Recall that a point z0 \in D is said to be a periodic point of an entire function f, of order k, if
fk(z0) = z0. In the dynamics of transcendental entire functions, it is well-known that Julia set is the
closure of the repelling periodic points (see [13]). This can be extended for Julia like set too. In this
context, we need some basic notations from the Nevanlinna value distribution theory of meromorphic
functions (see [6]).

Let f be a meromorphic function on \BbbC . The proximity function m(r, a, f) of f and the counting
function N(r, a, f) of a-points of f(a \not = \infty ) are given by

m(r, a, f) :=
1

2\pi 

2\pi \int 
0

\mathrm{l}\mathrm{o}\mathrm{g}+
1

| f(rei\phi ) - a| 
d\phi .

For a = \infty , we write

m(r, f) :=
1

2\pi 

2\pi \int 
0

\mathrm{l}\mathrm{o}\mathrm{g}+ | f(rei\phi )| d\phi ,

N(r, a, f) :=

r\int 
0

n(t, 1/f  - a)

t
dt

and

N(r, f) :=

r\int 
0

n(t, f)

t
dt,

where n(t, 1/f - a) is the number of a-points of f in | z| \leq t and, in particular, n(t, f) is the number
of poles of f in | z| \leq t. The characteristic function of f, denoted by T (r, f), is given by

T (r, f) = m(r, f) +N(r, f)

and it behaves like \mathrm{l}\mathrm{o}\mathrm{g}+M(r, f), whenever f happens to be an entire function, where M(r, f) =

= \mathrm{m}\mathrm{a}\mathrm{x}| z| =r | f(z)| . Further, we define

\delta (a, f) = 1 - \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
r\rightarrow \infty 

N(r, a, f)

T (r, f)

and is called the Nevanlinna deficiency of f at a, and the truncated defect is given by

\Theta (a, f) = 1 - \mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
r\rightarrow \infty 

N(r, a, f)

T (r, f)
,

where N(r, a, f) is the counting function of f corresponding to the distinct a-points of f, that is,
by ignoring the multiplicities of a-points of f.
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Theorem 1.3. Let \scrF be a family of transcendental entire functions and J(\scrF ) contains at least

three points. Then for any w0 \in J(\scrF ) and f \in \scrF with \Theta (w0, f) <
1

2
, there exist a sequence

\{ wn\} such that wn \rightarrow w0 and a sequence \{ fn\} \subset \scrF such that wn is a repelling fixed point of
f \circ fn.

The polynomial analogue of Theorem 1.3 also holds as follows theorem.
Theorem 1.4. If \scrF is a family of nonconstant polynomials in which for each w0 \in J(\scrF ), there

is P0 \in \scrF such that P0  - w0 has at least three distinct simple roots. Then J(\scrF ) is contained in the
closure of repelling fixed points of the polynomials of the form P \circ Q, where P, Q \in \scrF .

Definition 1.1. For a subfamily \scrF of \scrH (D) and z \in \BbbC , define

\scrO  - 
\scrF (z) :=

\bigl\{ 
w \in D : f(w) = z for some f \in \scrF 

\bigr\} 
=

\bigcup 
f\in \scrF 

f - 1\{ z\} 

and

E(\scrF ) := \{ z \in \BbbC : \scrO  - 
\scrF (z) is finite\} .

For a family \scrF of nonconstant entire functions and z0 \in \BbbC , \scrO  - 
\scrF (z0) is finite implies that f - 1\{ z0\} 

is finite for each f \in \scrF . In this case N(r, z0, f) = O(1) and, hence, \delta (z0, f) = 1 for all f \in \scrF .

While \delta (z0, f) = 1 for all f \in \scrF may not always imply that \scrO  - 
\scrF (z0) is finite as shown by the

following example.
Example 1.3. Let \scrF = \{ (z  - n) ez : n \in \BbbN \} . Then \scrF is a family of transcendental entire func-

tions and \scrO  - 
\scrF (0) = \{ n : n \in \BbbN \} is infinite and N(r, 0, f) = O(\mathrm{l}\mathrm{o}\mathrm{g}(r)) as r \rightarrow \infty and, hence,

\delta (0, f) = 1 for all f \in \scrF .

By an extension of Montel’s theorem [3, p. 203], it follows that if \scrO  - 
\scrF (z0) is omitted by \scrF on

some deleted neighborhood of some w \in J(\scrF ), then \scrO  - 
\scrF (z0) contains at most one point and, hence,

z0 \in E(\scrF ).

Let \scrF be a uniformly bounded family of holomorphic functions on a domain D. Then by
Montel’s theorem J(\scrF ) = \phi . Note that E(\scrF ) is an infinite set. Indeed, there exists M > 0 such
that | f(z)| \leq M for all f \in \scrF and so \{ w : | w| > M\} \subset E(\scrF ) showing that E(\scrF ) is uncountable.
Let \scrF = \{ f \in \scrH (D) : f omits two distinct fixed values a and b on D\} . Then by Montel’s theorem,
J(\scrF ) = \phi and E(\scrF ) = \{ a, b\} . The size of E(\scrF ) has a definite relation with J(\scrF ). In fact, we have
the following result.

Theorem 1.5. Let \scrF be a subfamily of \scrH (\scrD ).

(a) If E(\scrF ) \not = \phi , then, for z /\in E(\scrF ), J(\scrF ) \subseteq \scrO  - 
\scrF (z).

(b) If J(\scrF ) \not = \phi , then \#E(\scrF ) \leq 1.

Following example shows that E(\scrF ) may contain exactly one point.
Example 1.4. Let \scrF = \{ nz : n \in \BbbN \} be the family of entire functions. Then \scrO  - 1

\scrF (0) = \{ 0\} , it
follows that 0 \in E(\scrF ). Note that J(\scrF ) = \{ 0\} and, by Theorem 1.5, E(\scrF ) = \{ 0\} .

For a family \scrF of entire functions with F (\scrF ) \not = \phi , the set

F\infty (\scrF ) := \{ z \in F (\scrF ) : there is a sequence \{ fn\} \subset \scrF such that fn(z) \rightarrow \infty \} 

is an open as well as closed subset of F (\scrF ). Indeed, let z0 \in F\infty (\scrF ). Then there is a sequence
\{ fn\} such that fn(z0) \rightarrow \infty . By normality of \scrF at z0, there is a subsequence \{ fnk

\} of \{ fn\} which
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converges uniformly to \infty in some neighborhood U of z0 and, hence, U \subset F\infty (\scrF ). This proves
that F\infty (\scrF ) is an open subset of F (\scrF ). Similarly, F\infty (\scrF ) is closed also.

We say that f \in \partial (\scrF ) if and only if there is an open disk D(z0, r) \subset F (\scrF ) and a sequence \{ fn\} 
in \scrF such that \{ fn\} converges uniformly to f on D(z0, r) and f /\in \scrF . By using Vitali’s theorem
[1, p. 56], for a family \scrF of entire functions, f \in \partial (\scrF ) if and only if there is a sequence \{ fn\} \subset \scrF 
which converges locally uniformly to f on a component of F (\scrF ) and f /\in \scrF .

It is observed that F\infty (\scrF ) \not = \phi if and only if \infty \in \partial (\scrF ). Further, if F\infty (\scrF ) is a nonempty
proper subset of F (\scrF ), then F (\scrF ) is disconnected. Following example shows that the converse of
this statement is not true.

Example 1.5. Let \scrF 1 = \{ \mathrm{s}\mathrm{i}\mathrm{n} kz : k \in \BbbN \} . Then we show that J(\scrF 1) = \BbbR .
Let z0 \in \BbbC \setminus \BbbR . Then choose a disk D(z0, r) about z0 such that D(z0, r)\cap \BbbR = \phi . Note that for

every z \in D(z0, r) and k \in \BbbN , kz /\in \BbbR and

| \mathrm{s}\mathrm{i}\mathrm{n} kz| =
\sqrt{} 

\mathrm{s}\mathrm{i}\mathrm{n}2 kx \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}2 ky + \mathrm{c}\mathrm{o}\mathrm{s}2 kx \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}2 ky =

=

\sqrt{} 
(1 - \mathrm{c}\mathrm{o}\mathrm{s}2 kx) \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}2 ky + \mathrm{c}\mathrm{o}\mathrm{s}2 kx \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}2 ky =

=
\sqrt{} 

\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}2 ky  - \mathrm{c}\mathrm{o}\mathrm{s}2 kx
\bigl( 
\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}2 ky  - \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}2 ky

\bigr) 
=

=

\sqrt{} 
\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}2 ky  - \mathrm{c}\mathrm{o}\mathrm{s}2 kx.

Thus | \mathrm{s}\mathrm{i}\mathrm{n} kz| \rightarrow \infty as k \rightarrow \infty uniformly on D(z0, r). Therefore, \BbbC \setminus \BbbR \subset F (\scrF 1). Next, if
z0 \in \BbbR , then any disk D(z0, s) about z0 contains a segment of \BbbR which is mapped into [ - 1, 1] by
\mathrm{s}\mathrm{i}\mathrm{n} kz for every k \in \BbbN , whereas, for any other point z \in D(z0, s) \setminus \BbbR , | \mathrm{s}\mathrm{i}\mathrm{n} kz| \rightarrow \infty as k \rightarrow \infty .

So the family \scrF 1 = \{ \mathrm{s}\mathrm{i}\mathrm{n} kz : k \in \BbbN \} can not be normal on z0 \in \BbbR . Thus, \BbbR \subset J(\scrF 1). But
\BbbC \setminus \BbbR \subset F (\scrF 1), hence, J(\scrF 1) = \BbbR .

For \scrF 2 = \{ zn : n \in \BbbN \} , J(\scrF 2) = \{ z : | z| = 1\} . Let \scrF 3 = \scrF 2 \cup \scrF 1. Then, by Theorem 1.1,
J(\scrF 3) = \BbbR \cup \{ z : | z| = 1\} . Clearly, F (\scrF 3) is disconnected and consists of four components. But
F\infty (\scrF 3) is not proper subset of F (\scrF 3), since it can be easily shown that F\infty (\scrF 3) = F (\scrF 3).

2. Proof of main results. Proof of Theorem 1.1. (a) Clearly, J(\scrF 1) \cup J(\scrF 2) \subset J(\scrF 1 \cup \scrF 2).

To show that the other way inclusion, let z0 \in J(\scrF 1 \cup \scrF 2). Then, by Zalcman lemma [15], there is
a sequence \{ fn\} \subset \scrF 1 \cup \scrF 2 , a sequence of positive real numbers rn \rightarrow 0 and a sequence \{ zn\} :
zn \rightarrow z0 as n \rightarrow \infty such that fn(zn + rnz) converges locally uniformly on \BbbC to a nonconstant
entire function f(z). There is a subsequence \{ fnk

\} of \{ fn\} which lies entirely either in \scrF 1 or \scrF 2 and
fnk

(znk
+ rnk

z) converges locally uniformly on \BbbC to the nonconstant entire function f(z). Hence,
by the converse to Zalcman lemma, z0 \in J(\scrF 1)\cup J(\scrF 2). Therefore, J(\scrF 1 \cup \scrF 2) \subset J(\scrF 1)\cup J(\scrF 2).

(b) Suppose that \BbbC \setminus U contains at least two points. Since U =
\bigcup 

f\in \scrF 
f(N), each f \in \scrF omits

at least two distinct values on N and, hence, by Montel’s theorem, \scrF is normal in N, which is a
contradiction as zo \in J(\scrF ) \cap N. Hence, \BbbC \setminus U contains at most one point.

Proof of Theorem 1.2. (a) If J(\scrF ) = D, then there is nothing to prove. Suppose that J(\scrF ) \not = D.

Assume on the contrary that \mathrm{I}\mathrm{n}\mathrm{t}(J(\scrF )) \not = \phi . Let N be a neighborhood of some z \in J(\scrF ) such

that N \subset J(\scrF ). Since J(\scrF ) is forward invariant, U =
\bigcup 

f\in \scrF 
f(N) \subset J(\scrF ). By Theorem 1.1,

it follows that \BbbC \setminus J(\scrF ) contains at most one point. Since J(\scrF ) is properly contained in D, it
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follows that D = \BbbC and U = J(\scrF ). Since J(\scrF ) is closed in D = \BbbC , we have J(\scrF ) = \BbbC = D, a
contradiction. Hence, \mathrm{I}\mathrm{n}\mathrm{t}(J(\scrF )) = \phi .

To prove (b), suppose z0 \in J(\scrF ) is an isolated point. Then there exists a neighborhood V of
z0 such that V \setminus \{ z0\} \cap J(\scrF ) = \phi . Since f (F (\scrF )) \subset F (\scrF ) for all f \in \scrF , f (V \setminus \{ z0\} ) \subset F (\scrF )

for all f \in \scrF . So the family \scrF omits J(\scrF ) on V \setminus \{ z0\} . Therefore, by an extension of Montel’s
theorem [3, p. 203], \scrF is normal in V, which is a contradiction.

Proof of Theorem 1.3. We use the method of Schwick [13] to carry out the proof. Let f \in \scrF .

By an application of the second fundamental theorem of Nevanlinna [6, p. 44], the set

A =

\biggl\{ 
w : \Theta (w, f) \geq 1

2

\biggr\} 
contains at most two points. Since J(\scrF ) contains at least three elements, therefore, for w0 \in 
\in J(\scrF ) \setminus A, \Theta (w0, f) <

1

2
. This implies that the equation f(z) = w0 has infinitely many simple

roots a1, a2, . . . , say. Now by Zalcman lemma, there is a sequence fn \in \scrF , a sequence zn \rightarrow w0

and a sequence of positive real numbers rn \rightarrow 0, such that fn(zn + rnz) \rightarrow h(z), where h(z) is
nonconstant entire function. Continuity of f implies that f \circ fn(zn + rnz) \rightarrow f \circ h(z). If h is

transcendental, then for each an except for two values \Theta (an, h) <
1

2
and hence there exists b \in \BbbC 

such that h(b) = an and h\prime (b) \not = 0. Further, if h is a polynomial, then for each an, except for one
value, h(z) = an has simple roots. We pick up one value a1, say, such that there exists b \in \BbbC with
h(b) = a1, and h\prime (b) \not = 0 and, hence, f(h(b)) = w0, f

\prime (h(b))h\prime (b) \not = 0, that is, (f \circ h)
\prime 
(b) \not = 0.

Next, f \circ fn(zn + rnz)  - (zn + rnz) \rightarrow f \circ h(z)  - w0. Since f \circ h  - w0 has zero at z = b

and f \circ h  - w0 is not constant, by Hurwitz theorem, f \circ fn(zn + rnz)  - (zn + rnz) has zeros
at cn with cn \rightarrow b for all sufficiently large n. Thus wn = zn + rncn is a fixed point of f \circ fn.

Since, for large n, rn (f \circ fn)\prime (zn + rncn) = (f \circ fn(zn + rnz))
\prime (cn) \rightarrow (f \circ h)\prime (b) \not = 0 so that\bigm| \bigm| (f \circ fn)\prime (zn + rncn)

\bigm| \bigm| > 1.

The proof of Theorem 1.4 is on the similar lines as that of Theorem 1.3.
Proof of Theorem 1.5. (a) If J(\scrF ) = \phi , then there is nothing to prove. Suppose that J(\scrF ) \not = \phi .

Assume the contrary that there is z0 \in J(\scrF ) such that z0 /\in \scrO  - 
\scrF (z1) for some z1 \in \BbbC \setminus E(\scrF ), that

is, there is a neighborhood N of z0 such that N \cap \scrO  - 
\scrF (z1) = \phi . We choose a neighborhood N1 \subset N

of z0 such that (N1 \setminus \{ z0\} ) \cap \scrO  - 
\scrF (z2) = \phi for some z2 \in E(\scrF ) since \scrO  - 

\scrF (z2) is a finite set. Then
\cup f\in \scrF f(N1 \setminus \{ z0\} ) omits z1 and z2. Therefore, by an extension of Montel’s theorem [3, p. 203],
\scrF is normal in N1, which is a contradiction as z0 \in J(\scrF ) \cap N1.

(b) Suppose that E(\scrF ) \geq 2 and let z1, z2 \in E(\scrF ). Let z0 \in J(\scrF ). Since \scrO  - 
\scrF (z1) \cup \scrO  - 

\scrF (z2)

is a finite set, we choose a neighborhood N of z0 such that N \setminus \{ z0\} \cap 
\bigl( 
\scrO  - 

\scrF (z1) \cup \scrO  - 
\scrF (z2)

\bigr) 
= \phi 

and, hence, by an extension of Montel’s theorem, \scrF is normal in N, which is a contradiction as
z0 \in J(\scrF ) \cap N.
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