УДК 514.7

А. Н. Кочубей, д-р физ.-мат. наук («Укрэнергосетьпроект», Киев)

Многообразия с инвариантной полуримановой структурой почти произведения

Рассматривается многообразие М с полуримановой структурой почти произведения, инвариантной относительно группы преобразований G. В соответствующем расслоении реперов на М построена связность с некоторым свойством G-инвариантности.

Розглядається многовид М із напіврімановою структурою майже добутку, інваріантною відносно групи перетворень G. У відповідному розшаруванні реперів на М побудована зв'язність із деякою властивістю G-інваріантності.

1. Пусть М - гладкое многообразие размерности п. Структурой почти произведения (СПП) на многообразии М называется (см., например, [1]) задание на М такой пары гладких распределений $M_m^{(1)}$, $M_m^{(2)}$, что в каждой точке $m \in M$ касательное пространство $T_m M$ распадается в прямую сумму: $T_m M = M_m^{(1)} \oplus M_m^{(2)}$.

Предположим, что на М действует некоторая группа преобразований С. Левое действие элемента $g \in G$ на \dot{M} будем обозначать L_g . СПП называется G-инвариантной, если каждое линейное отображение $dL_g: T_mM \to T_{L_gm}M$ представимо в виде прямой суммы

$$
dL_g = l_g^{(1)} \oplus l_g^{(2)}, \quad l_g^{(j)} : M_m^{(j)} \to M_{L_g m}^{(j)}, \quad j = 1, 2.
$$

Назовем *G*-инвариантную СПП с $M_m^{(1)} \neq \{0\}$ полуримановой, если на каждом подпространстве $M_m^{(1)}$, $m \in M$, задано вещественное скалярное произведение $\langle \cdot, \cdot \rangle_m$, удовлетворяющее условиям: 1) пусть на некотором открытом множестве $U \subset M$ заданы векторные поля $X_1(m), \ldots, X_{n_1}(m)$, задающие локальный базис распределения $M_m^{(1)}$ ($n_1 = \dim M_m^{(1)}$); тогда $\alpha_{ij}(m) =$ = $\langle X_i(m), X_j(m)\rangle_m$ — гладкие функции на U; 2) отображения $l_g^{(1)}$ сохраняют скалярные произведения.

Многообразия с G-инвариантными полуримановыми СПП представляют интерес в связи с доказанным в [2] существованием на них случайных процессов диффузионного типа с G-инвариантными инфинитезимальными характеристиками. К числу таких многообразий принадлежит, в частности, тотальное пространство ассоциированного расслоения (G - группа автоморфизмов соответствующего главного расслоения Р), если в Р задана G-инвариантная связность, а на стандартном слое существует риманова метрика, инвариантная относительно структурной группы [2]. Указанные условия выполнены, например (см. [2]), в случае, когда М - фазовое пространство общей теории относительности, G - группа движений пространства-времени.

© А. Н. КОЧУБЕЙ, 1992

§ ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7.

В настоящей работе доказывается основное геометрическое свойство рассматриваемой структуры - существование в соответствующем ей расслоении реперов на М связности с некоторым свойством G-инвариантности (этот результат, использованный в [2], был приведен там без доказательства). Указан, в дополнение к [2], еще один пример многообразия с инвариантной полуримановой СПП.

2. Пусть многообразие М паракомпактно, и на М задана G-инвариантная полуриманова СПП. Обозначим через $\mathcal{F}_1(M)$ множество всех наборов $(m, f_1, \ldots, f_{n_1}, f_{n_1+1}, \ldots, f_n)$, где $m \in M$, (f_1, \ldots, f_{n_1}) - ортонормированный базис в $M_m^{(1)}$, $(f_{n_1+1},...,f_n)$ — произвольный базис в $M_m^{(2)}$. Пусть $G_1 = O(n_1) \times$ \times GL (n - n₁, R). Будем представлять элементы группы G_i блочно-диагональными матрицами

$$
a = \begin{pmatrix} a^{(1)} & 0 \\ 0 & a^{(2)} \end{pmatrix}, \quad a^{(1)} \in O(n_1), \quad a^{(2)} \in GL(n_1, \mathbb{R}).
$$

Правое действие группы G_i на $\mathcal{F}_i(M)$ задается так: если $a = (a_{ij})$, то

$$
R_a(m, f_1, \ldots, f_n) = \left(m, \sum_{i=1}^n a_{ij} f_i, \ldots, \sum_{i=1}^n a_{in} f_i\right).
$$

Непосредственно проверяется, что $R_a: \mathcal{F}_1(M) \to \mathcal{F}_1(M)$, причем G_i свободно действует на $\mathcal{F}_1(M)$, и $\mathcal{F}_1(M)/G_1$ естественно отождествляется с M. Каноническая проекция $\pi: \mathcal{F}_1(M) \to M$ имеет вид $\pi(m, f_1, \ldots, f_n) = m$.

Пусть $m \in M$, U — достаточно малая окрестность точки m , $Y_1(\mu)$,, $Y_{n_1}(\mu)$ — векторные поля на U, порождающие $M_{\mu}^{(1)}$; $X_{n_1+1}(\mu),...,X_n(\mu)$ векторные поля на U, порождающие $M_{\mu}^{(2)}$, $\mu \in U$. Введем векторные поля $X_1(\mu), \ldots, X_{n_1}(\mu)$, полученные ортонормализацией при каждом $\mu \in U$ векторов $Y_1(\mu), \ldots, Y_{n_1}(\mu)$. Определим отображение $\varphi_n : \pi^{-1}(U) \to G_1$ из соотношений

$$
f_i = \sum_{j=1}^n (\varphi_U(\mu, f_1, \dots, f_n))_{ji} X_j(\mu), \quad i = 1, \dots, n,
$$

и отображение $\psi_U : \pi^{-1}(U) \to U \times G_i$, полагая

$$
\psi_U(\mu, f_1, ..., f_n) = (\mu, \varphi_U(\mu, f_1, ..., f_n)).
$$

Отображение ψ_U биективно, и с его помощью на $\pi^{-1}(U)$ можно определить структуру многообразия так, что ψ_U - диффеоморфизм.

Если $U, V \subset M$ — открытые множества, для которых имеет смысл конструкция ψ , ψ , то, как легко видеть, структуры многообразия на $\pi^{-1}(U \cap V)$, определенные с помощью ψ_U , ψ_V , диффеоморфны. Тем самым задана структура многообразия на \mathscr{F}_1 (M), относительно которой действие группы G_1 гладкое. Итак, $\mathcal{F}_1(M)$ - главное расслоение со структурной группой G_1 , базой М и проекцией л. Расслоение \mathscr{F}_1 (М) получается из расслоения $L(M)$ всех линейных реперов редукцией его структурной группы $GL(n, \mathbb{R})$ к подгруппе G_1 .

Связность Г в подрасслоении \mathscr{F}_1 (M) расслоения L (M) однозначно задает связность в $L(M)$ [3, 4]. Тем самым на M задается линейная связность, которой соответствует экспоненциальное отображение ехр. Пусть D_m область определения отображения \exp_m , $m \in M$.

Теорема. Связность Г в расслоении $\mathcal{F}_1(M)$ можно выбрать так, что для всех $m \in M$, $g \in G$, $f \in M_m^{(1)} \cap D_m$ имеем $dL_g(f) \in D_{L_m m}$ и

$$
L_g \left(\exp_m f \right) = \exp_{L_g m} dL_g \left(f \right). \tag{1}
$$

Доказательство. Построение требуемой связности напоминает «конструкцию А» римановой связности в [3]. Пусть вначале в $\mathcal{F}_1(M)$ задана произвольная связность с формой связности $\varphi = (\varphi_{ij})$. Определим на $\mathcal{F}_1(M)$ 1-формы $\theta_1, \ldots, \theta_n$ следующим образом: значение $\theta_k(X)$, $X \in T_p \mathcal{F}_1(M)$,

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

 $p = (m, f_1, \ldots, f_n)$, равно коэффициенту c_k разложения $d\pi(X) = \sum_{k=1}^{n} c_k f_k$. \mathbb{R}^{n_k}

значная 1-форма $\theta = (\theta_1, \dots, \theta_n)$ называется канонической формой G_i -структуры [4]. Формы $\theta_1, \ldots, \theta_n$ горизонтальны и в каждой точке из $\mathcal{F}_1(M)$ задают базис пространства, сопряженного к горизонтальному подпространству. Форма кручения Θ является \mathbb{R}^n -значной горизонтальной 2-формой. Поэтому, обозначая $\Theta = (\Theta_1, \dots, \Theta_n)$, имеем

$$
\Theta_i = \frac{1}{2} \sum_{j,k=1}^n T^i_{jk} \Theta_j \wedge \Theta_k, \ T^i_{jk} = -T^i_{kj}, \qquad (2)
$$

 T'_{ik} — гладкие функции на $\mathcal{F}_1(M)$. Положим

$$
\tau_{ij} = \begin{cases} \frac{1}{2} \sum_{k=1}^{n_i} (T_{jk}^i + T_{ki}^j + T_{ji}^k) \theta_k, & 1 \leq i \leq n_1, & 1 \leq j \leq n_1, \\ 0 = \text{max} \text{ or a arbitrary anavennik } i, j; \end{cases}
$$

$$
\omega_{ij} = \varphi_{ij} + \tau_{ij}, \quad i, j = 1, \dots, n.
$$

Как и в случае римановой связности [3], проверяется, что форма $\omega = (\omega_{ij})$ принимает значения в $o(n_1) \times gl(n - n_1, \mathbb{R})$ и является формой связности на \mathscr{F}_1 (M). Покажем, что, определив связность Г с помощью формы ω , получим экспоненциальное отображение ехр, удовлетворяющее (1).

Обозначим через F_p горизонтальное подпространство (относительно
связности Г) в $T_p \mathcal{F}_1(M)$, $p \in \mathcal{F}_1(M)$. Из определения связности следует,
что сужение отображения $(d\pi)_p : T_p \mathcal{F}_1(M) \rightarrow T_{\pi(p)}M$ на F_p есть изоморфизм

$$
\chi_p: F_p \to T_{\pi(p)}M.
$$

Обозначим $F_p^{(1)} = \chi_p^{-1}(M_{\pi(p)}^{(1)})$.
При *i* ≤ *n*₁ на векторах из $F_p^{(1)}$

$$
\sum_{j=1}^{n} \tau_{ij} \wedge \theta_j = \frac{1}{2} \sum_{i=1}^{n_1} \sum_{k=1}^{n_1} (T_{ki}^j + T_{ji}^k) \theta_k \wedge \theta_j + \frac{1}{2} \sum_{j,k=1}^{n_1} T_{jk}^i \theta_k \wedge \theta_j = -\Theta_i
$$

в силу (2), поскольку

$$
(T_{ki}^l + T_{ji}^k) \theta_k \wedge \theta_j + (T_{ji}^k + T_{ki}^l) \theta_j \wedge \theta_k = 0,
$$

а с другой стороны, $\theta_k(X) = 0$ при $k > n_1$, $X \in F_n^{(1)}$. Воспользуемся первым уравнением структуры (см. [3] для случая расслоения $L(M)$; обобщение на редуцированные расслоения содержится в [4]):

$$
d\theta_i = -\sum_{j=1}^n \varphi_{ij} \wedge \theta_j + \Theta_i, \quad i = 1 \dots, n.
$$

При $i \leq n_1$ на векторах из $F_p^{(1)}$

$$
d\theta_i = -\sum_{j=1}^{n_1} (\varphi_{ij} + \tau_{ij}) \wedge \theta_j = -\sum_{j=1}^{n} \omega_{ij} \wedge \theta_j.
$$

Пусть $\Omega = (\Omega_1, \dots, \Omega_n)$ — форма кручения, соответствующая форме связности о. Записав первое уравнение структуры для формы связности о, видим, что на векторах из $F_p^{(1)}$ компоненты $\Omega_1, \ldots, \Omega_n$, формы кручения Ω обращаются в нуль.

Действие L_g группы G на многообразии M продолжается до автоморфизма Φ_{g} расслоения $\mathcal{F}_{1}(M)$:

$$
\mathbf{D}_g(m, f_1, \ldots, f_n) = (L_g m, dL_g(f_1), \ldots, dL_g(f_n)) = (L_g m, l_g^{(1)}(f_1), \ldots, l_g^{(1)}(f_n),
$$

$$
l_g^{(2)}(f_{n_1+1}), \ldots, l_g^{(2)}(f_n));
$$

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7,

соответствующий автоморфизм структурной группы G_i есть тождественное отображение. Очевидно, $\pi \circ \Phi_g = L_g \circ \pi$, $d\pi \circ d\Phi_g = dL_g \circ d\pi$.

Исходя из связности Г, автоморфизм Φ_g индуцирует на $\mathcal{F}_1(M)$ новую связность Г' с формой связности $\omega'(Z) = \omega(d\Phi_{\alpha}(Z))$ (см. [3]). При этом $d\Phi_g$ отображает горизонтальные подпространства связности Γ' в го-
ризонтальные подпространства связности Г. Обозначим через F''_p подпространство в горизонтальном подпространстве F'_p связности Γ' , определяемое так же, как $F_p^{(1)}$ в случае связности Г. Легко видеть, что $d\Phi_{\sigma}$ задает при каждом $p \in \mathcal{F}_1(M)$ изоморфизм подпространств $F'_p \to F_{\Phi_q(p)}^{(1)}$. Каноническая форма θ не зависит от выбора связности и Φ_g -инвариантна. Поэтому и dθ Ф_а-инвариантна. Из первого уравнения структуры следует, что для всех X, $Y \in T_p \mathcal{F}_1(M)$

$$
\Omega'(X,Y) = \Omega(d\Phi_g(X), d\Phi_g(Y)),
$$

где Ω' - форма кручения связности Г', и значения форм кручения берутся в соответствующих точках многообразия $\mathcal{F}_1(M)$. В частности, для компонент формы Ω' получаем $\Omega'_{i}(X, Y) = 0$ при $i = 1, ..., n_{1}$; $X, Y \in F'_{p}$.

Обозначим $W_p = \{X \in T_p \mathcal{F}_1(M) | d\pi(X) \in M_{\pi(p)}^{(1)}\}.$ Поскольку формы кручения горизонтальны, из доказанного выше вытекают равенства

$$
\Omega_i(X, Y) = \Omega'_i(X, Y) = 0, \quad i = 1, \dots, n_i; \quad X, Y \in W_p. \tag{3}
$$

Рассмотрим разность форм связности $\omega' - \omega$. Из определения формы связности следует, что разность ω' — ω обращается в нуль на вертикальных векторах. Поэтому

$$
\omega'_{ij} - \omega_{ij} = \sum_{k=1}^n c_{ij}^k \theta_k,
$$

где c_i^k — гладкие функции. На W_p

$$
\omega'_{ij} - \omega_{ij} = \sum_{k=1}^{n_1} c^k_{ij} \theta_k.
$$
 (4)

Из (3), (4) и первого уравнения структуры следует, что на W_p

$$
\sum_{k=1}^{n_1} c_{ij}^k \theta_k \wedge \theta_j = \sum_{j=1}^{n} (\omega'_{ij} - \omega_{ij}) \wedge \theta_j = 0,
$$

откуда $c_{ii}^k = c_{ik}^j$, *i*, *j*, $k = 1, ..., n_1$, поскольку формы $\theta_1, ..., \theta_n$, линейно независимы над W_p . С другой стороны, матрицы (ω'_{ij}) , (ω_{ij}) , $i, j = 1, ..., n_{1}$ кососимметричны, так что $c_{ii}^k = -c_{ii}^k$. Теперь при *i*, *j*, $k \le n_1$

$$
c_{i l}^{k} = - c_{j l}^{k} = - c_{j k}^{l} = c_{k l}^{l} = c_{k l}^{l} = - c_{l k}^{l} = - c_{l l}^{k},
$$

т. е. $c_{ii}^k = 0$, откуда $\omega'_{ii} = \omega_{ij}$ на W_p , $i, j \leq n_i$.

Таким образом, если $X \in F_p^{(1)}$, то

$$
\omega_{ij} (d\Phi_g (X)) = 0, \ i, j = 1, \dots, n_1. \tag{5}
$$

Перейдем теперь непосредственно к доказательству равенства (1). Пусть *m* (*t*) — геодезическая в *M*, *m* (0) = *m*, *m* (0) = *f* $\in M_m^{(1)} \cap D_m$. Достаточно проверить, что $\mu(t) = L_g(m(t))$ - геодезическая.

Поставим произвольной точке $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$ в соответствие стандартное горизонтальное векторное поле $E(\xi)$ на $\mathcal{F}_1(M)$ (ср. с [3]), значение которого в точке $p = (m, f_1, \ldots, f_n)$ определяется соотношениями

$$
E\left(\xi\right)(p)\in F_p,\quad d\pi\left(E\left(\xi\right)\right)(p)=\sum_{i=1}^n \xi_i f_i.
$$

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

Пусть $p(t) = (m(t), f_1(t), \ldots, f_n(t))$ — горизонтальный лифт кривой **m** (*t*) в $\mathcal{F}_1(M)$ и $f = \sum_{j=1}^{n_1} \xi_j f_j(0)$, $\xi_j \in \mathbb{R}^1$. Тот факт, что $m(t)$ — геодезическая, означает, что $m(t) = \sum_{j=1}^{n_1} \xi_j f_j(t)$. Отсюда следует, что $p(t)$ — интеграль-

ная кривая векторного поля $E(\xi)$, где $\xi \in \mathbb{R}^n$, $\xi = (\xi_1, \ldots, \xi_{n_1}, 0, \ldots, 0)$. Положим $p_g(t) = \Phi_g(p(t))$ и обозначим через $q(t)$ интегральную кривую поля $E(\xi)$, начинающуюся в точке $q(0) = \Phi_g(p(0))$.

Разложим вектор $p_g(t)$ на вертикальную и горизонтальную компоненты:

$$
p_g(t) = h(t) + v(t), \quad h(t) \in F_{p_g(t)}, \quad v(t) \in V_{p_g(t)} \tag{6}
$$

(здесь V_p — вертикальное подпространство в точке $p \in \mathcal{F}_1(M)$). Имеем $d\pi$ (h (t)) = $d\pi$ (p_g (t)) = $d\pi$ (d Φ_g (E (\fines) (p (t)))) = $dL_g\left(\sum_{i=1}^{n_1} \xi_i f_j(t)\right)$ =

 $s \sum_{j=1}^{n_1} \xi_j dL_g(f_j(t))$. Это означает, что $h(t) = E(\xi)(p_g(t))$. С другой стороны,
 из (5) и (6) следует

 $\omega_{ij}(\nu(i)) = 0, \quad i, j = 1, \dots, n_4.$ (7)

Рассмотрим гладкое отображение тотальных пространств расслоений $\kappa: \mathcal{F}_{\mathcal{F}}(M) \to TM$ вида

$$
\mathbf{x}(m, f_1, \ldots, f_n) = \left(m, \sum_{k=1}^{n_1} \xi_k f_k\right).
$$

Если $X \in V_p$, $\omega_{ij}(X) = 0$ при *i*, $j \leq n_1$, то $d\mathbf{x}(X) = 0$. В самом деле, рассмотрим отображение о, ставящее в соответствие каждому элементу A алгебры Ли группы G_1 фундаментальное векторное поле $A^* = \sigma(A)$ [3]. Известно [3], что $A \rightarrow A^*$ (р) есть изоморфизм на вертикальное подпространство V_p . Пусть A таков, что $A^*(p) = X$. Поскольку $\omega(A^*) = A$, то компоненты A_{ij} с i, $j \leq n_1$ равны нулю. Пусть $r(t)$ — интегральная кривая поля A^* , $r(0) = p$, $r(0) = X$. Кривая $r(t)$ представляет собой образ кривой $\{e^{tA}, e^{tA}\}$ $t \geq 0$ $\} \subset G_1$ относительно действия G_1 на \mathcal{F}_1 (*M*). С учетом блочной структу-
ры матрицы *A* получаем, что множество {**x** (*r* (*t*)), $t \geq 0$ } состоит из одной точки $x(p)$, т. е. $dx(X) = 0$.

Теперь из (7) следует

$$
d\kappa(p_g(t)) = d\kappa(h(t)) = d\kappa(E(\xi)(p_g(t))).
$$

Ho $x (p_g (0)) = x (q (0))$, T. e. $x (p_g (t)) = x (q (t))$, Tak Kak dx $(q (t)) =$ $= dx (E(\xi)(q(t))),$ а $dx (E(\xi))$ — сужение корректно определенного векторного поля на ТМ (пульверизации линейной связности [4]). Получаем μ (t) = $\equiv \pi$ (q (t)). Это означает [3], что μ (t) — геодезическая. Теорема доказана.

3. Пусть $\mathcal{P}(M,K)$ - главное расслоение с базой М и структурной труппой К. Будем предполагать, что K - компактная полупростая группа Ли. Пусть, далее, \mathfrak{A} — группа автоморфизмов расслоения $\mathcal{P}(M, K)$ и в $\mathcal{P}(M, K)$ задана \mathfrak{A} -инвариантная связность (см. [3]): $T_p \mathcal{P} = V_p \oplus H_p$, где V_p — вертикальное, а H_p — горизонтальное подпространство. Пусть группа 21 действует на Р слева; тогда определено левое действие на Р группы $G = \mathfrak{A} \times K$:

$$
L_{(a,k)} = L_a \circ R_{k-1}, \quad a \in \mathfrak{A}, \quad k \in K
$$

 $(R_k$ обозначает правое действие элемента структурной группы).

Связность задает СПП на Р. Распределение Н_р является К-инвариантным по определению связности и 21-инвариантным в силу инвариантности связности. С-инвариантность вертикального распределения легко следует

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

$$
V_p = \{ X \in T_p \mathcal{P} \mid d\pi(X) = 0 \},
$$

гле л - каноническая проекция.

Пусть \mathcal{K} — алгебра Ли группы K , ф — форма Картана — Киллинга на \mathcal{H} . Каждому элементу $\kappa \in \mathcal{H}$ соответствует фундаментальное векторное поле х' на Р, причем $x \mapsto x^*(p)$ есть линейный изоморфизм Ж и V_p . Определим на V_p скалярное произведение, полагая для $X_1, X_2 \in V_p$

$$
\langle X_1, X_2 \rangle_p = -\varphi(x_1, x_2), \tag{8}
$$

где $x_1, x_2 \in K$, $X_j = x_j^*$ (р), $j = 1, 2$. Из формулы преобразования фундаментального векторного поля под действием структурной группы [3], инвариатности формы ф относительно присоединенного представления группы K и инвариантности фундаментальных векторных полей относительно автоморфизмов расслоения [5] следует, что преобразования из G сохраняют скалярное произведение (8). Таким образом, на $\mathcal P$ задана G-инвариантная полуриманова СПП.

- 1. Yano K. On affine connexions in an almost product space // Kodai Math. Semin. Repts.-1959. - 11, N 1. - Р. 1-24.
2. Кочубей А. Н. О диффузиях с инвариантными производящими операторами // Теория ве-
- роятностей и ее применения. 1989. 34, 4. С. 656-663.
- 3. Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии: В 2-х т. М.: Наука, 1981. — Т. 1. — 344 с.
4. Стернберг С. Лекции по дифференциальной геометрии. — М. : Мир, 1970. — 412 с.
-
- 5. Зуланке Р., Винтген П. Дифференциальная геометрия и расслоения. М. : Мир, 1975. -350 с.

Получено 21.02.92