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Canonical quantization for classical
dynamical systems of Neumann type
via Moser spectral approach

Ranoniuyne KBaHTYBAHHA IS KIACHIHAX
maHamivanx cucreM tuny Helimana B pamMmkax

crnexkTpaasHOro nigxony Mozepa

The classical Neumann type dynamical systems describe the motion of a particles constrained

to live on an N-sphere SV in (N-+-1)-dimensional space IRV +! and submitted to quasi-harmonic
forces. Following the Moser spectral approach to a connection of the infinite dimensional finite-
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zoned by Lax dynamical systems with the finite dimensional Neumann type systems on sphere

in RVt the regular procedure to quantize of them suitably is supposed. The quantum expres-
ssion of the commuting conserved currents for the quantum Neumann type dynamical systems
are determined in a general case via the Dirac canonical quantization procedure.

Kanacnyni gunamiuni cacremu THny HefiMana onHcyioTk pyx yacTHHKH, oGmexeHol N-BHMipHOi0
cpepoio S B (N + 1)-Bumipuomy npocropi RY+! nig nieio xsasirapmoniumix  cua. 3rizso
3 crnekTpafdbHHM Mifxofom Mosepa o 38’ 3Ky HecKiHueHHOBHMipnuX no Jlakcy mHHaMiuHHX CH-

cTeM i3 CKiHUeHHOBHMiPHHMH NHHaMiuHHMH cHcTeMaMH THNY Heiimana na chepi B IRV sanpono-
HOBaHA PeryJsipHa NpoueAypa BiANOBIAHOTO IX KBaHTyBaHHs. B 3arajbHOMY BHNAJKY KaHOHiu-
Horo KBanTyBaHHst Jlipaka BH3HAueHi KBAHTOBI BHPa3H KOMYTATHBHHX 3aKOHiB 30eperkenHs VI
KBAHTOBHX JHMHaMiuyHHX cHcreM THny Heiimana.

. Hamiltonian analysis of Moser’s isomorphism
for Korteweg-de Vries and Neumann nonlinear
dynamical systems. 1.1. Let’s given the following dynamical sy-
s tems of Korteweg-de Vries [1]

duldt = 6uu,, + u,., — K [u) . ()

on the infinite dimensional functional manifold Mc—L,C® (R/2nZ, R) of
2n-periodical functions on the real axis R, t€ R is a evolution parameter.
In order to describe the related Moser’s isomorphism of (1) to finite dimensio-
nal Neumann dynamical system on the sphere S¥ (where N € [ is the number
of stable zones in the spectrum o (L) of a associated Lax type spectral problem
for the Sturm — Liuville operator L : C=) (R; ) — C (R; (?), we shall
formulate the special variational properties of functionals on M generated by
Lax type representation for (1). Let F (x, x,; A) € GL (2; ) be the fundamental
solution of the linear matrix differential Lax equation L[u; A]f(x; &) =0,
where L [u; A] = d/dx — A [u; A,

_ 0 1
At 8 = =g @
A € ([ is spectral parameter, x, x, € R and F (x,, x,; &) = 1 being satisfied for
all x, € R. The monodromy matrix S (x; &) € GL (2; ), x € R is defined by
equality S (xg; A) = F (xp + 2m, xo; A) for all A € . It si obviously that mo-
nodromy matrix S (x,; A) is a regular functional on the manifold M which 1s
parametric dependent on x, € R and A € . Following the results of a book [1]
we have main variational formula

x.—[_—im
8S (xg; W) = 5 dxF (x, 4 2m, x; ) 6A [u; u] F (x, x4 p) )

Xo

forallp € C, % € R. - -

We know [1] that a functional A (A) = tr S (x,; A) is invariant via the dy-
namical system (1), that is dA (A)/dt = 0 for all £ € R. 1t is also clear that
dA (M) / dx, = 0 also for all x, € R. Therefore, the functional A (A) € D (M) is
regular via Freche’t invariant functional on M for all A € ([, defining the gene-
rating functional to determine the conservation laws for the dynamical systems
(1).

1.2. Let us consider the action on a equality (3) of the Lie’s derivative [2]
Lk along the vector field (1). Since LxF = 0, Lx6.4 = 0 for all p € ((; we obtain
that Lx 8S (xo; u) = 0. If we shall define the matrix ® (x; p) as follows:

884y (%o W) = (@ (x5 ), Su(x)), 4, j=1,2, @
we receive+that grad S (x,; w) (x; p) = @ (x; p) for all x, x,€R, p€@, where
Xo2m

() -) = S dx (-, ) is the standard bilinear form on T* (M) x T (M).

Now we receive that for all i, j = I, 2, £ € R, the Lax equality is satisfied
d®;; (x; w/dt + K'*.M; (x; p) =0. ()
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It is known [1] that the element ¢ (x; A) = grad A (A) (x; A) € T* (M)
satisfies the following determining equations:

de (x; M/dt +K™*-@(x; 1) =0, —4M0@(x; A) =19 (x; M) (6)

for all x € R, A € C, where 0, m : T* (M) — T (M) are implectic and noetherian
[2] differential operators for dunamlcal system (1), which are compatible [2] on
M and

0 =d/dx =0, 1 =0%-+ 2ud -+ 20u. )

Due to a analytical dependence of the matrix @ (x;"p) on spectral paramet-
u € © from equations (5) and (6) we find that .

—4p0®;; (x; ) = n@;; (x; p (8)

for all i,j=1,2, x€R. Now we can state following.
Proposition 1. The monodromy matrix S (x,; ) satisfies commuta-
tor relations via Poisson structure {-, -}¢ on M:

1
{515 (xp3 M), Sp5 (x5 i-'-)}a =0, lslz (xo5 M), o (S35 — S11) (X3 l-l)} =

2
[Sio (J\l)l 7\-) ]/l A" (”)fq. — 845 (xl) !‘L) I/ CA(X)(AI it } s

c(p)

— A 4
{—“2— (Sog— Sqg) (X0 A)s Soq (%o u)} - l:s21 (X0; N) ]/ . (u)ﬂilf’

/
— Sy (X0 1) ]/ c&(}&)(m - ]' {52 (X3 M)y 12 (X3 W} = 2‘_£H X 0O

— A% () T —A? 7
X [(S:z — Syy) (X453 A) ]/ P-)lk — (Saa— S44) (x4y 1) ]/ = U\‘()}l)f ] ’

{(55a— 519) (X3 M)y (20— S11) (X H)}a =0

for all x, € R, A==p € (C, where ¢ (A) is a special invariant functional on M deter-
mined by spectral properties of the Lax L-operalor.

The proof of the statement is the direct consequence of the set of formulas
(8) added with the obvious evolution equation via a parameter x, € R:

dS (x4 Mdxy = [A[u; M, S (xg; M), (10)

where [-, -] denotes the ordinary matrix commutator.
1.3. Let us define the following «generating» dynamical system on M:

dufdt = {A (M), u}q, (1)

where L €  and t € R is a new evolution parameter. Following (9) we can state
that evolution equations:

o
dsy, (xg; Wdt = 7‘_1_—“p [(S22 —511) (X3 A) 842 (X3 1) — Sya (Xg3 A) (Sap — S4g) (¥gs W],

o
d (Spe — 84) (x5 Wdt = — ?L__LP_ [840 (X3 1) Saq (Xg5 A) — S5 (X4 &) Spq (x4; )],

oi (12)

dsyy (¥ p)/dt = h_l m [(S20 — S11) (X3 1) Saq (X035 &) — (Sa2 —S19) (Xo3 A) Sy (%5 W],

i =V—1,

hold for all x, € R and A 5= p € . The system of equations (12) is linear with
relation to the functionals s;; (xg; 1), i, j = 1, 2, as we have that

d (544 + Sy) (xgs Wdt ={A (), A(w)}y =0 (13)
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for all A, n€(. Therefore from (12) and (13) we find that
dS (xo; w/dt = [P (A, 1}, S (x4 W (14

where P (A, p) = 1.—2p. S(xs M)y X,€ER, As=p€(. As the equation (13)
holds, the equation (14) is equivalent to that in the following form:

dS (xg; w/dt = [P (h, p), S (xg; W), (15)
2

S (i W) forall

where S (x5 1) = S (o p) — 1A (0)/2, P\ p) =

A£EpeC.

Note. The (A, p) — parametric matrix Lax type equation in the form
(15) was firstly stated implicitly by authors in the book [1, p. 65, 94], and
also in the paper [3] in a context of the K. Neumann problem.

To pass now in the context of the Neumann problem [1, 3] we must suppose
that

Sgp (Xg3 1) = — I.;12 {xu; [ E(!"')'
Sa1 (g3 W) = iSyy (%05 ) € (), (16)
1 5 e ; _
5 (Sgp— 819) (x5 W) = — s (xg; ) c(p), = V=1

Herﬁ E(p):V(L;M{u)M)IC(u), wEC, is a some function and c(u):=
=[Tw—v) xT1 (A — ®;)"", where {v;€R;.:j= 1, N} is a spectrum of

=1 j=1
antfiperiodic spectral problem, N €z is the number of related Bloch zones
of stability [1), o;5= o; for all is-].

1.4. Let the periodic spectrum {@;€ERy:j=1, N + 1} is fixed. There-
fore due to J. Moser [4] we can pass in (16) to the K. Neumann canonical
representation:

., N oni ! 47 (%)
S0 (k01 W) = [1 O — s V[T 0 —0p): =Y =L,
j=1 j=1 i=1 J
. M P (x)
Sp1 (Xos ) = TI__(;} +1, an
j=1
. . Nt
$ (xg3 ) = dsyy (x; W)dxy = Z QLW '

j=1

provided that the following equalities for p €,

— 52 (%o 1)+ S1a (X3 ) Saq (g5 (W) = ¥ ()

N N1 N
uix) =2y m(x)— Y 0;— Y v (18)
j=1 j=l1 j=1 .

being held, where {p; (xo) € Ry : j = 1, N} is divisor of the initial Lax L-ope-
rator as in [1, p. 57]. Computing the evolution (10) via variable x, := 7€ R
from (17) and (18) we obtain the classical K. Neumann equations on the sphere
Sy

N1
d’qjlde® + 0,9, =0, dgjdv=p; Y g=1, (19)
j=1

7 =T, N + 1, or equivalently the following Hamiltonian system on M=
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. C NI
= TRY =RV x R¥*! with the canonical symplectic structure o = Z dp; A\
=1
A dg; € A2(MPN TP

d‘?f’{dt = {H' qi}(N+]]' dp:‘{dt = {H' pj}(u.]_l)' (20)

N1 N+1
where H = 71—- Z Gipx — qupi)® + % E ®,q? is the Hamiltonian and{-, -}v41)

f==k f=1
is correspondiné Poisson structure on I’}"iR’“”r‘.
The formula (18) also admils the simple construction of the alternative
to the set {v;eD(M):j=1, N} hierarchy of the conservation laws as fol-

lows [4]: vt
+

V= a0+ Y, @pr— qup))*(@; — o), @1
ik
2 N4
where p(p) = Z yi/(p— ;) has place due to (18) for all €.
j=1

| 2. The quantization problem. 2.1.Let us consider the
quantum Neumann model (19) where the canonical Poisson brackets on the sym-
plectic phase manifold M2¥+2 are replaced [3] due to Dirac [5] by the corres-
ponding canonical commutation relations

{;12 (T A ;12 (v P')}{N-].:} =0= {E(t; A), E(T; P-)}(N_!.[)u

{512 (0 N), S (T W}y = — li—u' [543 (73 ) — 515 (13 W],
(22)
6505 0, 5 (5 W}y = — gy (5 (55 9) — Saa (53 ),

{50 (5 Wy S12(% Wy = ﬁ [s (v A) — s (v W,

where the canonical identification is used: {-, -}o —{-, -}(v+1) as the tangent
sphere TSV is invariant space of the dymanical system (19) and diffeomorfic
to that of the initial dvnamical system Korteweg-de Vries (1) due to Novicov-
Lax theory [11. After the quantization procedure we obtain the following ope-
rator quantilies for allt € R, A € (: ;

1505 (T3 A) 1= Spp (T M), 39 (T3 A) 1= 5p (T3 M),

£ A = A S

ts(m; MNi=s(wu A, vii=vp =1L N+1, (23)
acting in the related Hilbert space of functions, where by means of a ope.
rator : : we denoted the appropriate law of operator ordering. Due to (22) we
have identity

A A i 4 A A
[8q4 (75 A) S4p (v W) _}.'1_ = = m [s{v; A) —s (v Wl (24)
which gives us
A 1 N '
s(% ) =5 ]=EI (qsps + Pig)l(h — o)), (25)

that is the operation of ordering S M)~ “s(v; A): which acts as the opera-
tor symmetrization as firstly was stated in [3]. The corresponding ordering

to quantities :;,2 (t; A): and :Ez, (t; A): is obviously trivial.
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2.2. To reconstruct the operator ordering in the quantity: 7} A : =
= {a\(l), A € (@, it is useful to consider the equation (10) in the quantum Hei"
senberg form [5]:

dS (v; A)/dt = F& (A (% ), S (@ M), (26)

where §(t; A) 1= [|:5,; (6 A ||, i A (6 M) i1=:4 (6 A): for all TER, AEC.
As the byproduct of the Heisenberg equation (26) we get that operators

Ry =Tr8@n, YW = o Tr82(mn— <+ A ©7)

are conserved quantities for the quantized Neumann systems (19) on thé sphere
S¥. Computing due to (27) the operator y (A), & € €, we obtain that

F0) = — 56 W) o (5 D 5 (5 )+ S (B S (@ N @9)

that is also the symmetrized law of the canonical operator ordering. In part1cu-

lar from (28) we recast the convenient form (21) after identification ?j -V j
j =1, N + 1, for the conserved opgrator quantities of the quantum Neumann

model:
N1

vi=q;+ Z (qiPr — qup ) (@ — o). (29)

=k

The conserved quantities (29) are commuting [3] due to quantum operator re-
lation (24) and as following of (22): for all A== p € €, T € R

(510 (%3 A), S(: ””T:T = 1—3—“ (510 (T; 2) — Sy (5 W],

~ ~ i 2 ~ ~ G
[s(7; 7\-)’ Sy (7; P)] —h_ T T m [8g (T3 A)— Soq (T5 wl {30)
[Sia 55 1), S0 (5 I - = 0 = [5( A, 5w w4

2.3. The corresponding to (19) quantum Neumann model is obtained by
the following procedure. Let H be the quantum Hamiltonian of the form

N-+1 | M
Z @spn—aup)* + 5 ¥ 045 @31)
j#k j=1
Then the quantum Neumann dynamical system will obtain the following form
N1
dq;ldv = h — A, g1 = pj—q; N (Gupw)s
k=-1
(32)
N1 N1
dp;ldt = —IH pl=—w5—a; ¥ P2+ Y (@un) Py
k | k=1

where j = 1, N 4+ 1, 1 € R. In the standard Dirac type representation we may
to recast the following operators

h o
B> Pi™> T G (33)

acting in a dens domain in the Hilbert space L,(R"""; €), where for all
jo» k=1, N 4 1 the conditions [pj, qk]% = §;,, are satisfied obviously. The
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corresponding Hamiltonian (31) is a symmetric operator in L,(R*; ©), that
is the related spectrum of it is positive. Finally one easily verifies that the
N1

+
sphere S = {(Qu ; P~ qN‘{“])tE R, E ¢ = l} is invariant in relation to
j=1
the quantum l\f&:unrz.?u1r}»r dlynamical system (32), but the 7'SY is not that, since
+

the operator quantity 2 (q;p; + psg;)5= 0 for all T€R in spite of a identity

=1
N1 !

E g7 = 1. But if the quantum parameter % tends to zero the classical Neu-
j=l1

mann dynamical system recasts of the (32) immediately. As the unsolved
problem up to now cne remains to find spectrum description of the Hamil-
tonian (31).

3.Quantization of the general Neumann type
dynamical systems on the sphere. 3.1. The paper [6] con-
tains the list of the new integrable by Liouville nonlinear dynamical systems
of the Neumann type on the sphere SV for any N € N, the Lax type formula-
tion rif ]its being found in a each case. The some of them are included also in the
book [1].

Let us consider the following dynamical system of the Neumann-Bogo-
liubov type:

d?q;/d7® + 03q; = @,;9;0(¢, p) +u (g, p)q; (34)
on the sphere S, where o;#=0,€R if js=k=1, N 41,
N4-1

p; = dgjldv, v(g,p)=2Y 0,62+ a,
=
’ (35)
N1 : 1 N1
u(q, p) = Z{ 02— 5 0*(9: P) + 5 v (@ p) otg— ;E; P
j= =
a, € R being any constant quantity. It is a very light exercise to proof tha
NF1

E g?=1 is invariant via dynamical system (34). In order to pass in the

=1
}quantization structure of the section 2 above, we recast the dynamical system
(34) in the canonical Hamiltonian form on the phase manifold M*¥+? —T*R" %

dQJ"de O {-H’ QJ"}(;\-’-{—]]‘ dp_;fd‘l: = {H! p.f.}‘N-f-l)’ {36)
where j=T, N+ 1, (g, p)* ¢ M* "7 and on S"
| N | N 1
H=—§-Ll P?—I“E"EI 0ig;— 5 v*(9, p)- (37)
= i=
Let us define the following functionals on the manifold M>V*2:

B N1 N1
vi=Y @rr— @)@ —on) + @ (0f—a— Y ong3). (39

k=1

j#k
1 ML
Then we can compute that H = -4—2 v;- This result is useful in further

j=1
analysis. The full description [1, 6] of the dynamical system (34) is given
by the following statement: the hierarchy of functionals (38) is invariant by
means of the evolution (36) and commutative on the phase manifold

TSV = M2V,
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3.2. As is stated in [1], the associated to the dynamical system (36) Lax
type representation has the form (10), where the matrix .4 (v; ) is given by

expression:
———_ L “ (39)

“for a1l A€C and T€R. Therefore the associated with (39) reduced monodro-

AT A) =

my matrix S(z; A) = || 555 (%; A) li; j—is satisfies the commutation relations as
ones in (9), the quantity
' — (G W) + 5 (1 Wsu (1 1) = 7R (40)
being conservative for all A€ according to the evolution (36), and

N1 .

se(m ) =Y @0 — o),

=]

(5 A) = oy, (5 A/ — 53, (6 ) 0 (9, p) + (g, p) — A% =

N1 N41
=Y plh—0)+ Y o4+ M (41)
j=l1 j=1

s ) = % dsy, (7; A)/d.

Now the canonical quantization procedure due to Dirac [5] on the manifold
M ¥ s used: [py, gpl hL= 8 for j,k=T, N+ 1, and s,,(5;7A) =
= :E,,m (v; A):forms£n=1,2, §(1:; A) =:8 (t; A):, where :: is a special ope-

rator ordering on the space of polynomial symbols defined on M***% In par-
ticular we can state that for all Le(

1
8N =5 ¥ @+ pa—a) )
1

i

=

is the symmetrized operator ordering. Since the quantum monodromy matrix
S(uA) =850 A):||, ;5 for all T€R, A€, satisfies the evolution
Heisenberg txgtle equation (26), we can to construct the operator ’ia(':\.) =

=:y(A)i= Z "},i(?u—mj), where operators A«h, j= 1, N+ 1, are given

=1
exactly by the formula (38) after a standard identification.

3.3. There is the alternative procedure of quantization for the dynamical
systems on the manifolds with nontrivial topological structure — the geomet-
rical quantization [7]. Namely, if we are given the dynamical system on the
manifold M?¥ which is hamiltonian in relation to the symplectic structure

o® € A2(M?), 2N = dim M* €N, for any differentiable function ye2 (M)

we can build the predquantized operator VAE Hom(L,), following the van
Hove-Sigal expression:

~ h

v =19+ 5 Ky— oM (Ky), .43
where by definition 7x,0® :=—dyc A1 (M™) and ¢ = d“m"‘eAl(M’“")
according to local Poincare lemma 2 L, is
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Hilbert space of a representation the algebra of quantized operators, the
function y€ 2 (M®") in (43) being considered as the operator of a multipli-
cation on the function in L,. The map ?;._,_{,‘ (43) is named by a predqu-
antization.

Let us consider the Hilbert space L,: — L,(M*; (), where the scalar
product is defined as folloms:

Gl = { @R, 9

M2N

for any fy, f» € Ls. Due to the condition (43) we have obtained the Lie algebra
homomorfism of the Poisson commuting functions on M2¥ and that of the co-
mmutator structurized algebra of the quantized operators of Hom (L,).

But it is easy to state that the expression (43) not always determines the
well posed operator of Hom (L,), that is the second cohomology class of the
symplectic form o € A2 (M2¥) should be integer [7]. Correspondingly the
Hilbert space L, transforms into the linear vector bundle L, with the manifold

M2V as a base. Moreover, the 1-differential form ¢ = d~'®® inlocal charts
is interpreted as the local expression for the connection y in L,. Namely,
et us given the connection y in L, in accordance with the scalar product

(44), that is .

K(fl' fg) = (V,Kfit fz) + (fi’ Vl(-f2>' (45)
where (-, -) is hermitian structure on L, the formula (fy, o) : =
- \' (@MY (},,f,) being specified one in (44), K: M™ T (M) is any

M‘?N
vector field on M.
If the line bundle L, on a neighbourhood Ug<— M admits a nonzero

section su: M?M — L,, then the section space  (Ua; Ly is identified with
the space C** (Uq; ) due to the formula
C*™ (Ua; €)3f 2 fsa €I Uq; Ly). (46)

The corresponding operator y, acts as following
vxf = Kf— %qﬂ‘"(K)f. (47)
where the differential 1-form ¢ € A' (M*) is determined by the equality
Vite = — 7 00 (K) 5, (48)
Comparing the equalities (47) and (43) gives the following predquantiza-

tion formula of Souriau-Kostant
~ h
=7+ TV;{?' (49)

It is observed easy of (49) that the curvature differential 2-form of the connec-
tion y on L, is identified with the symplectic 2-form 2—:&[ o® € A2 (M32N),

the cohomology class of the 2-form ®® being integer. The quantization appro-
ach based on the formula (49) also gives the certain opoprtunity to describe the
spectrum structure of the quantum Hamiltonian for the Neumann type dyna-
mical systems as well as the structure of the eigenfunctions space of it.
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