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Expansion in eigenvectors
of multiparameter spectral problems

Poskaajg 3a BIaCHUMH BEKTOpaMu
GararonapaMeTpPHYHNX CHEKTPaAbHUX 3a1aq

We nrove the expansion theorems for abstract multiparameter spectral problems. These theo-
remns contain expansion results for general operators with continuous spectrum and partial di-

fierential elliptic operators.

Beranosieni TeopeMH Npo PO3KJAN 3a BIACHHMH BEKTODaMH aGCTpaKTHOT GaraTonapamerpuaHol
cnexkTpanbHoi 3aadi. LLi Teopemy MiCTHTb pe3y/bTaTi I 3araJbHAX oneparopis 3 HenepepBHHM
crekTpoM i elinTHYHHX AH(epenliaJbHHX OnepaTopis.

1. Introduction. The study of the completeness of eigenfunctions of
multiparameter spectral problems started with the works of A. C. Dixon and
D. Hilbert at beginning of this century. The motivation of these investigations
is connected with the solutions of boundary value problems for partial differen-
tial equations by the mean of separation of variables. Systematic investigations
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of multiparameter problems began 30 years ago and were inspired by F. V. At-
kinson [1]. Note here the works [2—5] in which under different assumptions the
theorems about such expansions were established for ordinary differential ope-
rators with both discrete and continuous spectrum. Simultaneously the abstract
multiparameter theory in Hilbert space was developed, see [6—11]. The book
[10] contains the contemporary state of the question and also the last biblio-
graphy.

plr}; the present paper we would like to show that for the investigation of
such problems the approach of generalized eigenfunctions [12—14] is very con-
venient and fruitful. It gives highly general results which comprise the theo-
rems for ordinary differential operators and, on the other hand, gives the theo-
rems about such expansions for general partial differential elliptic operators
and abstract operators with continuous spectrum (last classes of operators in
this direction were not investigated earlier).

The plan of this paper is the following. In sec. 2 we give some little survey
of the results concerning the abstract multiparameter theory, which are nece-
ssary for us. Insec. 3, 4 the abstract theorems about expansion in generalized
eigenvectors of multiparameter problem for selfadjoint operators in Hilbert
space are proved. Sec. 5is devoted to the investigation of the multiparameter
spectral problems for differential operators. We give in this paragraph the par-
ticular attention to consideration of elliptic partial differential operators.
In sec. 6 we develop for differential operators the approach of sec. 4, connected
with Carleman property for corresponding operators. The fundamental techni-
cal means of sec. 5, 6 are (as for classical spectral theory) the theorems of rise
of smoothness of solutions for elliptic (and ordinary) differential equations [12,
14, 15]. In sec. 5, 6 we formulate the results only for elliptic differential opera-
tors. For ordinary differential operators such theorems are only outlined. These
theorems contain results of type [3, 4], but with some more hard restrictions on
smoothness of coefficients of ordinary differential operators. Note that the no-
tion of generalized eigenvectors was contained in [16], also in this work the
problems of constructions of investigated eigenfunction expansions for abstract
and partial differential operators are set.

The results of this paper were briefly announced in [17, 18] and were in-
cluded into the report of authors on International Conference on Differential
Equations (Moscow, May 28 — June 1, 1991). The most of these results are
contained in [19].

2. Abstract mdltiparameter theory. In this section
a short account of main results of multiparameter spectral theory in Hilbert
space is given.

Let H,, ..., H, be separable Hilbert spaces; A; is a selfadjoint and Bj,
is a bounded selfadjoint operator acting in the space Hy (vE= Lo sl

Consider in the tensor product H = é H; the selfadjoint commuting opera-

tors =
,-10..0104,01® ... 91

(A; stands on j-th place) and analogously defined selfadjoint bounded operators

fi'jh. Note that the operatgrs ﬁ,-. j=1,..,n, are essential selfadjoint on

dense in H domain 2 = N D(?lj). Here and below 2 (A) is the domain oi

j=1
operator A. We shall say that 054 ¢ =@ (L) €D is the eigenvector corres-
ponding to (mulitparameter) eigenvalue A = (A4, ..., A,) ER" if

Ajp= E M B e, i=1,..,n ()
k=1

We shall suppose that the bounded operator A = det {g’;k)}‘_k:. is positive and
has a bounded inverse in H (the usual definition of determinant is correct

since the operators fi\,k with-different j commute). Introduce by means of
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operator A the new inner product in H:

(f, &) = (A}, @u, [, g€H.

The norms, defined by (.,-) and (-,-)y, are equivalent, therefore 7 with res-
pect to (-, -) is also a Hilbert space. The main result of abstract multiparame-
ter spectral theory in Hilbert space in the case of discrete spectrum of operators
A; can be, formulated in the following manner.

Theorem 1 [1,7,8, 10l Let yj = 1, ..., n resolvents of the operator A;
are compact. Then in H orthonormal with respect to (-, - ) basis exists which con-
sists of eigenvectors of problem (1).

Explain shortly the idea of the proof of Theorem 1. Introduce the set
of operators X, ..., X, acting in H as formal solution of the system

E E;kxh = :fij, j=1, ..., n. More exactly, we shall define X, by means
k=1
of the Kramer rule:

n
X, = A" Y Andp k=1, ..,n @)

j=1
Here Aj, is the algebraic completement of operators ’Bm in the matrix
(Eu)?.£=l- It is easy to understand that Aj, is a bounded selfadjoint operator

in H. The formula (2) defines the operator X, on & = () 2 (Aj) correctly.
j=1

From commutativity of Aj, and A; (they act with respect to different va-
riables) it is easy to get the Hermitness of operators X, on & concerning
the inner product (-, -). H. Volkmer has shown that the operators X,, in
reality, are essential selfadjoint on & with respect to (-, -). Below, for con-
venience of writing, we shall remain the notation X, for closure of opera-
tors X,, so X, is now selfadjoint (k=1, ..., n). Cite the complete result
of work [9].

Theorem 2. The operators X,, ..., X, commute and are selfadjoint

with respect to (-, -); N D(X) =D and N [€D
k=1

Y BuXaf =4,  1=1,.,n (3)
k=1

Note that the result of Theorem 2 is not evident even for the finite-dimen-
sional case (see [1]). Its proof in the general situation has demanded the efforts
of series of mathematicians (see works [1, 6, 8] for the case of bounded operator
and [7, 9] for unbounded ones.)

Explain, in what manner the Theorem 1 can be deduced from Theo-
rem 2. From the compactness of resolvents of operators A, =1, ...,n it
is possible to show that the joint spectrum of the family (X,)7_, of selfa-
djoint and commuting operators X, is discrete (irom compactness of opera-
tors A, such conslusion, in general, is wrong [6]). Therefore in the space
H there exists the orthonormal concerning (-, -) basis which consits of joint
eigenvectors of family (X,)?_,. There remain only to note that the applica-
tion of (3) to joint eigenvector f= ¢ of this family gives (1).

In the following section we shall show in what manner it is possible by
means of Theorem 2 to get the expansion in generalized eigenvectors of problem
(1) in the general case, when A, are arbitrary selfadjoint operators with, in ge-
neral, nondiscrete spectrum.

3. Expansion in generalized eigenvectors of
multiparameter spectral problems. Consider some ri_
gging [12—14] of the space H by positive and negative Hilbert spaces H.., //_,

H.o>H=Hy2D, (4}
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here D is some linear topological space embedded densely and topologically
into Hy. Thus, ya € H_, u € Hy the duality («, u)y exists.
Suppose that D = D and for corresponding restrictions

A;€eL(D, Hy), B,€eL(D,D), i k=1,..,n,

A, ATVEL(Hy, Hy) (5)

(L (F, G) denotes the class of linear continuous operators acting from F into G).
We shall say that 0 = ¢ = ¢ (A) € H_ is a generalized eigenvector of problem

(1), corresponding to eigenvalue A€R", if  u€D
(P, ‘é\iu)H = Z Ay (@, é\fﬁu)ﬂ! =L, n (6)
k=1

When ¢ belongs to H and, moreover, ¢ € D, then we can throw 4; and By, in
(6) over ¢ and get (1), since u runs the dense set from H. Thus, above given
definition generalizes (1).

The main result of the present section is contained in the following
theorem.

Theorem 3. Let the inbedding operator Hy = H is quasinuclear (i. e.
of Hilbert—Schmidt type). The finite Borel measure 8 in R" exists for which it is
possible to construct for p-almost all A €R" the set (g, W)al (N (1) < o0y
of generalized eigenvectors of problem (1) and the Fourier transformation

Hydusu () = (u, o, WHEH €L, (N (A) (7
for which the Parseval equality is valid: ~fu, v, € Hy
P i N(A) .
@ oy={ @M 0W),wande® = 3 (0 W) (v, 0 A)) do () ’
R" R? %=1 (

(here 1,(c0) = I,, 3 N << oo l,(N) = CY).

Explain: since A €L (Hy, Hy) then bilinear form (-, -) is defined and
bounded on H_ x H,, therefore \ a€ H_, u¢e Hy the duality (o, u) exists.

Note that p (spectral measure) is defined by problem (1) uniquely up to
equivalence of measures (independently with respect to rigging (4)).

For our case it is possible to formulate also the «projection» form of Theo-
rem 3. Namely, the following result is true.

Theorem 4. Let, asabove, the imbedding Hy = H be quasinuclear and p
be spectral measure of problem (1). Then for p-almost all MER" the fun-
ction P (L) exists, which values are Hilbert — Schmid? operators acting from
Hy info H_, with following properties: 3 u€ Hqy{P (M u, u) =0,

u=({ Pydo W) u ©)
IR™
(the integral converges with respect to Hilbert—Schmidt norm) and range of opcras
tors P (M) consists of generalized eigenvectors of problem (1) corresponding to eigen-
value A.

Note that «generalized projector P (A) on generalized eigensubspace» is
expressed by @q, (A) from (7) in the following manner (it is sufficient to compare
(8) and (9)):

NV
PMu=Y (U 00N M), u€Hy.
a=1

Before the proof of these two theorems for us is necessary to introduce some
notions. Let D’ be a conjugate space for D, duality between D’ and D is given

by (-, -)u. Introduce the extensions ﬁf €L(H_, D), §f; € L (D", D") of ope-

904 ISSN 0041-6053. ¥Ykp. mar. sxcypu., 1992, r. 44, N 7



rators 2'1, B jx respectively by
Af ¢, wu = (9, A)n, @€H_, ueD; j=1,..,n,

(ﬁf';cp, Wy = (@, By, @€D’, ueD; jk=1,..,n
For us it is also necessary to introduce some extensions of operators X,,.

Note that from (2), (5) and commutativity of Aj, and ?1; one can conclude:
X,€L(D, Hy), k=1, ... ,n. Dueto selfadjointness of X, with respect to
(-, -y we can define the extensions X¥ € L (H—, D’) of operators X, by

(XFo, uy =(¢, X,u), 9€H_, u€D; k=1,..,n

We shall say that the vector 0= ¢ = ¢ (A\) € H_ is a generalized eigenvec-
tor of family of operators (X)?_,, corresponding to eigenvalue A= (A, ...

w s A ER", if
Xfo=Mp, k=1,..,n (10)

Proof of Theorems 3, 4. As it was noted the operators X, act continu-
ously from D into A and, therefore, (4) is suitable for expansion with respect
to joint generalized eigenvectors of family (X,)f—, of commuting selfadjoint
operators [12—14]. According to projection spectral theorem and its form in
terms of Fourier transformation ([13], Theorem 2.8 and subsection 2.11 from
Ch. 2; or [14], Thecrem 2.4 and § 3, subsections 1, 2, from Ch. 15) it is possib-
le to assert that all results of Theorems 3, 4 are valid with replacing the genera-
lized eigenvectors of problem (1) on such joint vectors of family (X,)k—,. Thus,
our assertions will be proved if we check that every joint generalized eigen-
vector of family (Xj)_, is the generalized eigenvector of problem (1).

Let ¢ = ¢ (M) € H— be joint generalized eigenvector of family (X,)7_,
i. e. @ satisfies the equalities (10). It is necessary to show that the equa-
lities (6) it also satisfies. Since D = @, then M u€D
¥ BifXiu = Y BuXwu = Afu,  j=1,..,n (11)

k=1 k=1

(see (3)). According to continuity of operators Bf;, X§, A} and density D
in H_ the equality (11) is extended on H_, i. e. we have

Y BixE =2Af, 1=1.an (12)
k=1

Now after application of (12) to ¢ from (10) it follows:
E lkﬁ}';cp — ﬁ}"(p, FEJ -
k=1

But last equality is equivalent to definition (6).

Remark 1. Using (12) it is easy to show that (6) and (10) are equiva-
lent, i. e. the notion of generalized eigenvectors of multiparameter problem (1)
and notion of joint generalized eigenvectors of family (X,):—, of operators coin-
cides. The proof of this fact is quite analogous to the proof of such fact for the
ordinary eigenvectors [1, 6—8, 10].

4. The construction of expansions in the case
of nonquasinuclear rigging. It is good known [12—14] that
the condition of quasinuclearity of mapping Hy into H_ is necessary for con-
struction of chain which is suitable for expansions in generalized eigenfunctions
of arbitrary selfadjoint operator A (or commuting family of such operators).
But for some concrete situations this condition can (and useful) omit. In pat~
ticular in the applications it is very convenient to use the Carleman property
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of corresponding operators. In present section we develope abstract approach
which is useful in such cases when it is possible to prove the Carleman property
for our operators 4, j = 1,

T'et O be the Imheddmgoperator of space H_ into H,, S, (F, G) denote the
class of Hilbert-Schmidt operators acting from F into G. We formulate at
first one simple general result.

Lemma 1. The assertions of Theorems 3, 4 are valid if mstead of qua-
sinuclearity of imbedding H, = H we shall suppose that some bounded con-
tinous nonzero fundzon B3 K500 }Ln) r—»rx (Agy .. » M) ECY exists for which
the operator o (X4, ..., X,)O€S, (H.,

For the case n — 1 this fact is contamed in [13] (Ch. 2, Theorem 5.2) or
in [14] (Ch. 15, Theorem 4.2). The proof for arbitrary n is analogous

Suppose that we have the rigging H_ ,2H,DH  k=1,...,n, and the
spaces Hy, H_ 11’1 (4) are constructed as the tensor products: Hy =

= ® Hyp H_ = ® H_.;, In this case O = ® 0, where 0, is the imbed-
=1
dmg operator Hi f: Hy. Suppose: 1) that for some set (1)), ;=1,2, ...

A —iDT 0,€S8,(Hyjy H)y j= 10 u (13)

2) the operators Bj, transform 5{5(,4;.!'“') in itself and are continous in the
norm of corresponding graph, i. e. ¢ >0

AT Bl < e (N AS " a ey + N lly), w€BAFT:  Gk=1,...n
(14)
' I
Denote X = (X} + ... + X3+ 1)?
Lemma 2. Assume that conditions (13), (14) are fulfilled, 1 = 1, + . +
—+ 1,. Then X—'0 € S, (H{, H).

"It is convenient to prove this lemma a little later. Now we formulate some
consequence of Lemmas 1 and 2.

Theorem 5. Suppose that the conditions (13), (14) and (5) are fulfilled.
Then (4) is suitable for the construction of expansion on generalized eigenvectors
of multiparameter problem (1). In particular, the assertions of Theorems 3, 4 are
valid.

Proof. According to Lemma 1 for the proof of our theorem it is suffi-
cient to find the function & with corresponding properties. But according to

Lemma 2 as such function we can take (A, ..., An) = (A] + . + Az +I)?

(M - 5 M) ERD).
The proof of Lemma 2 is based on the following result.
Lemma 3. Let us the conditions (14) are fullfilled. Then the operator

(é (Aj-" — i) )X_ is bounded in H.

== .

"~ Proof. Let E (-) be a joint resolution of identity ot family (X,)z_, of
commuting selfadjoint operators. Put M ={E(@)ulu€cH, a is arhltrary
bounded Borel set from R"}. The set M is as essential domain for X' the-

refore it is sufficient to check inclusion M E.ﬂ(@ (Ajl -—-11)) and the es-
j=t
timate: 3¢ >0 M ueM

(&, i) ul, <cnxtu,
We shall prove more general fact: v (k)7 (0 <K, <)

Me B Ak ... Al (15)
and 3cg,....k, > M UEM

" zkj e ﬁkn u"H "“-<-C"‘1v"-kn "Xku "H’ k= ki +.o. 4+ kn- (16)
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Note that from the interpolation considerations, applying to (14), it is pos-
sible to conclude that the operators Bj, continuously transform 2 (A;") into

itself for all m; =1, .., —1, i. e. 3¢}, >0 M u €D (A7)

| A7 By, < G (N AT N, + N lly)y my=L s h— L fk=1, e yn
(17)

We shall prove (15), (16) by means of induction. These correiations are
fulfilled in the case &, = ... = k, = 0. Suppose now that they are fulfilled

for the set (k,)?_,. For definiteness we shall assume that %, </, and shall
prove (15), (16) for the set (&, -+ 1, ky, ..., k). From (3) it follows that

f,i\iu = E Euu,- where u; = X;ueM =D (:21’;1 ;if,"). According to (17) the
!=I ~ Fa

operators B,;, j=1, ....n, transform the set 2 (A':l Af;‘) into itself.

Thus, ﬁ._u also belongs to 9 (ﬁ";l ;ﬁli”) and therefore u¢c @ (:ﬁ\lflﬂ?l:z ...?li").

Check the corresponding inequality (16). According to (3), (17) and suppo-

sition of induction, we get
ATI A:” (E Bquu)

Gk 1k Gk |
|| Akt Ak L Ay, = -
=1

H

n

<V IANBy (A o A Xl < Y e I Af o AprXu )y <

=

=1

j=
Sl z e X Xully<e, .. L e, 1 X Fall,.
i=1 i=1
Proof of Lemma 2. It is evidently that the operator X_‘OES (Hy, H)
if and only if OYX~'¢€S,(H, H_) where O is the imbedding operator
H = H_. For this operator we have 0" = ® O} where O} is the imbed-
ding operator H; = H_ ;, therefore the assert:on of lernrna is equivalent to
inclusion

(® of)x~es, . 1. (18)
2

But we have
(;éloy“) X~ = (élof (A?h“)_’) (é—i: (Aj — il}) x= (19)

The last multiplier in (19) is bounded in f/ according to Lemma 3.
Consider the first multiplier in (19). The condition (13), as above, is

equivalent to inclusion O; (A —il)~'€S,(H;, H_), therefore for tensor
product we have:

é,: of (A —iytes, (}élﬂ " ;%’. H_j) = S,(H, H_).
J= = =

Now from (19) we can conclude that the inclusion (18) is valid.

5, Expansion in eigenfunctions of multipara-
meter problems for differential operators. In this
section we would like to give some applications of Theorems 3, 4 to the di-
fferential operators.

Let H; = L, (G;) where G; is some (perhaps unbounded) domain in space

R% with enough smooth boundary 8G; (d; = 1,2,...; j=1,..., n; the mea-
sure on G; is Lebesgue). Now H = @ H;=1L, (G) G=0G% . G, =

drt--tin Denote x = (x4, ... X,,) where x€G, x;€G;.
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Let 8#jL; be formally selfadjoint arbitrary differential expression of
order r; = 1,2, ... of the form

(L) (x5) = Z Qjo (x;) (D%u) (x5), x;€Gj, (20)

la|<r;

with complex-valued coefficients ajq € C'™ (G;) and partial derivatives D* of
order |a|. This expression generates the minimal operator in the space H;

which is equal (by definition) to the closure of operator H; =C¢ (Gj)du

~= L;u€ H;(Co" denotes the class of infinitely many differentiable functions,
finite with respect to dG; and co; shortly: with respect to G;). Let A; be
some selfadjoint extension of this minimal operator in the space H; (we
suppose that such extension - exists).

Now as operator Bj, we take the operator of multiplication on real-va-
lued bounded measurable function bj,(x;) in the space H;:

H;3 f(x;) = (Byl) (x) = by (x) f(xp) €Hj, o, B=1, ..., n. 21

The positive definiteness of operator A constructed by (21) in the spaée H
guarantees the following condition:

det (b, () e=t) =m >0, x=(xy,..., %) €G- (22)

We shall suppose below that the condition (22) fulfills.
The role of space H; in (4) now plays the space

Hy=® W Gy pj(x) dx) (23)

where W’;F (Gj, pj(x;) dx;) denotes the Sobolev space of I;-times differentiab-
le functions on G; with some weight p;(x;)=1. The index /; = [d;/2] + 1.
The weight is chosen so that the imbedding W’;f (Gj, pj(x;)dx;= L,(G)) is
quasinuclear (it is possible, see [13, 14]). Thus the imbedding Hi<=H is also
quasinuclear. The negative space with respect to positive W;f' (Gj, pj(x;)dx;)
and zero space L,(G;) we denote, as usually, by W;"f (Gj, pj(x;) dxy).

As the space D from (4) we take the space Cg******(G) which consists
of functions on G, s; times continuously differentiable with respect to variab-
le x; and finite with respect to 0G, and oo: here s; =1I;+r; j=1,..n.
This space is provided by corresponc[ing natural topology, which gives the
uniform convergence of all derivatives Dy} Di: 0<<k;<<s; and uniform

finiteness.

Theorem 6. Suppose in addition that ajq € C'1 (G;), bjr€Ci (G, la| <<
<rjs j, k=1,..., n. Then all assertions of Theorems 3, 4 are valid. Now
the generalized eigenfunctions ¢ = @ (M) of problem (1) are generalized solu-

tions inside G (from the space H_ = é W;Ef Gy, pj(x) dx;) of the system
il
of differential equations !

L) =Y M (6) 0@y %= (850 X) €Gi A =(hpywees An)i

k=1

f=1,u., n. (24)

P roof. This result immediately follows from Theorems 3, 4 It is nece-
ssary only to note that the restrictions putting on coefficients @;, b, guarantee
the conditions (5); the assertion about eigenfunctions follows from (6).

In the case of elliptic differential expressions (20) we can apply the theorem
about regularity inside the domain of the kernel, which with respect to every
variable satisfies the elliptic equation ([12, Theorem 4.2 from Ch. 3)). From
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this theorem and (24) the smoothness of eigenfunctions follows. Moreover, it
is possible to prove the following theorem. '

We denote below by C" ' (G), ¢ =1,2,.., the class of functions G3
3 x +» u (x) € €, continuously differentiable #; times with respect to x;, j—
=olonnn A

Theorem 7. Let Lj be an elliptic differential expression in the do-
main G; = RY, d; =2, 3, ..., with coefficients ajo € C'“i (Gj), by, €C'i(G))
where t;>r;+1;4+ 1, |a|<r; j, k= 1,..., n. Then the assertion of Theo-
rem 6 is valid and the generalized eigenfunctions ¢ (\) = @ (x; A) of the pro-
blem (1) belong to the class C''***''n (G).

The generalized projector P (A) from theorem 4 acts on finite with, respect to
G functions u from Hy by the formula

PMuy@={Py; Hu@dy, x€G  A=(hhy) ERY,
G

where spectral kernel P (x, y; \) is a generalized solution inside G from H_®H,
of the system of equations

Liy A7 @ Py M) (5 9) =Y Mabju(6) A @) P (o s A,
k=1

n
Ciy A @D Py D) (5 9) =Y Mb @) AT @) P, 4 8)  (25)
k=1
x=(x1v"-! x‘n)EG: y=(y1t-"! yn)EG; jzls-'-: n.
Here L;-differential expression with coefficients conjugate to coefficients of
Ly Ljx; (Ljy;) acts with respect to variable x;(y;).

Inside GXG the kernel P(x, y, \) is smooth enough: it belongs to the
class Clve='wteotn (G G). The kernel A~ (y) P (x, y; A) for every A is a posi-
tive definite one, its expansion in generalized eigenfunctions @g (M) = Qg (x;
from Theorem 3 of multiparameter problem (1) has the form

NQA)
APy N=Y 9u(x}) Py h), x y€GC. (26)

a=I
The series (26) converges absolutely and uniformly inside G X G (on every
compact from GxG). Moreover, the series (26) can be differentiated: take the
derivatives of the form D3 ... DT:DE: Dg'; where | a;|, | Bs| < ¢j. After diffe-
rentiation the series will again converge absolutely and uniformly inside G X G.
Proof. The assertion about smoothness of eigenfunctions ¢ (x; A) follows

from the regularity theorems for elliptic equations and was explained.
Since P (A) : Hy. — H_ is a Hilbert-Schmidt operator, the kernel P, €

€ H_ ® H_ exists for which .
(P(A) u, )y = (P, v @I&)H@H, u, ZJEH+. (27)

This result follows from the general kernel theorem from [12—14]; we shall
also write a little symbolically: Pj = P (x, y; A). Since yu € H (P(A) u,
u) = 0, the kernel A (x) P (x, y; A) (and also the kernel A—1 (y) P (x, y; \)
is positive definite. In particular in the sense of generalized functions

Py M) =38 P 5 ). @8)

Prove (25). Since the range of operator P(A) consists of generalized eigen-
vectors of the problem (1), according to (6) and (27) we get: Yfu, v€CY (G\
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= (Pn ((Li— 2 b (x)) 0)®u),, -
k=1

This equality is equivalent to the first equation in (25) understanding as an
equation for generalized functions. The second equation in (25) (understanding
analogously) follows from the first one and from (28).

Thus the generalized function A—! (y) P (x, y; &) satisfies the system (25)
(in generalized sense, of course). But with respect to every variable x;, y; the
differential operators in (25) are elliptic. Therefore we can apply once more the
Theorem 4.2, Ch. 3 [12], and conclude that the kernel A= (y) P (x, y; A
enough smooth and the equations (25) are satisfied in classical sence.

The expansion (26) and possibility to differentiate it are proved as analo-
gous facts for ordinary spectral problems in [12].

If selfadjoint extension A; of minimal operator (created by L;) is generated
by means of some «good» boundary conditions then it is possible to apply the
theorems from [12, 14, 15] about the rise of smoothness up to boundary. These
theorems give the smoothness up to boundary of eigenfunctions, spectral ker-
nel and so on for multiparameter problem (1). We shall formulate now some re-
sults in this direction.

Fix j=1,..., n and consider the operator A; created by the el]iptic
expression L; of order r; = 2m;, m; — 1, 2, ..., in the space L, (G)) (G; = RY,
possibly is unbounded). Let G,; = G be a bounded domain with boundary aG,;
and intersection 9G,; N dG; == T'; is enough smooth piece of surface in R% which
is a domain in topology of 5G_;. In this situation we shall say that G,; =
= G; lies in G; up to piece I'; of boundary dG;. Suppose that the functions
u from domain of operator A; satisfy on I'; some normal system of elliptic
boundary condition [12, 15]:

Cu)(x) =0, x€l'y, i=1,..., my (29)
G (x) =Y () (D) (), my<2mj. (30)
lel<mj;
Assume that
Gjay bjp€CY(G;UT)), |a|<<2m;, k=1,...,n;  v;>1;42m; (31
Clig €CYIL(T)), |a|<my, i=1,.., m
Ty = max 2m;— my;, 1; + my; + 1} : (32)

We shall say that u € W5, 10c (G, T'j), s= 1, 2, ..., il for arbitrary bounded do-
main G’ = G;, which joint with dG; boundary lies strictly inside of piece T';,
we have: u € W3(G'). Introduce also the following notations. Let us

G =G, X ... X Gj—1 X Gjp1 X ... X G,

for x = (x4, ..., x,) €G we shall write x = (x;, x/), where x/ =(x, ..., xj_1,
Xppys ey %), and 28lso: G =G ¥ G, j=1,..; n.
heorem 8. Letl us the condition of Theorem 7 be fulfilled and for
some j=1, ..., n, there exist the bounded domain G,; = G; which lies in G;
up to the piece I‘j = 0G;. Suppose that r; = 2m;, the functions u from D (A;)
satisfy on U'; normal system of boundary conditions (29), (30) and the condi-
tions of smoothness (31), (32) are also satisfied. The piece T'; is smooth enoughi
it belongs to the class C*™it%it!
Then the generalized esgenfuncuons of the problem (1) @ (x; &) = @ ((x;, x/);

A€ H_ for every fixed x' €G' belong to W’g”‘[{j‘f (Gy;, T'j) and on T; satisfy
the boundary condition (29). Analogous assertion is valid for the spectral
kernel P ((x; x7), y; A) with fixed x' €G', y €G and [or the function A ((y;,
y?))P(x (Y5, y): A) with fixed x€G, y e€G .

Proof. Assertion of this theorem concerning the eigenfunétions follows
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from known results about rise of smoothness of solutions of elliptic equations
up to boundary [12, 15]. Now the space H{ (and respectively H_) is construc-
ted as in Theorem 6. It is necessary to improve a little the construction of

space D. Let C*"*~*n (G) be the set of all functions from C*+*n (R%*-+n)
restricted on closure G of G; s, =1, +ry, R =1,..., n. As D we take the
set Cy**** (G, T;) which consists of all functions from C**'*** (G) which sa-

tisfy on I‘;xé" ::é,-x G' the boundary conditions (29) and equal to zero in

neighborhoods of dG \ (I';xG') and infinity. The set Cg*'**"*** (G, T')) it is ne-
cessary to provide with corresponding topology (see [12, 14]) and then put
D = Gy (G, T').

Such choice of Hy and D gives that the generalized eigenfunctions of
problem (1) satisfy the j-th equation of system (24) up to the piece I';, on the
boundary 0G;. Therefore after application of mentioned theorems about rise of
smoothness we get the result concerning eigenfunctions.

Assertion concerning the spectral kernel is provided analogously, now we
use the system (25) instead of (24).

Remark 1. The first part of this paragraph, including Theorem 6,
is true, of course, for the ordinary differential expression (20), whend; = ... =
==d, = 1. But for the general ordinary linear diiferential equations there
exist the theorems about rise of smoothness of solutions (up to boundary also,
i. e. up to the ends of intervals) [14]. Therefore we can apply these theorems in
considerations of type Theorems 7, 8. As result, we shall get the Theorems 7, 8
for the case, when d,, ..., d, = 1, 2, ..., i. e. when all differential expressions
L; are ordinary or only some part of them is such. Corresponding domains G;
can be axes or some intervals (a;, ;) = R! (a; = —o0, b; << +o0). We
shall not formulate the results. They have the form of Theorems 7, 8 but with
weaker restrictions on the smoothness of coefficients. It is easy to get these
restrictions from the Theorems contained in [14], Ch. 16, § 6.

6. The approach, based on Carleman property
of operators. In thissection we apply the abstract approach, developed
in 4, to the case of elliptic operators A;, j =1, ..., n.

Theorem 9. Let A; be a selfadjoint extension in the space H;=
= L,(Gy), G;=R%, dj=2, 3, ..., of minimal operafor constructed by elliptic
differential expression L; of order r; with coefficients ajq, € C'Ii (G) (t; >=r; +
+2d; + 1), By, is an operator of multiplication on bounded real-valued func-
tion by, €C (Gy) (;=r)), i, k=1,..., n. Suppose that the operator B}, trans-
forms D(A';f) (nj = [d;/2r;)) into itself and is continuous in the norm of cor-

responding graph, i. e. 7c;, > 0%fu € D (A}))
A7 byt Ny < il AG allgy + wllr), Tl =1,y me (33)
Then fj=1,..., n such a function p; €C™ (G;), p; (x;)=1 exists (it is
possible, tending fo oo when x; tends to 0G; and oo) that for expansion in
generalized eigenfunctions of multiparameter problem (1) is suitable the chain
H_=H=H, of the form

L, (G, p~' (x) dx) 2 L, (G) 2 L, (G, p(x) dx),

P '[X) =M {xt) wer P (xn)t x=(x1’ ey xn} 6 G. (34)
Generalized projector P(\) is an infegral operator:
(P w) (x) 2(5 P(x,y: Mu(y)dy, u€L,(G, p(x)dx (35)

where the spectral kernel P(-, «; A)€L,(G X G, p_' (x) ,z:v_l (y) dxdy) is smo-
oth enough (P(+, -; A)EC™ "™t (G % G), t;=min {{;, 4} j=1, ...
..., n)) and satisfies inside Gx G the system of equations (25).
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Every generalized eigenfunction of problem (1) @ (-, A) € L, (G, p=* (x) dx}
belongs to the class C™**"* (G) and satisfies the sys!em (24).

The expansion of positive definite kernel A~ (y) P(x, y; A) in eigen-
functions of the problem (1)

N(&)
AT @) P(x, i M) = Y] 9a (6 M) §ulyi B), %,y €G, (36)

a=I1

converges in the space L,(GxG, p—'(x) p~' (y) dxdy). In every sirictly inter-
nal bounded subdomain of GXG the series (36) converges absolufely and
uniformly. Moreover, it is possible to differentiate the series (36): to lake

the derivatives D}! ... D::DE:---DEE where |a;|, |B;| < ;. After the differen

tation the series (36) also will absolutely and uniformly converge in the
mentionned domains.
i
Proof. Letl; = [dy/2] + 1. Then [12] vyj the operator (A" —ily™ is
integral operator with enough smooth kernel Kj (x; y;) for which the integral

(1K ey 1Pdx;
e

is bounded when y; runs in an arbitrary compact including in G;. Therefore
we can select such functions p; €C” (Gj), p; (y;) =1, in oder to

S j | K (x5, y) P p~" (y;) dx;dy; < oo.

G!' Gj

Thus, the condition (13) is now fulfilled when we take H; = L,(G;), Hy,j =
= L, (G, pj(xJ)dxj) The condition (14) coincides with (33). Taking D =

""" " (G), we easily check the conditions (5) in our case.

Thus all, assumptions of Theorem 5 are fulfilled and we can apply it w1th
the chain (34} and indicated D.

The representation (35) for P (A) and inclusion P (-, -; A) € L, (G X G,
p~t (x) p~* (y) dxdy) follow from quasinuclearity of P (A). The smoothness of
spectral kernel, generalized eigenfunctions and properties of expansion (36)
are established as in Theorem 7 (see also [12]).

Remark 1. Remind [12—14] that selfadjoint operator A, acting in
the space H = L, (Q, dp (x)), is called Carleman operator if some bounded
continuous nonzero function vy, defined on the spectrum of A, exists for which
the operator y (4) is integral and for its kernel K (x, y), x, y € Q, for p-almost

all y € Q
Slfﬂx, Y)12du () < oo ((7(A)f W) ng(x. NFwdy, fEH) .

The fundamental step in proof of Theorem 9 is the checking of Carle-

man property of operators A;(now y;(A4; = (A "—r.l) ). This property ad-
mits to use (34) instead of tllle chain connected with positive space (23) and
therefore to get more detailed information (comparing with Theorem 7) about
spectral kernel and generalized eigenfunctions.

Remark 2. The inequalities (33) lead to some restrictions on beha-
viour of functions b;,. Note that in case of bounded domain G; the norm of
graph |lull. =l Aj%u|ln; + |lu|ln; is equivalent to norm in some Sobolev
space («the inequality of coercitivness». For unbounded domain in some cases
it is possible to get analogous equivalence but for Sobolev spaces with we-
ights. Such equivalence permits to get some more concrete reslrzctions on
behaviour of b B

Rema rf{ 3. As in sec. 5, Remark 1, we can investigate in this section
.he case when all or some part of expressions L; are ordinary differential expre-
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ssions. It is easily possible to reformulate Theorem 9 for such situation,
the conditions of this theorem are transformed by means of results from [14],
Ch. 16, § 6.
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