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LOCAL SPECTRAL THEORY AND SURJECTIVE SPECTRUM
OF LINEAR RELATIONS

TEOPIA JIOKAJBHOI'O CIIEKTPA TA CIOP’EKTUBHUM CIIEKTP
JIHIMHUX BITHOIIEHD

This paper initiates a study of local spectral theory for linear relations. At the beginning, we define the local spectrum and
study its properties. Then we obtain results related to the correlation analytic core K'(7T') and quasinilpotent part Ho(T') of
a linear relation 7" in a Banach space X. As an application, we give a characterization of the surjective spectrum o5, (7")
in terms of the local spectrum and show that if X = Ho(A — T') + K'(A — T), then 5, (T) does not cluster at .

L poboTa 3amoyaTkoBy€ BHBYECHHS TEOPil JIOKAJIBHOTO CHEKTPa IS JiHIHHUX BigHOMmEHb. CIOYaTKy HaBEICHO O3HAYCHHS
Ta BIACTHBOCTI JIOKAIBHOTO CrieKTpa. [Ticis IIbOTo OTPUMAHO JIesKi PE3yJIBTaTH, 10 BiIHOCITHCS 0 KOPEISI[IHHOTO aHai-
trunoro sapa K'(T') Ta kBasininenorentroi wactunu Ho(T') minilinoro BinHomenus T’y 6anaxoBomy mpoctopi X. Sk
3aCTOCYBaHHS HABE/CHO XapaKTEPH3aLi0 CIOP EKTHBHOIO CIEKTPa 0y (1) y TEpMiHAX JIOKAIBHOTO CIEKTPa Ta JOBEACHO,
mo sxmo X = Ho(Al —T) + K'(A\ — T), 10 05,(T) He KIacTepu3yeThes st \.

1. Introduction. Notice that throughout this paper (X, || ||) denotes a complex Banach space.
A linear relation 7" is any mapping having domain D(7T') a subspace of X, and taking values in
P(X)\@ (the collection of nonempty subsets of X) such that T'(azy + Sx2) = o1 (z1) + ST (x2)
for all non zero scalars o, € K and z1,29 € D(T). If x ¢ D(T) then Tx = @&. With this
convention we have D(T') = {u € X : T'(u) # @}. The set of all linear relations in X is denoted
by LR(X). A linear relation T is uniquely defined by its graph G(T) = {(u,v) € X x X:
u € D(T),v € T(u)}. The inverse of T is the relation T~! given by

G(T Y ={(v,u) € X x X: (u,v) € G(T}.
We denotes by

R(T):= |J Tz, ker(T):={ze€X:(x,00€GT)}, T(0):={xeX:(0,z)cGT)}
zeD(T)

the range, the kernel and the multivalued part of 7', respectively. The generalized range of T is
defined by R>*(T') = ﬂnEN R(T™). Note that if 7'(0) = {0}, then T is said to be an operator or
single-valued. If G(T') is closed, then T is said to be closed. Let Q7 denotes the quotient map from
X onto X/T(0). We can easy show that Q77 is single valued and so we can define the norm of
T by ||T]| := ||QrT||. T is said to be continuous if ||T|| < oo, bounded if 7" is continuous and
everywhere defined. We denote by CR(X), BR(X), and BCR(X) the sets of closed, bounded,
and bounded closed linear relations, respectively.

Let U and V be two nonempty subsets of X. We define the distance between U and V by the
formula

dis(U,V) =inf{|lu —v||, v e U andv € V'}.
We shall also write dis(x, V') for the distance between {z} and V.
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A linear relation T is called open if T~! is continuous equivalently if v(7') > 0 where

+00, if D(T') C ker(T),

, [Tzf] Kor(T) ;
inf {dis(x,ker(T))’ x € D(T)\ker(T)} otherwise.

A linear operator A is called a selection of T if T'= A+ T — T and D(A) = D(T). The resolvent
set of a closed linear relation 1" is the set

Y(T) =

p(T) = {\ € C such that (\] — T)~! is everywhere defined and single valued},

and the spectrum of 7' is defined by

o(T) = C\ p(T).

For a survey of result related to linear relations, the reader may see [5].

The concept of local spectral theory, for bounded operators in Banach space, was firstly appeared
in Dunford [6, 7]. It’s studied also by Kjeld B. Laursen and M. M. Neumann in [8] where they
mentioned that this theory played a very naturel role in commutative harmonic analysis. More
recently, P. Aiena was attached by this notion in [1, 2] and he was developed many results based
on the single valued extension property. Our objective is to generalize the concept of local spectral
theory to the general setting of linear relations and we give some of their properties. More precisely,
let '€ BR(X) and = € X. The local resolvent of 7" at x, denoted by pr(z), is defined as the set
of all A € C for which there exist an open neighborhood Uy of A and an analytic function f) ; :
Uy — X such that the equation (I —T') fx »(1) = x + T'(0) holds for all x € Uy. The complement
of pr(x) in C is called the local spectrum of 7" at x and denoted by o7 (z).

This paper is organized as follows. In Section 2, we introduce some auxiliary results which are
important for the following sections. We introduce the notions of quasinilpotent part and correlation
analytic core of a linear relation and we give some of their basic properties. In Section 3, we introduce
the definition of the local spectrum of linear relation and we give some of their properties. Then
we give the definitions of the local and glocal spectral subspaces and their applications in Sections 4
and 5, respectively. In particular, we investigate some connections between local spectral subspace
and the correlation analytic core on the one hand and between the glocal spectral subspace and the
quasinilpotent part on the other hand. We finish by giving, in Section 6 as application of the local
spectral theory, an important result concerning the surjective spectrum of a linear relation.

2. Preliminary results. In this section, we will introduce some auxiliary results which are
important for the next parts of this paper. We begin by giving the definitions of the algebraic core
C(T), the correlation analytic core K'(T") and the quasinilpotent part Ho(7') of a linear relation T
defined in a Banach space X.

Definition 2.1. Let T € LR(X). The algebraic core C(T) of T is defined to be the greatest
subspace M of X for which T (M) = M. It clear that C(T) C R*>*(T).

Definition 2.2. Let T € LR(X). The correlation analytic core K'(T) of T is defined by
K'(T) = {SL‘ € X such that there exist a > 0 and a sequence (u,) C X, which verify

T = ug, Up € Tupt1, and dis(u,, T(0) Nker(T)) < a™dis(x,T'(0) Nker(T")) Vn € N}.
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Definition 2.3. Let T € LR(X). Then, we define its quasinilpotent part by Hy(T) = {x €
€ X such that there exists a sequence (x,) C X, which verify x = xg, xny1 € Tay and
litmpso0 |||/ = 0.

Proposition 2.1. Let T' € BCR(X). Then we have:

) T(K'(T)) = K'(T);

2) if F be a closed subspace of X such that T(F) = F, then F C K'(T).

Proof. 1. Let x € K'(T). Then there exist a > 0 and (u,,) C X such that x = ug, up € Tup41
and dis(uy,, T'(0) Nker(T)) < a™dis(x,T(0) Nker(T)) ¥n € N. So it suffices to prove that u; €
€ K'(T). If u; € T(0) Nker(T), then there is nothing to prove. If not, we consider the sequence
(wy,) defined by

wg = Up and Wy, 1= Upt1-

Then, for all n € N, w, = up11 € Tupyro = Twypy1 and we have
dis(wn, T(0) Nker(7T)) = dis(up+1, 7 (0) Nker(T')) <
< b" dis(u1, T(0) Nker(T))

dis(z, T(0) Nker(T))
dis(uy, T(0) Nker(T))
C T(K'(T)).

Moving to the reverse inclusion. Let y € T(K'(T)). Then y € Tx for some x € K'(T).
Let @ > 0 and (u,) C X be such that = wg, u, € Tuyy1 and dis(uy,, T(0) N ker(T)) <
< a™dis(z,T(0) Nker(T)) Vn € N.

We want to show that y € K'(T). If y € T'(0) Nker(7T), then there is nothing to prove. If not,
let consider the sequence (wy,) defined by

with b > a2

. Hence, u; € K'(T) which permits us to deduce that K'(T') C

wo =Y and Wy, 1= Up—1-
Then, for all n € N*, we have w,, = T'wy,11 and
dis(wy, T(0) Nker(T)) = dis(up—1,T(0) Nker(T)) <
< " dis(y, T(0) Nker (7))

, jﬁg:gggi 211:253) . Thus, y € K'(T) and, therefore, T(K'(T)) C K'(T).
2. Let F' be a closed subspace of X such that 7'(F') = F. Then the restriction 7 : F' — F' is
an open map (see [5], Theorem 111.4.2). Therefore, by [5] (Proposition 11.3.2) we see that v(7p) > 0.
Now let © € F. So, there exists u € F' such that x € Tu.
On the other hand, we have

with b > max <a

1
v(To)

dis(u, ker(Tp)) < | Tou || -

Let 6 >

1
. Then there exists y € ker(7") N F' such that
v(To)

| w—y||< 8 dis(z, T(0)) < 6 dis(z, T(0) N ker(T)).
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Take uy = u — y. We have x € T'u; and
dis(u1, T(0) Nker(T")) <|| u1 ||< § dis(z, T(0) N ker(7T)).

By repeating this process we find a sequence (u,) C X such that z = ug, up, € Tuny1, and
dis(un, T(0) Nker(T)) < §"dis(x, T(0) Nker(T)) Vn € N. This implies that x € K'(T) and,
therefore, ' C K'(T).

Proposition 2.1 is proved.

The next theorem gives the connection between algebraic and correlation analytic core when
C(T) is closed.

Theorem 2.1. Let T € BCR(X). If C(T) is closed, then we have

Proof. From the definition of C(T'), by using the first assertion of Proposition 2.1, we observe
that K'(T") C C(T). Now, since C(T) is closed and T(C(T)) = C(T), then from the second
assertion of Proposition 2.1 we get C'(T') C K'(T'). Thus, K'(T) = C(T).

3. The local spectrum of a linear relation. In this section, we will define the local spectrum for
linear relations and we want to give some of their properties. It’s well-known that if u € p(7"), then
the resolvent function R(u,T) := (ul — T)~! is everywhere defined and single valued. Moreover,
for any x € X, the function f,: p(T) — X, defined by f.(u) := (uI — T) 'z, is an analytic
function which verify

(ul =T)fe(p) =2+T(0) forall ue p(T).

Definition 3.1. Let X be a Banach space, T € LR(X), and x € X. Let pr(x) denote the
set of all X € C for which there exist an open neighborhood Uy and an analytic function f . :
Uy — X such that the equation

(I = T)frz(pn) =z +T(0)

holds for all p € Uy.
pr(z) is called the local resolvent set of 7" at the point . The local spectrum of 7" at the point
x is then defined by

or(z) = C\ pr(z).

Evidently, by Definition 3.1, we have pr(x) := U/\e ( )Z/{A and, hence, it is an open subset of C.
pr (T
Moreover, for all z € X, !

p(T) € pr(z) and or(z) € o(T).

In the following three propositions we gather some elementary properties of op(x).

Proposition 3.1. Let T € LR(X). Then:

1) for all x € T(0), we have or(x) = &;

2) or(ax+ By) Cor(z)Uor(y) forall x, y € X and o, B € C;

3) o_r(z) ={-X\, A€ or(z)} forall x € X,

4) for every F C C, oxr+7(z) C F ifand only if or(x) C F —{\}; in particular, oyj—r(x) C
C {0} if and only if or(x) C {A).
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Proof. 1. 1t suffices to prove that for all z € T'(0) we have pr(x) = C. Let A € C. The null
analytic function f = 0 defined on C verify that (u —T')f(n) = x 4+ T(0) for all x € T'(0) and
for all u € C. Then \ € pp(x).

2. Tt is equivalent to prove that pr(xz) N pr(y) C pr(az + Py) for all z, y € X and for
all o, € C. If @« = B = 0, then there is nothing to prove. If not, let § € pr(z) N pr(y).
Then there exist two open neighborhoods Us, Vs and two analytic functions f5,: Us — X, gsy:
Vs — X such that

(I =T)fsu(v) =2 +T(0) VueUs,

(I —T)gsy(p) =y +T(0) YpeVs.

Now, let Ws = Us N Vs and let h: W5 — X be the analytic function defined by h = a/f5, + 89s-
Then we have

(uI — T)h(p) = (az + By) + T(0) Vu € Ws.

So, § € pr(az + By).

3. Let A € p_r(x). Then there exist an open neighborhood U, and an analytic function
f:Ux — X such that (ul — (=7))f(u) = x + T(0) for all u € Uy. If we take the change of
variables v = —p, then we find (vI — T')g(v) = 2+ T(0) Vv € U_,, where g(v) = —f(—v) is an
analytic function defined on an open neighborhood U_) of —\. Therefore, —\ € pp(x).

4. Tt is similar to prove that C\ F' C pyj4r(z) if and only if C\ (F —{A}) C pr(z). For the only
if part, let \g € C\(F'—{\}). So, Ao+ € C\F C pyr+7(z). Then there exist an open neighborhood
Uxo+x and an analytic function fy,4az: Uxg+x — X such that (ul — (A + 1)) frg4ra(p) =
=2+ T(0) for all € Uy 4. If we take the change of variables v = 1 — A, then we get

(vl —-T)g(v) =x+T(0) VveU,,,

where g(v) = f(v + A) is an analytic function defined on an open neighborhood Uy, of Xg. Thus,
Ao € pT(Z‘).

In particular, let A\g € C\ F. Then \y — A € C\ (F — {\}) C pr(zx). So, there exist an open
neighborhood Uy,—» and an analytic function fy,_» . : Uy,—x — X such that

(L + NI = A+ T))frg-ra2(p) =2 +T(0) Vi€ Usn
If we take the change of variables v = u 4+ A\, we get
Wl — N +T1))g(v)=x+T(0) YveU,,,

where g(v) = f(v — A) is an analytic function defined on an open neighborhood Uy, of Xg. Thus,
Ao € par+r(T).

Now, if we take F' = {0} and we replace T by —T', we can easily find the particular result.

Proposition 3.1 is proved.

Proposition 3.2. Let T € BR(X), x € X and U an open subset of C. If there exists an analytic
Sunction fr: U — X such that (ul —T)f(p) =z +T(0) forall p € U, then U C pr(f(N)) for all
A € U. If moreover T' has a continuous selection A such that T'(0) C ker(A), then

or(x) =or(f(N)) forall X € U.
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Proof. Let \ € U. Define
, if p# A,

—FO), 0 u=A
Then h is an analytic function on U/ and we have, for all ;1 € U\{\},

(T = D)) = == (= NI + (M = TN ) =2 +T(O)] = /0) + T(0).

Therefore (ul — T)h(n) = f(A) + T'(0) holds for all u € U\{A}. On the other hand, we have
(I =T)f(p) = x +T(0). Then puQr(f(n)) — QrTf(r) = Qrx. Now, as Qr is a bounded
operator, by derivation on p we get Q7 (f (1)) + pQr(f (1)) — QrT f(1) = 0. Thus, for p = A,
we have —(A] —T)f'(X\) = f(\) + T(0). Hence, the equality (uI — T)h(u) = f(A) + T(0) holds
for all u € U. Therefore, U C pr(f(N)).

To show the equality op(xz) = op(f(\)) we begin by proving the inclusion pr(z) C pr(f(XN)).
Let w € pr(z). If w € U then w € pr(f(A)) for all A € U, by the first part of the proof. If
w € pp(x)\U, then there exist an open neighborhood W which not contains A\ and an analytic
function g: W — X such that (uI — T)g(p) = « + T'(0) for all ;o € W. Define

g(A) —g(p)

K(p) = T

forall peW.

K is an analytic function on W, and we have (ul — T)K(u) = f(\) + T(0) for all u € W. Thus,

w € pr(f(N). So, pr(z) € pr(f(N).

It remains to prove the reverse inclusion. Let v € pr(f(A)). Then there exist an open neigh-
borhood V of v and an analytic function h:V — X such that (uI — T)h(pn) = f(N) + T(0) is
satisfied for all ;1 € V. By hypothesis A is a continuous selection of 7" then the function h 4 defined
on V by ha(p) = (M — A)h(p) is analytic on V. Besides, since 7'(0) C ker(A), then we have, for
all peV,

(W — TYha() = (NI — A)(uT — T)h() =
=M—-A+T-T)(f(\)+T(0)— AT(0) =
=z +T1(0).

Thus, v € pr(z) and, hence, pr(f(A)) € pr(x) which ends the proof.
Proposition 3.3. Let T, S € BR(X) be such that ST =TS, S(0) C ker(T), and S have a
linear continuous selection Si1. Then, for all y € Sx, we have

or(y) C op(z).

Proof. We shall prove that pr(x) C pr(y) for all y € Sz. Let y € Sz and A € pr(z). Then
there exist an open neighborhood Uy, and an analytic function f: Uy — X such that (VI T)f(v)=
=z + T(0) for all v € Uy. Then we have

S(wI —T)f(v) = S(z + T(0)).
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By using the fact that 7'S' = ST, S(0) C ker(T") and [3] (Lemma 2.4), we get (vI —T)Sf(v) =
= Sz + ST(0). Thus, (vI —T)(S1f(v)+ S(0)) = Sz + ST(0). So, (vI —T)S:1f(v)+ ST(0) =
= y + S(0) + ST(0). Hence, (vI — T)S1f(v) = y + T(0). Then A € pr(y) which ends the
proof.

Let T € LR(X). We say that T verifies the stabilization criteria if 7'(0) = T2(0). We denote
by STR1(X) the set of all linear relations satisfying the stabilization criteria.

Lemma 3.1. Let R, S € BR(X). Then the following equivalence holds:

S(0) C ker(SR) and R(0) C ker(RS) if and only if
SR and RS are both in STR1(X).

Proof. For the only if part, we have by hypothesis SRS(0) = SR(0) and RSR(0) = RS(0).
Then SRSR(0) = SR(0). Thus, SR € STR1(X). In a similar way we can prove that RS €
€ STR1(X).

For the if part, we have SRSR(0) = SR(0). So, SRS(0) C SR(0). Then, for all y € S(0),
we have SR(y) C SR(0). So, SR(y) = SR(0). Thus, SRS(0) = SR(0) and we conclude that
S(0) C ker(SR). By the same way we can prove that R(0) C ker(RS).

Lemma 3.1 is proved.

In the next theorem we study the relation between the local spectrums of the linear relations SR
and RS.

Theorem 3.1. Let S, R € BR(X) be such that SR and RS are both in STR1(X). If S and
R have continuous linear selection S1 and Rj, respectively, then, for all x € X and y € Sx, we
have

osr(y) C ors(z) C osr(y) U {0}

Proof. Let beginning by showing the first inclusion. It is equivalent to prove that pps(xz) C
C psr(y). Let A € prs(x). Then there exist an open neighborhood U, and an analytic function
f:Ux — X such that (vI — RS)f(v) = x + RS(0) Vv € Uy. Then we have S(vI — RS)f(v) =
= Sz 4+ SRS(0). By using Lemma 3.1 and [3] (Lemma 2.4), we get (vI — SR)Sf(v) = Sz +
+SRS(0). Thus, (vI—SR)(S1f(v)+5(0)) = Sx+SRS(0). Since (vI-SR)S(0) C (vI-SR)(0),
then we obtain (vI — SR)S;f(v) =y + SR(0) for all v € Uy. So we conclude that A € psgr(y)
and, therefore, prs(x) C psr(y).

In order to show the second inclusion, it suffices to prove that psr(y) N C* C prs(z). Let
A € psr(y) N C*. So, there exist an open neighborhood V), C C* and an analytic function
f:Va — X such that (ul — SR)f(n) = y + SR(0) Vu € V). Let h be the function defined
by

W) = ;<z+R1f<u>>.

So, we have

(4T = RS)(p) = & = - RS(a) + . (uFs = RSR)f (1) =
e ;RS(:E) + ;R[(ul _ SR ()] €z — ;R(y) + ;R(y) + RS(0) € 2+ RS(0).

Then (uI — RS)h(n) = = + RS(0) for all u € V). Therefore, A\ € prs(x), and we obtain the
desired inclusion.
Theorem 3.1 is proved.
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4. The local spectral subspace. For every subset F' of C the local spectral subspace of T
associated with F' is the set
Xr(F):={z e X:orp(z) C F}.

Obviously, if F} C F, then Xp(F}) C Xp(F).

We begin with the following proposition, which gives some properties of the local spectral
subspace.

Proposition 4.1. Let T' € BR(X) and F be a subset of C. Then:

1) Xp(F) is a subspace of X;

2) Xp(F) is a linear hyperinvariant subspace for T, i.e., for every bounded operator S such
that TS = ST we have S(X1(F)) C Xp(F);

3) if moreover T € STR1(X) and have a continuous selection, then

T(Xr(F)) € Xr(F).

Proof. 1. By the first part of Proposition 3.1 we have 7'(0) C X7 (F). Then X (F) # @.
Let z,y € Xp(F). We have or(z) C F and or(y) C F. Then, by using the second part of
Proposition 3.1, we get, for all o, 5 € C,

or(ax + By) C or(z) Uor(y) C F.

Thus, ax + By € X7 (F) and, therefore, X7 (F') is a subspace of X.

2. Let S € B(X) be such that ST =T'S. Let x € X7(F) and let A ¢ o7 (z). Then there exist
an open neighborhood U, of \ and an analytic function f: Uy — X which satisfies (ul —T)f(u) =
=z +T(0) for all p € Uy. Thus, S(ul —T')f(p) = Sx + ST(0) for all u € Uy. Since ST =TS
and, by using [3] (Lemma 2.4), we get, for all u € U,,

(I = T)Sf(n) = Sz + T(0).

Since S is a bounded operator, then S'f is analytic on U)y. So, we conclude that A\ ¢ op(Sx). Thus,
or(Sz) C or(z) C F and, therefore, Sz € Xp(F') which implies that S(X7(F)) C Xr(F).

3. Since T" admits a continuous linear selection and 7°(0) C ker(7'), then by using Proposition 3.3
the result follows immediately.

We prove the following auxiliary assertion.

Lemma 4.1. Let T be a bounded linear relation in X and (x,) be a sequence of X such that
Ty € Ty for all n € N. Let R denote the convergence radius of the entire series Z Xl

n>1
Then, for all scalar X\ such that |\| < R, we have
T Z ANl | = Z Al 1+ T7(0).
n>1 n>1
Proof. Let A such that |\| < R. We get
N
T X lay | = X Ty + T DY N, | =
n>1 n=1 n>N+1
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:ZAnilmn—l_ Z )\nflmn_l_i_T Z Anflxn

n>1 n>N+1 n>N+1

Now, since the operators Q7 and Q71" are bounded, we have

Qr | T Z )\n_livn =Qr Z )\n_ll‘nfl - Z )\n_lxnfl +T Z An_lxn =

n>1 n>1 n>N+1 n>N+1

=Qr Z A,

n>1

Then Qr (T( > )\”_lxn) -3 A"‘lxn_1> — 0, which implies that

T X o, | = A",y CT(0).

Thus, T(Zn>1 )\”_lmn) =3 A+ T(0).
Lemma 4.1 is proved. B

We now establish the relationship between the correlation analytic core and the local spectral
subspace of a relation 7.
Theorem 4.1. Let X be a Banach space and T € BCR(X). We have

K'(T) = Xr(C\ {0}) = {z € X such that 0 € pp(z)}.

Proof. Let prove the first inclusion K'(T') € Xp(C\ {0}). Let z € K'(T). So, there exist a
sequence (x,) C X and a positive scalar a such that z = zg, z,, € Tx,41 and

dis(zp, T(0) Nker(T)) < a"dis(z, T(0) Nker(T')) Vn € N.

Let b > a. From the last inequality, we deduce that for all n > 1 there exists a,, € T'(0) Nker(7T')
such that ||z, — a,| < b"||z||. Let (y,) be the sequence defined by yy = z, and, for all n > 1,

1
Yn = T — Qpn. Then we have |ly,|| < 0"|z|. Let f be the analytic function f: B(O, 5) —- X
defined by f(\) = — E - N1y, We can easily verify that y,, € T'y,,1 for all n € N. Moreover,
n_

1
by Lemma 4.1, for all A € B(O, 5)’ we have

M =T)f(A) =D A"y +T(0) =AY A"y, =
n>1 n>1

= yo +T(0) = = + T(0).

Thus, 0 € pr(z) and then z € X7 (C \ {0}), which provide the desired inclusion.
Moving to the reverse inclusion. Let z € X7 (C\ {0}). So, 0 € pr(xz) which implies that
there exist an open disc ID(0, ) and an analytic function f: D(0,e) — X such that the equation
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(ul —=T)f(n) = z+T(0) holds for all ;1 € D(0,¢). Since f is an analytic function, then there exists
a sequence (up)n>1 C X such that

FO)==> A",  for all X eD(0,e).

n>1

Clearly, f(0) = —uy. Then T'(u1) = = + T(0) and = € Tu;. Take up = z and let prove that
Uy € Tupyy for all n € N. The proof is given by induction. For n = 0, we have ug € T'u;.
Suppose that this property is true until the order n, and let prove it for the order n + 1. For all
A €D(0,¢), we get

A =T)f(N) == N+ T [ D Nty | =

k>1 k>1
n+1 n+2
= — Z )\kuk — Z )\kuk +T <Z )\k_luk) +T Z )\k_luk
k=1 k>n+2 k=1 k>n+3
So,
Tuy + )\"+1(Tun+2 — Upy1) — Z Newp +T Z Ne=byp | = Ty
k>n+2 k>n+3
Since
)\n+1T Z )\k—(ﬂ-‘r?)uk C T )\n+1 Z Ak_(n+2)Uk ’
k>n+3 k>n+3
then

(Tun+2 — un+1) — Z )\k’—(n—I—l)uk + T Z )\k_(”+2)uk C T(O).
k>n+2 k>n+3

If we take A = 0, then we find that T"u,,+2 —un,4+1 C T'(0) and, hence, w41 € Tup42. Consequently,
Uy € Tupyq forall n € N.
It remains to prove that there exists a positive scalar which verify the second condition of K'(T).

If z € T'(0) Nker(T) then there is nothing to prove. If not, since the series ( — Z )\"flun>

1
converges then [ X"~ [u,|| — 0 as n — oo for all |\| < e. In particular, ——|Ju, || — 0 as n — oo
W

n>1

1 1 . _ .
for > ~. Take pig > —. So, there exists ¢ > 0 such that ||u,|| < cull~'. Hence, we obtain
€ €

Jun|| < <'u0+dis(:r,T(O)cﬂker(T))> dis(z, T(0) N ker(T)).

Thus, we have
dis(un, T(0) Nker(T)) < [Juy| < b"dis(x, T(0) Nker(T))
c
ith b = .S K'(T') and, therefore, X1 (C C K'(T).
wi o + dis(z, T(0) A ker (1)) o, z € K'(T) and, therefore, X7 (C\ {0}) C K'(T)
Theorem 4.1 is proved.
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5. The glocal spectral subspace. Let F' C C be a closed subset and let 7' € LR(X ). We define
the glocal spectral subspace X7 (F') as the set of all z € X such that there exists an analytic function
f:C\ F — X checking

(M —=T)f(A\) =z +T(0) forall AeC\F.

Some basic properties of the glocal spectral subspace are gathered in the following proposition.
Proposition 5.1. Let T' € BR(X) and F C C be a closed subset. Then:
1) Xp(F) is a subspace of X and Xr(F) C Xp(F);
2) Xp(F) is a linear hyperinvariant subspace for T, i.e., for every bounded operator S such
that TS = ST we have S(Xp(F)) C Xp(F);
3) if moreover T' € STR1(X) and have a continuous selection, then

T(Xp(F)) C Xp(F).

Proof. Proceeding as in the proof of Proposition 4.1 we obtain the desired results.
In the sequel we need the two following elementary lemmas.
Lemma 5.1. Let T belongs to BCR(X) and (x,) C X be such that x,, € Tz, for all

n € N*. Let R be the convergence radius of the power series Z o ANz, 1. Then, for all scalar )
n>

1
such that |\| > T e have

TUY A 2pq | =) A"y +T(0).

n>1 n>1

1
Proof. For a scalar A such that |\| > & Ve obtain

N
T A2 | =) N "Top a+T | Y. AN wpa | =

n>1 n=1 n>N-+1
= g A xy, — g AN "x, +T g A "1
n>1 n>N+1 n>N+1

Now, since the operators Q7 and Q71 are bounded, then we can easily seen that

Qr | T (D A"z | | =Qr | D A "

n>1 n>1
Then
TY A2 | =) A "2, CT(0).
n>1 n>1
Thus,

TUY A2 | =) A" +T(0).

n>1 n>1

Lemma 5.1 is proved.
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Lemma 5.2. Let T belongs to BCR(X) and (x,,) C X be such that lim sup Han% <. Then,
n—oo

1
Sor all n € N, there exists oy, 41 € Txy, such that for all |\| < — we have
€

T Z Nxy, | = Z Nagy41 + T(0).

n>0 n>0

Proof. Let o), € Tx,. Then we have dis(a),,,7(0)) = ||[Tx,| < ||T|||[|n||- Hence, for a
fixed v > 0, there exists 3,11 € T'(0) such that

o1 = Brgall < (T + )|l

Take a41 = a, 11— Bny1. Then apy1 € Tz, and the series E -0 A", 11 s absolutely conver-
n_

1
gent for all A such that |\| < —. Thus, we obtain
€

QrT | Y Nan | =Qr [ Y Nann

n>0 n>0

Hence,

T Z Nz, | = Z Nagyy1 + T(0).

n>0 n>0

Lemma 5.2 is proved.
Theorem 5.1. Let T' € BCR(X). Then

Xr(D(0,¢)) > He(T) + T(0),

where

H(T) := {:E € X:3(z,) C X such that x = xg, zp+1 € Txy and limsup ||a:n||% < 5} .
n—oo

If moreover o(T) is bounded, then the equality holds.
Proof. Let x € H.(T'). Then there exists (z,,) C X such that z = xo, zp41 € Ty, and

limsup,, .. ||#n]|'/" < e. Thus, the series defined by f()\) := an)\’”mn_l converges uni-

formly on C\ D(0,¢). So, f is analytic on C \ D(0, ¢). Besides, using Lemma 5.1, we get, for all
such that |\| > ¢,

M =T)f(N) =) A "ap— Y AN "y — T(0) =+ T(0).
n>0 n>1
Then = € X7 (D(0,¢)). On the other hand, since 7'(0) C Xp(ID(0,¢)) and X7 (ID(0,¢)) is a subspace
of X, then the inclusion H.(T') + T'(0) C Xr(ID(0,¢)) is satisfied.
Conversely, let x € Xp(ID(0,¢)). There exists an analytic function f: C\D(0,e) — X such that
(M —=T)f(A\) = x+T(0) holds for every A € C\ID(0, ). By assumption, we have o(7") is bounded,
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then the set V := (C\ D(0,£)) N p(T) is not empty and open and the function f is analytic on V.
Besides, for all A € V, we have f(\) = (A\[ — T)"!x. Indeed, we get (A — T)f()\) = = + T(0)
s0, f(A) +ker(A\ —T) = (Al —T) 'z +ker(A — T). Then f(\) = (A —T) 'z, and we get the
result. Now, let A € V. By using [5] (Proposition V1.3.2), we have lim|y|,o, f(\) = 0. Let consider
the analytic function g defined by

f(/i), if 0#peD(0,1/e),
0, if pu=0.

g(p) =

Since ¢ is analytic on I(0,1/¢) and g(0) = 0, then there exists a sequence (x,) C X such that
zo = 0 and g(p) = Z - p"xy, holds even for all ID(0,1/e). This shows that the radius of
n>

convergence of the power series representing g(u) is greater then 1/. Hence, lim sup ||:cn||1/ " <e.
n—oo

1
Besides, we obtain f(\) = g<X> = E - A" "z,,. From Lemma 5.2, for all n € N, there exists
nz

ap+1 € T, such that for all A with [\| > ¢ we get

M =T)f(N) =D A" o, =Y Ay + T(0) =

n>0 n>0

= Z A" (@pt1 — ang1) + 1(0).
n>0

Thus, we have Qr(z) = Z A "Qr(Tp+1 — ant1). Hence,

n>0
Qr(z1 — a1) = Qr(z),
Qr(Tny1 —ong1) =0, n>1,
and, so,
r=x1+a with «ae€T(0),
Tpt1 € Taxyn, n>1.

Now, let prove that 1 € H.(T'). Let consider the sequence (y,) defined by y,, := zp41. We
have z; = yo and yn+1 = Tnt2 € TTn41 = T'y,. Besides, we have

lim sup g ||/

< Tim sup s |/ < =.
n—oo n—oo

So, x1 € H.(T) and, therefore, Xr(ID(0,¢)) C H.(T) + T(0).

Theorem 5.1 is proved.

As a consequence of Theorem 5.1, we prove that the quasinilpotent part of a linear relation may
be characterized in terms of the glocal spectral subspace as follows.

Corollary5.1. For every T' € BCR(X), we have

Xr({0}) > Ho(T') + T(0).

If moreover o(T) is bounded, then the equality holds.
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6. Some properties of the surjective spectrum of a linear relation. Let 7' be a linear relation
in BCR(X). Recall that the surjective spectrum of 7" is defined by

osu(T) :={A€C: X =T is not surjective}.

The next lemma is a consequence of [3] (Corollary 1.4.3).

Lemma 6.1. Let T € BCR(X). Then 0,(T) is a closed subset in C.

The surjective spectrum may be characterized by means of the local spectrum as follows.
Theorem 6.1. Let T € BCR(X). Then we have:

D ow(T) =], or(@);

2) the set {x € X such that o7 (x) = 05,(T)} is of the second category in X.

Proof. 1. First observe that the desired result is equivalent to pg, (7)) = ﬂ cx pr(x). For the
x

opposite inclusion, let A € m cx pr(x). Then A € pp(z) for all x € X. Let x € X. There exists
X
an open neighborhood U) of A and an analytic function f, : Uy — X such that

(1l =T)fo(p) =2 +T(0) Yy € Uy

This implies that z € (A] —T')fz(A\) C R(A —T) for all x € X. Then (A — T') is surjective.
Thus, A € psu(T).

For the direct inclusion, let A € ps,(T"). Then (A — T') is surjective. So, by Proposition 2.1,
we have K'(AI — T) = X and, from Theorem 4.1, we obtain that 0 € p);_7(x). So, there exist an
open neighborhood Uy of 0 and an analytic function f: Uy — X such that

(=N +T)f(p) =2 +T(0) Yu € .

Therefore,
(01 —T)g(0) =x+T(0) V6 € Uy,

where Uy be the open neighborhood of A given by Uy = A — Uy and ¢ be the analytic function
defined on Uy by ¢g(6) = —f(A — 9). Therefore, A € pr(x) for all z € X, which ends the proof.

2. Let E be a dense countable subset of o5, (7). Then, for each A € E, we have (\[-T)X # X.
We claim that (A — T") X is of the first category in X. Indeed, let us suppose that (A —T") X is of
the second category in X. We show that (A\] — T') X = X, which is absurd. To do this, it suffices
to prove that (Al — T') is an open mapping. Let U be the open ball in X with center 0 and radius
r > 0. We prove that (A] —T")(U) contains a neighborhood of 0 in X. Define

Uy, ={zxeX: |z <27}, n=0,1,2,....

We note that U7 D Us — Us. So, ()\I — T)Ul D) ()\I — T)U2 — ()\I - T)UQ. Hence,

M —T)U, > M —T)Uy — (M —T)Uy > (M — 1)Uy — (M — T)Us. (6.1)

On the other hand, we have

(A —T)X G)\IT)
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As, the union of countably many first category sets is first category and as (A —7") X is of the second
category, then at least one k(A — T")(Uz) is of the second category of X and, so, (Al —T")(Us) is
of the second category. Hence, int((AI — T')(Us)) # @. Thus, by (6.1), there is some neighborhood
W of 0 in X such that

W c (M —T)(Uy).

We shall now show that (A — T")(Uy) C (M —=T)(U). Fix y1 € (M —T)(U1). As what just proved
for U; holds by the same way for Uy, so, (A — T")(Us) contains a neighborhood of 0. Thus,
(y1 = (A =T)(Ua2)) N (M = T)(th) # 2.

Hence, there exists oy € (A — T)(z1) with 2y € Uy such that yo = y1 — a; € (A —T)(Us).
Proceeding by induction we can construct the sequences (o, )n>1, (Zn)n>1 and (yn)n>1 such that
foralln > 1, z, € U,,

€M —-T)(zn) and ypt1 =yn —an € (A —=T)(Ups1).

Since, ||zy,|| <on , then Z x, converges. Let z = Zoo | ne Then ||z|| < r and, so, x € U.
n=

By the constructlon of the sequences (Yn)n>1 and (ap)n>1, we have
m m
D Qran =Y Qr(Yn — ynt1) = QY1 — QrYmi1.
n=1 n=1

So, Z Qr(A = T)an = Qry1 — QrYm+1. Thus,

(A =T) <Z ﬂcn) = Qry1 — QTYm+1-

Now, we claim that Qry,,, — 0 as m — oo. Indeed, let & € (A — T')(U;y). Then there exists
B € Uy such that « € (M — T)(B). Hence, dis(a, T(0)) = [|(AL = T)(B)|| < (AL =D)]||||5]l-
Thus, we obtain

(M — T)(U) © {oz € X : dis(a, T(0)) < ||(M — T)||21n} .
But, the map « — dis(a, 7'(0)) is continuous on X. Then the set
{a e X : dis(a, T(0)) < ||(\ — T)HQLn}
is closed and we get

e N —T)(Uy) C {a € X : dis(ar, T(0)) < ||(M — T)y\Qin} .

So, dis(yn,T(0)) < ||(AI — T)HQ% Therefore ||Qryn| — 0 as n — oo. Then we conclude that

Qr(M —T)(z) = Qr(y1) and, hence, y; € (M — T')(x), which confirm our claim.
Now, since, for all A € E, we have (A —T') X is of the first category, then F' = U,\EEOJ_T>X
is also of the first category. Thus, X\ F' is of the second category. We claim that, for all z € X\ F,
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osu(T) C op(zx). Indeed, let z € X\ F then E C op(z). So,

osu(T) = E C or(z) = op(x).

Hence, 04, (1) = or(z). Therefore, {x € X such that op(x) = 04,(T)} is of the second category
in X.

Theorem 6.1 is proved.

We can now state the main result of this section, which is a sufficient condition to ensure that the
surjective spectrum o4, (7") is not cluster at a point \.

Theorem 6.2. Let T € BCR(X). If X = Hy(M —T) + K'(A\ — T), then 05,(T) does not
cluster at .

Proof. Without loss of generality we can suppose that A = 0. Suppose that 0 € o, (7") and
X = Ho(T) + K'(T). Then every € X may be written as x = x1 + 3, where x1 € Ho(T') and
x9 € K'(T). From Corollary 5.1 we have op(z1) C {0}. Therefore,

or(z) C or(z1) Uor(ze) C {0} Uor(za).

Now, by Theorem 4.1 and since op(z2) is closed, we conclude that 0 is isolated in op(x) for any
x € X. By using Theorem 6.1, we conclude that there exists zp € X such that or(xo) = osu(T).
Hence, 0 is isolated in o, (7).

Theorem 6.2 is proved.

We close this section by stating the next corollary which is related to Theorems 6.1 and 6.2.

Corollary6.1. Let T € BCR(X). Then, if X = HAM —T)+ K'(AM —T), or(x) does not
cluster at A\ for every x € X.
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