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СПIВIСНУВАННЯ ЦИКЛIВ НЕПЕРЕРВНОГО ПЕРЕТВОРЕННЯ
ПРЯМОЇ У СЕБЕ

Our main result can be formulated as follows: Consider the set of natural numbers in which the following relation is
introduced: n1 precedes n2 (n1 \preceq n2) if, for any continuous mappings of the real line into itself, the existence of а cycle
of order n2 follows from the existence of а cycle of order n1. The following theorem is true:

Theorem. The introduced relation transforms the set of natural numbers into an ordered set with the following
ordering:

3 \prec 5 \prec 7 \prec 9 \prec 11 \prec . . . \prec 3 \cdot 2 \prec 5 \cdot 2 \prec . . . \prec 3 \cdot 22 \prec 5 \cdot 22 \prec . . . \prec 23 \prec 22 \prec 2 \prec 1.

Основний результат цього дослiдження можна сформулювати так. Розглянемо множину натуральних чисел, у якiй
уведено вiдношення: n1 передує n2 (n1 \preceq n2), якщо для будь-яких неперервних вiдображень дiйсної прямої у
себе iснування циклу порядку n2 випливає з iснування циклу порядку n1. Справедлива така теорема.

Теорема. Уведене вiдношення перетворює множину натуральних чисел на впорядковану множину, до того ж
упорядковану в такий спосiб:

3 \prec 5 \prec 7 \prec 9 \prec 11 \prec . . . \prec 3 \cdot 2 \prec 5 \cdot 2 \prec . . . \prec 3 \cdot 22 \prec 5 \cdot 22 \prec . . . \prec 23 \prec 22 \prec 2 \prec 1.

Усяка неперервна функцiя дiйсної змiнної f(x),  - \infty < x < +\infty , породжує неперервне пере-
творення T прямої у себе: x \rightarrow f(x). Властивостi перетворення T визначаються в основному
структурою множини нерухомих точок перетворення T.

Нагадаємо, що точку \alpha називають нерухомою точкою порядку k перетворення T, якщо
T k\alpha = \alpha , T j\alpha \not = \alpha , 1 \leq j < k. Точки T\alpha , T 2\alpha , . . . , T k - 1\alpha також є нерухомими порядку k i
разом iз точкою \alpha складають цикл порядку k.

У цiй роботi дослiджується питання про залежнiсть мiж iснуванням циклiв рiзних порядкiв.
Основний результат цiєї роботи може бути сформульований у такiй формi. Розглянемо

множину натуральних чисел, у якiй уведено вiдношення: n1 передує n2 (n1 \prec n2), якщо для
всякого неперервного перетворення прямої у себе iснування циклу порядку n1 тягне за собою
iснування циклу порядку n2. Таке вiдношення, вочевидь, має властивостi рефлексивностi й
транзитивностi, а отже, множина натуральних чисел iз цим вiдношенням є квазiвпорядкованою
множиною1. Далi доведемо таку теорему.

Теорема. Уведене вiдношення перетворює множину натуральних чисел на впорядковану
множину, до того ж упорядковану в такий спосiб:

3 \prec 5 \prec 7 \prec 9 \prec 11 \prec . . . \prec 3 \cdot 2 \prec 5 \cdot 2 \prec . . . \prec 3 \cdot 22 \prec 5 \cdot 22 \prec . . . \prec 23 \prec 22 \prec 2 \prec 1. (*)

Термiнологiєю впорядкованих множин далi ми користуватися не будемо. Доведення теорем
по сутi спираються тiльки на теорему Больцано – Кошi про промiжне значення.

З неперервностi перетворення T одразу випливає, що якщо у перетворення T iснує цикл
порядку k > 1, то перетворення T має i нерухому точку першого порядку.

1Г. Биркгоф, Теория структур, Гостехиздат, Москва (1952), с. 16 – 21.
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6 О. М. ШАРКОВСЬКИЙ

Теорема 1. Якщо перетворення T має цикл порядку k > 2, то воно має i цикл другого
порядку2.

Нехай \alpha 1, \alpha 2, . . . , \alpha k — точки циклу, причому T\alpha i = \alpha i+1, i = 1, 2, . . . , k  - 1, T\alpha k = \alpha 1.

Нехай \alpha 1 < \alpha i (i \not = 1), \alpha r > \alpha i (i \not = r). Розглянемо iнтервал (\alpha 1, \alpha r - 1) (вважаємо, що
r > 2; якщо r = 2, то слiд узяти iнтервал (\alpha k, \alpha r)). Залежно вiд того, iснують на (\alpha 1, \alpha r - 1)

нерухомi точки першого порядку чи нi, через \beta позначимо або найближчу до \alpha r - 1 нерухому
точку першого порядку, або точку \alpha 1 (найближча до \alpha r - 1 точка, якщо на (\alpha 1, \alpha r - 1) є нерухомi
точки першого порядку, iснує завдяки неперервностi T ). Оскiльки T\alpha r - 1 = \alpha r > \alpha r - 1, то
Tx > x для x \in (\beta , \alpha r - 1]. Якщо \beta — нерухома точка першого порядку, то, як неважко бачити,
для будь-якого цiлого j > 0 знайдеться такий окiл точки \beta , що для всякого x > \beta iз цього
околу T jx > x. Якщо \beta = \alpha 1, то при 0 < j < k T j\beta = \alpha j+1 > \alpha 1 = \beta . З iншого боку,
T k - r+2\alpha r - 1 = \alpha 1 < \alpha r - 1. Отже, на iнтервалi (\beta , \alpha r - 1) внаслiдок неперервностi перетворення
T iснує точка \gamma така, що T k - r+2\gamma = \gamma . Оскiльки T\gamma \not = \gamma , то \gamma — нерухома точка порядку l,

де 1 < l \leq k  - r + 2 < k. А оскiльки завжди iснує нерухома точка порядку меншого за k, але
бiльшого за одиницю, то завжди iснує i нерухома точка другого порядку.

Формулюванню та доведенню наступних тверджень передують такi досить тривiальнi леми,
доведення яких наводимо лише для повноти.

Лема 1. Якщо T p\alpha = \alpha i точка \alpha є нерухомою точкою порядку k перетворення T, то p

кратне k.

Справдi, якщо \alpha — нерухома точка порядку k, то T k\alpha = \alpha , T j\alpha \not = \alpha , j < k. Нехай
p = ks+ r, r < k. Якщо припустити, що r \not = 0, то T r\alpha \not = \alpha i T p\alpha = T r T k . . . T k\underbrace{}  \underbrace{}  

s разiв

\alpha \not = \alpha .

Лема 2. Якщо для перетворення T \alpha є нерухомою точкою порядку k = 2nl, де l непарне,
то для перетворення S = T 2m точка \alpha є нерухомою точкою порядку

q =

\left\{   2n - ml, якщо n \geq m,

l, якщо n \leq m.

Доведення. За лемою 1 T p\alpha = \alpha тiльки при p = ki, i = l, 2, . . . . Припускаючи, що \alpha 

є нерухомою точкою перетворення S, знайдемо її порядок q. У цьому випадку Sq\alpha = \alpha ,

Sj\alpha \not = \alpha , 1 \leq i < q. Оскiльки Sq = T 2mq, то Sq\alpha = \alpha тодi i тiльки тодi, коли 2mq = ki, де i —

натуральне число. Звiдси q =
k

2m
i. Найменше значення i, за якого права частина буде цiлим

числом, i вiдповiдає шуканому значенню q. Справдi, за цього значення q, як неважко бачити,
Sq\alpha = \alpha , Sj\alpha \not = \alpha , коли j < q.

Якщо k = 2nl, де l непарне, то q = 2n - mli. При n \geq m i = 1 i, отже, q = 2n - ml. При
n < m i = 2m - n, тобто q = l.

Наслiдок. За припущень леми 2, якщо l > 1, то нерухома точка \alpha для перетворення S

має порядок, вищий за другий.

Лема 3. Точка \alpha є нерухомою точкою порядку 2m перетворення T тодi i тiльки тодi,
коли T 2m\alpha = \alpha , T 2m - 1

\alpha \not = \alpha .

2Це твердження мiститься в [1]. Тут наведено бiльш чiтке його доведення.
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Необхiднiсть умов очевидна.

Достатнiсть. Якщо T 2m\alpha = \alpha , то \alpha може бути нерухомою точкою порядку 2j , j =

0, 1, . . . ,m (лема 1). Оскiльки T 2m - 1
\alpha \not = \alpha , то i T 2j\alpha \not = \alpha за будь-якого j < m  - 1, оскiльки

T 2m - 1
= T 2j

\bigl( 
T 2j . . . T 2j

\bigr) 
. . .\underbrace{}  \underbrace{}  

2m - j - 1 разiв

). Таким чином, \alpha є нерухомою точкою порядку 2m.

Теорема 2. Якщо перетворення T має цикл порядку 2n, n > 1, то перетворення T має
цикли порядку 2i, i = 1, 2, . . . , n - 13.

Нехай \alpha — нерухома точка порядку 2n. Покажемо, що T має нерухому точку порядку 2m,

1 \leq m < n.

Покладемо T 2m - 1
= S. Згiдно з лемою 2 точка \alpha для перетворення S є нерухомою точкою

порядку 2n - m+1, тобто вищого за другий. За теоремою 1 для S iснує нерухома точка \beta другого
порядку: S2\beta = \beta , S\beta \not = \beta . Отже, T 2m\beta = \beta , T 2m - 1

\beta \not = \beta .

Аналогiчно доводиться така теорема.

Теорема 3. Якщо перетворення T має цикл порядку k, вiдмiнного вiд степеня двiйки, то
у перетворення T є цикли порядку 2i , i = 1, 2, 3, . . . .

Нехай \alpha — нерухома точка порядку k. Покажемо, що у T iснує нерухома точка \beta порядку
2m, де m \geq 1.

Покладемо T 2m - 1
= S. За наслiдком iз леми 2 точка \alpha є для перетворення S нерухомою

точкою порядку, вищого за другий. Згiдно з теоремою 1 для S iснує нерухома точка \beta другого
порядку. Тож S2\beta = \beta , S\beta \not = \beta , тобто T 2m\beta = \beta , T 2m - 1

\beta \not = \beta .

З теореми 3 випливає, що iснують перетворення, якi мають цикли як завгодно високого
порядку, оскiльки перетворення, яке має цикл заданого порядку, зокрема вiдмiнного вiд степеня
двiйки, завжди легко побудувати.

Теорема 3 показує також, що достатньо функцiю f(x), яка задає перетворення T, зафiк-
сувати у скiнченному числi точок (що утворюють цикл), наприклад у трьох, i iснуватиме
нескiнченно багато циклiв незалежно вiд того, як ми мiнятимемо (неперервним чином) значен-
ня f(x) в iнших точках прямої.

Розглянемо множину нерухомих точок, що утворюють один цикл. Нехай точки \alpha 1, \alpha 2 =

T\alpha 1, . . . , \alpha k = T\alpha k - 1 утворюють цикл k-го порядку. Розiб’ємо точки циклу на двi множини
M1 i M2 такi, що \alpha i \in M1, якщо \alpha i < T\alpha i, та \alpha i \in M2, якщо \alpha i > T\alpha i. Нехай \alpha M1 =

\mathrm{m}\mathrm{a}\mathrm{x}\alpha i\in M1 \alpha i, \alpha M2 = \mathrm{m}\mathrm{i}\mathrm{n}\alpha i\in M2 \alpha i. Можуть виникнути два випадки: або \alpha M1 < \alpha M2 , або
\alpha M1 > \alpha M2 .

Лема 4. Якщо \alpha M1 > \alpha M2 , то перетворення T має цикли будь-якого порядку.

Виберемо з усiх точок, що належать M1 i бiльшi за \alpha M2 , ту, у якiй значення функцiї f(x), що
задає перетворення T, є найбiльшим. Позначимо її через \beta . Оскiльки T\alpha M2 < \alpha M2 , T\beta > \beta , то
множина всiх нерухомих точок першого порядку на iнтервалi (\alpha M2 , \beta ) є множиною непорож-
ньою та замкненою (внаслiдок неперервностi перетворення T ). Нехай точка \gamma є найбiльшою
на цьому iнтервалi нерухомою точкою першого порядку. Тодi T\gamma = \gamma i Tx > x на (\gamma , \beta ].

Iнтервал (\gamma , T\beta ] вибрано так, що вiн мiстить нерухомi точки даного циклу (наприклад, \beta ,

T\beta ). Оскiльки при послiдовному застосуваннi перетворення T до будь-якої точки циклу цикл

3 Твердження теорем 2 i 3 наведено в [2].
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Рис. 1

повинен замкнутися, то на (\gamma , T\beta ] повинна iснувати принаймнi одна точка \delta циклу така, що
або T\delta > T\beta , або T\delta < \gamma . Перша з нерiвностей неможлива. Справдi, якщо \delta \in M2, то
T\delta < \delta < T\beta , а якщо \delta \in M1, то T\delta < T\beta згiдно з вибором точки \beta . Отже, на (\gamma , T\beta ] iснує
точка \delta циклу, для якої T\delta < \gamma (можливо, \delta = T\beta ). I тому що на (\gamma , \beta ] Tx > x, то точка
\delta \in (\beta , T\beta ]. Отримана схема (рис. 1): T\gamma = \gamma , Tx > x на (\gamma , \beta ], \delta \in (\beta , T\beta ] та T\delta < \gamma 

(назвемо її L-схемою) i забезпечує iснування циклiв усiх порядкiв.

Справдi, T (\gamma , \beta ] \supseteq (\gamma , T\beta ]4, а отже, на (\gamma , \beta ] iснує непорожня замкнена множина точок,
якi T перетворює за один крок у точку \delta . Найменшу з них позначимо \delta 1. Аналогiчно, позаяк
T (\gamma , \delta 1] = (\gamma , \delta ], на (\gamma , \delta 1] iснує непорожня замкнена множина точок, якi T перетворює за один
крок у точку \delta 1. Найменшу з них позначимо \delta 2. Очевидно, \gamma < \delta 2 < \delta 1 i T (\gamma , \delta 2] = (\gamma , \delta 1].

Продовжуючи процес побудови точок \delta i, отримуємо послiдовнiсть \delta > \delta 1 > \delta 2 > . . . > \delta i - 1 >

\delta i > . . . > \gamma , причому T\delta i = \delta i - 1. Очевидно, T i\delta i - 1 = T\delta , T i\delta i = \delta . Отже, T i\delta i > \delta i,

T i\delta i - 1 < \delta i - 1 i завдяки неперервностi перетворення T i на iнтервалi (\delta i, \delta i - 1) iснує принаймнi
одна точка \rho i така, що T i\rho i = \rho i. Оскiльки T j(\gamma , \delta i - 1] = (\gamma , \delta i - j - 1] \subset (\gamma , \delta 1] при j < i - 1 i на
(\gamma , \delta 1] Tx > x, то T jx > x на (\gamma , \delta i - 1] при 1 \leq j < i. Тож T j\rho i \not = \rho i, коли 1 \leq j < i, тобто \rho i
є нерухомою точкою i-го порядку.

Лему доведено.

Зауваження. Якщо iснує нерухома точка першого порядку, яка менша за \alpha M1 (але бiльша
за \alpha min = \mathrm{m}\mathrm{i}\mathrm{n}i=1,2,...,k \alpha i), то у перетворення T можна виокремити, як i вище, L-схему. Звiдси
випливає, що перетворення T, незалежно вiд розташування точок циклу, має цикли будь-якого
порядку.

Якщо iснує нерухома точка першого порядку, що бiльша за \alpha M2 (але менша за \alpha max =

\mathrm{m}\mathrm{a}\mathrm{x}i=1,2,...,k \alpha i), то у перетворення T можна виокремити схему, що є вiдображенням L-схеми
щодо точки \gamma як центра. Аналогiчно тому, як i при доведеннi леми 4, показується, що така
схема також гарантує iснування циклiв усiх порядкiв.

Перейдемо до випадку, коли \alpha M1 < \alpha M2 . Має мiсце

Лема 5. Якщо \alpha M1 < \alpha M2 та iснує така точка \alpha \in M1, що i T\alpha \in M1, то перетворення
T має цикли непарних порядкiв, бiльших за k, та всiх парних порядкiв.

4 Пiд T (\gamma , \beta ] розумiємо множину образiв точок, якi належать (\gamma , \beta ].
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Рис. 2 Рис. 3

Лема справедлива i при \alpha \in M2, T\alpha \in M2.

Почнемо з виокремлення схеми, яка й приведе до доведення леми.
Нехай n = \mathrm{m}\mathrm{i}\mathrm{n} j i \beta — та з точок \xi , для яких досягається

\mathrm{m}\mathrm{i}\mathrm{n}
T j\xi \leq \alpha 

\xi \in M1, \xi \geq T\alpha 

(або, якщо таких точок кiлька, одна з них). Отже, Tn\beta = \gamma \leq \alpha , T i\beta > \alpha , i < n. Розглянемо
послiдовнiсть T\beta , T 2\beta , T 3\beta , . . . . Нехай T l\beta — перша точка цiєї послiдовностi, що належить
M1. Легко бачити, що T l\beta < T\alpha . Справдi, якби було T l\beta > T\alpha (очевидно, T l\beta \not = T\alpha ), то тодi
зазначений вище \mathrm{m}\mathrm{i}\mathrm{n} j мав би бути меншим за n. Оскiльки T\beta > \beta \geq T\alpha , то T\beta \in M2, i, отже,
l \geq 2. Позначимо точку T l - 1\beta через \delta . Точка \delta \in (\beta , T\beta ] i T\delta < T\alpha . Проведенi мiркування
звелися до побудови картинки, зображеної на рис. 2. Отриману схему назвемо M -схемою.

Розглянемо iнтервал [\beta , \delta ] (рис. 3). Нехай точка \eta — найбiльша з тих точок x iнтервалу,
для яких Tx = T\beta (можливо, \eta = \beta ). На iнтервалi (\eta , \delta ) Tx < T\beta . Оскiльки T\eta = T\beta \geq \delta ,

T \delta < T\alpha \leq \eta , то на (\eta , \delta ) iснує принаймнi одна точка \zeta така, що T\zeta = \eta . Якщо таких точок на
iнтервалi [\eta , \delta ] бiльше однiєї, вважатимемо, що \zeta — найменша з них. Таким чином, T\eta = T\beta ,

T\zeta = \eta i для всiх x \in (\eta , \zeta ) \eta < Tx < T\beta . Далi на iнтервалi [\eta , \zeta ] вiзьмемо точку \xi , найбiльшу
з тих точок x, для яких Tx = \zeta . Для всiх x \in (\xi , \zeta ) \eta < Tx < \zeta .

Для бiльшої наочностi подальших мiркувань побудуємо приблизний графiк функцiї f(f(x))
на iнтервалi [\xi , \zeta ] (рис. 4). Маємо T 2\xi = \eta < \xi , T 2\zeta = T\beta > \zeta , \eta < T 2x < T\beta на (\xi , \zeta ). Нехай
\omega 1 \leq \omega 2 — вiдповiдно найменша й найбiльша з тих точок iнтервалу [\xi , \zeta ], у яких T 2x = x.

Очевидно, T\omega 1 = \omega 2, T\omega 2 = \omega 1 , тобто \omega 1 i \omega 2 утворюють цикл другого порядку, або, якщо
\omega 1 = \omega 2 = \omega , то \omega — нерухома точка першого порядку5. Навiть бiльше, T (\xi , \omega 1) = (\omega 2, \zeta ),

T (\omega 2, \xi ) = (\eta , \omega 1).

5Справдi, T\omega 2 \geq \omega 1, тому що T 2(T\omega 2) = T\omega 2, i, отже, T\omega 2 \in (\xi , \omega 1). Аналогiчно, T\omega 1 \leq \omega 2. Тому T [\xi , \omega 1] \supseteq 
[\omega 2, \zeta ] i на [\xi , \omega 1] знайдеться точка \chi така, що T\chi = \omega 2. Для будь-якого x \in [\xi , \omega 1] T 2x \leq x. Таким чином,
\chi \geq T 2\chi = T\omega 2 \geq \chi , звiдки T 2\chi = \chi , тобто \chi = \omega 1.
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10 О. М. ШАРКОВСЬКИЙ

Рис. 4 Рис. 5

Аналогiчно тому, як зроблено вище для L-схеми, побудуємо послiдовнiсть \zeta = \theta 0 > \theta 1 >

\theta 2 > . . . > \omega 2 таку, що T 2\theta i = \theta i - 1, T
2(\omega 2, \theta i) = (\omega 2, \theta i - 1), i послiдовнiсть \xi = \varkappa 0 < \varkappa 1 <

\varkappa 2 < . . . < \omega 1 таку, що T 2\varkappa i = \varkappa i - 1, T
2(\varkappa i, \omega 1) = (\varkappa i - 1, \omega 1). Отже, T 2i+1(\omega 2, \theta i) = (\eta , \omega 1) i

T 2i+2(\varkappa i, \omega 1) = (\eta , \omega 1).

Оскiльки T\alpha < \eta , T\eta = T\beta > \zeta , то на iнтервалi (\alpha , \eta ) iснують точки, значення функцiї
f(x) у яких дорiвнює \omega 1, \omega 2, \eta , \theta i, \varkappa i, i = 0, 1, 2, . . . . Завжди знайдуться такi точки \lambda 1,

\lambda 2, \mu 0, \nu  - 1 \in (\alpha , \eta ), що T\lambda 1 = \omega 1, T\lambda 2 = \omega 2, T\mu 0 = \theta 0 = \zeta , T\nu  - 1 = \eta i T (\nu  - 1, \lambda 1) =

(\eta , \omega 1), T (\lambda 2, \omega 0) = (\omega 2, \zeta ). Далi можна знайти точки \mu i, i = 1, 2, . . . , так, щоб T\mu i = \theta i,

T (\lambda 2, \mu i) = (\omega 2, \theta i), i точки \nu i, i = 0, 1, 2, . . . , такi, що T\nu i = \varkappa i, T (\nu i, \lambda 1) = (\varkappa i, \omega 1).

Очевидно, T 2i+2\mu i = \eta , T 2i+2(\lambda 2, \mu i) = (\eta , \omega 1) i T 2i+3\nu i = \eta , T 2i+3(\nu i, \lambda 1) = (\eta , \omega 1).

Позаяк T\eta = T\beta , то Tn\eta = \gamma (n — найменше додатне число таке, що Tn\beta \leq \alpha ). Для
того щоб перейти вiд однiєї точки циклу до iншої, потрiбно не бiльше нiж k - 1 крокiв, i тому
n \leq k  - 1. Неважко бачити, якщо \gamma = \alpha , \beta = T\alpha , то n = k  - 1.

Покажемо, що перетворення T має нерухомi точки непарного порядку, бiльшого за k.

Нехай n парне. У цьому випадку n+ 2i+ 3 (i \geq 0) непарне та iснує нерухома точка порядку
s = n+ 2i+ 3. Справдi, T s\lambda 1 = \omega 1 > \lambda 1, T

s\nu i = \gamma < \nu i, i, отже, на iнтервалi (\nu i, \lambda 1) iснують
точки x такi, що T sx = x. Нехай \rho s — найбiльша з них. Стверджується, що \rho s — нерухома точка
порядку s. Оскiльки s непарне, то \rho s може бути лише точкою непарного порядку (лема 1).
Припустимо, що \rho s — нерухома точка порядку r, де r < s i непарне. Точка T\rho s \in (\varkappa i, \omega 1), i
знайдеться така точка \pi \prime \in 

\bigl( 
\varkappa i+ s - r

2
, \omega 1

\bigr) 
, що T s - r\pi \prime = T\rho s.

Оскiльки T 2x < x на (\varkappa j , \omega 1), j = 0, 1, 2, 3, . . . , та T s - r = T 2(T 2(. . . T 2) . . .)\underbrace{}  \underbrace{}  
s - r
2

разiв

, то T\rho s <

\pi \prime < \omega 1. Iснує точка \pi \prime \prime така, що \rho s < \pi \prime \prime < \lambda 1 i T\pi \prime \prime = \pi \prime . Отже, \rho s < \pi \prime \prime < \lambda 1 i T s\pi \prime \prime =

T r - 1T s - rT\pi \prime \prime = T r - 1T s - r\pi \prime = T r - 1T\rho s = T r\rho s = \rho s < \pi \prime \prime , i, отже, на iнтервалi (\pi \prime \prime , \lambda 1)

iснує точка \rho \prime s, у якiй T s\rho \prime s = \rho \prime s; \rho s < \rho \prime s, а це суперечить тому, що \rho s — найбiльша з усiх
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точок x \in (\nu i, \lambda 1) таких, що T sx = x. Непарне число s = n+ 3 (i = 0) завжди не перевищує
найменшого непарного числа, бiльшого за k, i, отже, при парному n iснування нерухомих
точок непарного порядку, бiльшого за k, доведено.

Якби n було непарним, потрiбно було б замiсть послiдовностi \{ \nu i\} скористатися послiдов-
нiстю точок \mu i.

Покажемо тепер, що перетворення T має нерухомi точки будь-якого парного порядку. Нехай
n парне. У цьому випадку слiд використовувати послiдовнiсть \{ \mu i\} . Покладемо s = n+2i+2,

T s\lambda 2 = \omega 2 > \lambda 2, T s\mu i = \gamma < \mu i, i, отже, на iнтервалi (\lambda 2, \mu i) iснують точки x такi, що
T sx = x. Нехай \sigma s — одна з цих точок. Стверджується, що при s \geq 2k  - 2 \sigma s є нерухомою
точкою порядку s. Справдi, оскiльки T s\sigma s = \sigma s, то \sigma s є або нерухомою точкою s-го порядку,
або нерухомою точкою меншого порядку r, якому кратне s (лема 1). Очевидно, r \leq s

2
, i тому,

якщо T j\sigma s \not = \sigma s при 1 \leq j \leq s

2
, то \sigma s — нерухома точка порядку s. На iнтервалi (\lambda 2, \mu i)

T jx > \eta > x при будь-якому 1 \leq j \leq s - n, тому що T j(\lambda 2, \mu i) \subset (\eta , \zeta ), коли l < s - n. Таким
чином, при s  - n \geq s

2
точка \sigma s є нерухомою точкою порядку s. А остання нерiвнiсть завжди

виконується при s \geq 2k  - 2.

Аналогiчно доводиться iснування нерухомих точок парного порядку s \geq 2k - 2 при непар-
ному n, але вже за допомогою точок \nu i.

Залишилося показати, що T має нерухомi точки парного порядку, меншого за 2k - 2. Перш
нiж завершити доведення леми 5, доведемо таку лему.

Лема 6. Якщо перетворення T має цикл непарного порядку, то воно має цикли будь-якого
парного порядку.

Розглянемо множини M1 i M2. Якщо \alpha M1 > \alpha M2 , то iснують цикли всiх порядкiв (лема 4).
Нехай \alpha M1 < \alpha M2 . Точки циклу непарного порядку для перетворення S = T 2 також утворюють
цикл k-го порядку (лема 2). Для перетворення S можна скласти аналогiчно множинам M1

i M2 множини M2
1 i M2

2 , вважаючи, що \alpha i \in M2
1 , якщо \alpha i < T 2\alpha i, i \alpha i \in M2

2 , якщо
\alpha i > T 2\alpha i. Нехай \alpha M2

1 — найбiльша точка з M2
1 , а \alpha M2

2
— найменша точка з M2

2 . Покажемо,
що перетворення S має цикли всiх порядкiв.

Оскiльки \alpha M1 < \alpha M2 , то перетворення T має нерухому точку \gamma першого порядку таку, що
\alpha M1 < \gamma < \alpha M2 . Ця точка є нерухомою точкою першого порядку i для перетворення S = T 2.

Якщо \alpha M2
1 \not = \alpha M1 (а отже, i \alpha M2

2
\not = \alpha M2 ), то або \alpha M2

1 \in M2 i \gamma < \alpha M2
1 , або \alpha M2

2
\in M1 i

\gamma > \alpha M2
2
. Залишилося скористатися зауваженням до леми 4.

Нехай \alpha M2
1 = \alpha M1 , а отже, i \alpha M2

2
= \alpha M2 , M2

1 = M1, M2
2 = M2. Нехай точка \alpha 1 —

найменша з усiх точок \alpha i, i = 1, 2, . . . , k. Тодi \alpha k \in M2. Оскiльки \alpha k - 1 > \alpha 1, то \alpha k - 1 \in M2
2 ,

i, отже, \alpha k - 1 \in M2. Таким чином, \alpha k - 1 > \alpha k. Нехай точка \alpha r — найбiльша з усiх точок \alpha i,

i = 1, 2, . . . , k. Точка \alpha r - 1 \in M1 i, отже, \alpha 1 < \alpha r - 1 < \alpha k. Оскiльки на iнтервалi (\alpha k, \alpha k - 1)

функцiя f(x) набуває принаймнi всiх значень з iнтервалу (\alpha 1, \alpha k), то на (\alpha k, \alpha k - 1) знайдеться
точка \delta така, що T\delta = \alpha r - 1. Насамкiнець, нехай \omega — найбiльша з тих точок x \in [\gamma , \delta ), для
яких Sx = x (на [\gamma , \delta ) принаймнi одна точка така, що Sx = x, iснує, оскiльки S\gamma = \gamma ).

Отже, маємо S\omega = \omega , S\delta = \alpha r > \delta , Sx > x на (\omega , \delta ], \alpha k - 1 \in (\delta , \alpha r) та S\alpha k - 1 = \alpha 1 < \omega .

Нам вдалося у перетворення S видiлити L-схему (див. доведення леми 4), яка й забезпечує
iснування у S циклiв усiх порядкiв.
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12 О. М. ШАРКОВСЬКИЙ

Рис. 6 Рис. 7

З того, що перетворення S має цикли всiх порядкiв, одразу випливає iснування циклiв пар-
ного порядку у перетворення T. Покажемо, наприклад, що перетворення T має цикл порядку
l = 2l1.

Нехай точка \alpha є нерухомою точкою порядку l1 перетворення S. Це означає, що Sl1\alpha = \alpha 

i Sj1\alpha \not = \alpha , 1 \leq j1 < l1, тобто T l\alpha = \alpha i T j\alpha \not = \alpha , де j — будь-яке парне число, менше за l.

Оскiльки S\alpha \not = \alpha , то i T\alpha \not = \alpha . Отже, або точка \alpha є нерухомою точкою порядку l перетворення
T, або точка \alpha є нерухомою точкою непарного порядку l2 (але не першого), причому l2 \leq l1

6.
Але для циклу непарного порядку завжди виконуються умови або леми 4, або леми 5. Справдi,
оскiльки цикл мiстить непарне число точок, то або в M1 їх бiльше, або в M2. Нехай для
визначеностi в M1 бiльше точок, нiж в M2. Тодi обов’язково в M1 знайдеться точка \mu така, що
T\mu \in M1, тому що в протилежному випадку кiлькiсть точок у M1 не могла б перевищувати
число точок у M2. Отже, оскiльки для перетворення T , яке має цикл порядку l2, виконуються
умови або леми 4, або леми 5, то T повинно мати цикли парного порядку \geq 2l2  - 2, а отже, i
порядку l.

Лему 6 доведено.

Цим самим завершується й доведення леми 5. Оскiльки при її доведеннi вже встановлено
iснування циклiв непарного порядку (бiльшого за k), то, отже, iснують цикли i всiх парних
порядкiв.

Завдяки всьому викладеному вище має мiсце така теорема.

Теорема 4. Якщо перетворення T має цикл непарного порядку k, то воно має цикли
непарних порядкiв, бiльших за k, i всiх парних порядкiв.

Теорему 4 не можна посилити. Зараз буде побудовано приклад перетворення T, яке має
цикл порядку 2m+ 1, але не має циклiв порядку 2j  - 1, j = 2, 3, . . . ,m.

6 З леми 2, взагалi кажучи, випливає, що для перетворення T точка \alpha є нерухомою точкою порядку 2l1, якщо
l1 парне, i 2l1 або l1, якщо l1 непарне.
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Рис. 8

Нехай точки \alpha i, i = 1, 2, . . . , 2m+1, утворюють цикл порядку 2m+1, причому \alpha i+1 = T\alpha i,

i = 1, 2, . . . , 2m, \alpha 1 = T\alpha 2m+1, i нехай \alpha 1 < \alpha 2m < \alpha 2m - 2 < . . . < \alpha 2 < \alpha 3 < . . . < \alpha 2m+1.

Припускаємо, що неперервна функцiя f(x), яка задає перетворення T, при x \leq \alpha 1 дорiвнює
\alpha 2, при x \geq \alpha 2m+1 дорiвнює \alpha 1, а при \alpha 1 \leq x \leq \alpha 2m+1 є кусково-лiнiйною функцiєю з
вершинами в точках (\alpha 1, \alpha 2), (\alpha 2, \alpha 3), . . . , (\alpha 2m, \alpha 2m+1), (\alpha 2m+1, \alpha 1) площини (x, y).

Неважко перевiрити, що

T 2j - 1(\alpha 1, \alpha 2m] = (\alpha 2j , \alpha 2m+1],

T 2j - 1(\alpha 2i+2, \alpha 2i] =

\left\{   [\alpha 2(i+j) - 1, \alpha 2(i+j)+1), якщо 2 \leq i+ j \leq m,

(\alpha 2(i+j - m), \alpha 2m+1], якщо m+ 1 \leq i+ j \leq 2m - 1,

T 2j - 1[\alpha 2i+1, \alpha 2i+3) =

\left\{         
(\alpha 2(i+j)+2, \alpha 2(i+j)], якщо 2 \leq i+ j \leq m - 1,

(\alpha 1, \alpha 2m], якщо i+ j = m,

[\alpha 1, \alpha 2(i+j - m)+1), якщо m+ 1 \leq i+ j \leq 2m - 1,

i = 1, 2, . . . ,m - 1, j = 1, 2, . . . ,m.

Якщо T\beta = \beta , то

T 2j - 1(\alpha 2, \beta ) = (\beta , \alpha 2j+1), 1 \leq j \leq m,

T 2j - 1(\beta , \alpha 3) =

\left\{   (\alpha 2j+2, \beta ), якщо 1 \leq j < m,

(\alpha 1, \beta ), якщо j = m.

Насамкiнець зауважимо, що при будь-якому x \leq \alpha 1 T 2j - 1x = \alpha 2j , x \geq \alpha 2m+1, T
2j - 1x =

\alpha 2j - 1, 1 \leq j \leq m.
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Таким чином, T 2j - 1x > x, коли x < \beta , T 2j - 1x < x, якщо x > \beta , при будь-якому
1 \leq j \leq m, i, отже, у перетворення T вiдсутнi цикли порядку 3, 5, . . . , 2m - 1.

Теорему 4 можна узагальнити на випадок, коли у перетворення T iснує цикл будь-якого
порядку, вiдмiнного вiд степеня двiйки.

Теорема 5. Якщо перетворення T має цикл порядку k = 2nl, де l > 1 — непарне число,
то перетворення T має цикли порядку 2nr, де r > l — будь-яке непарне число, i цикли порядку
2n+1s, де s — будь-яке натуральне число.

Доведення. Якщо n = 0, то отримуємо теорему 4, яку вже доведено. Припустимо, що
твердження теореми правильнi при n = m - 1, i покажемо, що вони правильнi й при n = m.

Нехай перетворення T має нерухому точку \alpha порядку 2ml. Покажемо, наприклад, що в
цьому випадку T має i нерухому точку порядку 2mr0, r0 > l i непарне. Для перетворення S =

T 2 точка \alpha є нерухомою точкою порядку 2m - 1l (лема 2) i, згiдно зi зробленим припущенням,
перетворення S повинно мати нерухому точку \beta порядку 2m - 1r0. Це означає, що S2m - 1r0\beta =

\beta , Sj\beta \not = \beta , j = 1, 2, 3, . . . , 2m - 1r0  - 1, тобто T 2mr0\beta = \beta та T i\beta \not = \beta за будь-якого парного
i, меншого за 2mr0; T\beta \not = \beta , оскiльки в iншому випадку було б S\beta = \beta . Отже, або точка
\beta — нерухома точка порядку 2mr0 перетворення T, або точка \beta — нерухома точка непарного
порядку, i тодi, за теоремою 3, у перетворення T iснують нерухомi точки будь-якого парного
порядку, i, отже, знайдеться нерухома точка \gamma порядку 2mr0.

Абсолютно аналогiчно показується, що у T є й нерухомi точки порядку 2m+1s, де s —
будь-яке натуральне число.

Таким чином, твердження теореми 5 правильнi при будь-якому n.

Теореми 2, 3, 5 i той факт, що нерухома точка першого порядку завжди iснує, якщо є
нерухомi точки порядку, вищого за перший, можна об’єднати в одну теорему.

Теорема 6. Якщо перетворення T має цикл порядку 2n, n > 0, то перетворення T має
i цикли порядкiв 2i, i = 0, 1, . . . , n  - 1. Якщо перетворення T має цикл порядку 2n(2m + 1),

n \geq 0, m > 0, то перетворення має i цикли порядкiв 2i, i = 0, 1, . . . , n, 2n(2r + 1), r =

m+ 1,m+ 2, . . . , 2n+1s, s = 1, 2, 3, . . . .

Зауваження. Нехай \alpha 1, \alpha 2, . . . , \alpha k — точки даного циклу k-го порядку i a = \mathrm{m}\mathrm{i}\mathrm{n}i \alpha i,

b = \mathrm{m}\mathrm{a}\mathrm{x}i \alpha i. Твердження теореми 6 стосуються лише точок iнтервалу [a, b]. Поза [a, b] у
перетворення, можливо, немає жодної точки циклу. Так, точки циклiв перетворення \=T : \=Tx =

Ta, якщо x \leq a, \=Tx = Tx при a \leq x \leq b, \=Tx = Tb, якщо x \geq b, належать [a, b].

Назвемо дiаметром циклу \alpha 1, \alpha 2, . . . , \alpha k величину d\alpha 1,...,\alpha k
= \mathrm{m}\mathrm{a}\mathrm{x}1\leq i, j\leq k | \alpha i  - \alpha j | . Для

будь-якого n, наступного за k в (*), знайдеться цикл \beta 1, . . . , \beta n, для якого d\beta 1,...,\beta n < d\alpha 1,...,\alpha k
.

Крiм того, як легко бачити, iснує стала C, залежна вiд \alpha 1, . . . , \alpha k i така, що для будь-якого
m > 1, наступного за k в (*), знайдеться цикл \gamma 1, . . . , \gamma m, для якого d\gamma 1,...,\gamma m > C.

Побудуємо приклад, який показує, що теорема 6 повнiстю розв’язує питання про iснування
циклiв одних порядкiв залежно вiд iснування циклiв iнших порядкiв.

Нехай у площинi (x, y) задано точки A(1)(x(1), y(1)), A(2)(x(2), y(2)), . . . , A(k)(x(k), y(k)),

причому x(1) < x(2) < . . . < x(k). Цi точки визначають таку неперервну функцiю f(x):
при x \in [x(1), x(k)] f(x) — кусково-лiнiйна функцiя з вершинами в точках A(1), . . . , A(k), при
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Рис. 9 Рис. 10

x \leq x(1) f(x) = y(1) = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}, при x \geq x(k) f(x) = y(k) = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}. Перетворення, яке задає така
функцiя, позначимо через TA(1)A(2)...A(k) .

Проведемо побудову, не вдаючись у докладнi пояснення.
Вiзьмемо в площинi двi точки A1 i A2, симетричнi щодо бiсектриси першого i третього

координатних кутiв. Легко бачити, що перетворення TA1A2 має лише цикли першого i другого
порядкiв. Проведемо через точку A1 пряму a1, перпендикулярну бiсектрисi, а через точку A2

пряму a2, паралельну бiсектрисi. Вiзьмемо на a1 точки A11 i A12, симетричнi щодо A1, i
на a2 точки A21 i A22, симетричнi щодо A2, причому так, щоб | x11  - x12| = | x21  - x22| \leq 
| x1  - x2| 

2
(через xr позначаємо абсцису точки Ar ). Можна переконатися, що перетворення

TA11A12A21A22 має цикли тiльки першого, другого i четвертого порядкiв. Тепер через точки
A11, A12, A21 потрiбно провести прямi a11, a12, a21, перпендикулярнi бiсектрисi, через точ-
ку A22 — пряму a22, паралельну бiсектрисi (вочевидь, a11, a12 збiгатимуться з a1 i a22 —
з a2). Потiм, як i вище, на цих прямих потрiбно взяти точки A111, A112, A121, . . . , A222,

симетричнi щодо A11, A12, A21, A22 i такi, що | x111  - x112| = | x121  - x122| = | x211  - 

x212| = | x221  - x222| \leq | x11  - x12| 
2

i т. д. Слiд зауважити, що прямi, паралельнi (i пер-

пендикулярнi) до бiсектриси, можна проводити через будь-якi точки i через будь-яку їхню
кiлькiсть, але обов’язково непарну. Перетворення TA11...11\underbrace{}  \underbrace{}  

n+1

A11...12\underbrace{}  \underbrace{}  
n+1

A22...22\underbrace{}  \underbrace{}  
n+1

має лише цикли по-

рядкiв 1, 2, 22, . . . , 2n+1. Нехай для визначеностi пряма a11 . . . 11\underbrace{}  \underbrace{}  
n

перпендикулярна бiсектрисi.

Замiнимо двi точки A111 . . . 11\underbrace{}  \underbrace{}  
n+1

(x11...11, y11...11), A111 . . . 12\underbrace{}  \underbrace{}  
n+1

(x11...12, y11...12) у площинi (x, y) точ-

ками A10(x10, y10), A20(x20, y20), . . . , A2m+1,0(x2m+1,0, y2m+1,0) (див. рис. 10), де

x10 = x11 . . . 11\underbrace{}  \underbrace{}  
n+1

< x2m,0 < x2m - 2,0 < . . . < x20 < x30 < . . . < x2m+1,0 = x11 . . . 12\underbrace{}  \underbrace{}  
n+1

,

yi0 = xi+1,0 +
\Bigl( 
y11 . . . 12\underbrace{}  \underbrace{}  

n+1

 - x11 . . . 11\underbrace{}  \underbrace{}  
n+1

\Bigr) 
, i = 1, 2, . . . , 2m, y2m+1,0 = y11 . . . 12\underbrace{}  \underbrace{}  

n+1

.
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Неважко збагнути, що перетворення

TA10A20...A2m+1,0A11 . . . 21\underbrace{}  \underbrace{}  
n+1

A11 . . . 22\underbrace{}  \underbrace{}  
n+1

...A22 . . . 22\underbrace{}  \underbrace{}  
n+1

має цикли порядкiв 1, 2, 22, . . . , 2n, 2n(2r + 1), де r \geq m, 2n+1s, де s > 0, i не має циклiв
жодних iнших порядкiв.

Теорема 6 i побудований приклад доводять теорему, сформульовану на початку роботи.
До теорем 1 – 6 примикає така теорема.
Теорема 7. Мiж будь-якими двома точками циклу порядку k > 1 лежить хоча б одна

точка циклу порядку l < k.

Нехай \alpha > \beta — точки циклу порядку k; n\alpha , n\beta — кiлькiсть точок цього циклу, менших
вiдповiдно за точки \alpha i \beta . Очевидно, k > n\alpha > n\beta \geq 0. Iснує n\alpha рiзних цiлих додатних чисел
si, i = 1, 2, . . . , n\alpha , менших за k i таких, що T si\alpha < \alpha . Оскiльки n\alpha > n\beta , то знайдеться si0 ,

1 \leq i0 \leq n\alpha , таке, що T si0\alpha < \alpha , T si0\beta > \beta . А це означає, що iснує точка \gamma \in (\beta , \alpha ), для якої
T si0\gamma = \gamma ; \gamma є точкою циклу порядку l \leq si0 < k.

Насамкiнець зазначимо ще, що всi результати можна перекласти на мову перiодичних
розв’язкiв функцiонального рiвняння y(x + 1) = f(y(x)) (x пробiгає дискретну послiдов-
нiсть значень). Наприклад, якщо перетворення прямої у себе y \rightarrow f(y) неперервне, то 1) якщо
функцiональне рiвняння має перiодичний розв’язок з перiодом k, то в нього є й перiодичнi
розв’язки з будь-яким перiодом, розташованим у (*) за k, 2) якщо рiвняння не має перiодич-
ного розв’язку з перiодом k, то воно не має перiодичних розв’язкiв iз жодним перiодом, що
передує k у (*).

Автор висловлює подяку Ю. М. Березанському i Ю. О. Митропольському, якi ознайомилися
з рукописом роботи i дали низку корисних порад.
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