YHK 517,984.48

Г. В. Радзиевский, д-р физ.-мат. наук (Ин-т математики АН Украины, Киев)

Эквивалентность части корневых векторов полиномиальных пучков операторов

Исследуется эквивалентность производных цепочек, построенных по корневым векторам полиномиальных пучков операторов, действующих в гильбертовом пространстве. Эти производные цепочки соответствуют различным краевым задачам на полуоси для операторно-дифференциальных уравнений, символом которых являются данные пучки операторов. Из признаков эквивалентности выводятся утверждения о минимальности производных цепочек, отвечающих краевой задаче на полуоси, в случае, когда заданы начальные условия векторного решения в нуле, а само решение подчинено требованиям типа условий излучения на бесконечности.

Вивчається еквівалентність похідних ланцюжків, побудованих за кореневими векторами поліноміальних жмутків операторів, які діють у гільбертовому просторі. Ці похідні ланцюжки відповідають різним крайовим задачам на півосі для операторно-диференціальних рівнянь, символом яких є дані жмутки операторів. Із ознак еквівалентності виводяться твердження про мінімальність похідних ланцюжків, які відповідають крайовим задачам на півосі у випадку, коли задані початкові умови векторного розв'язку у нулі, а сам розв'язок підпорядковано вимогам типу умов випромінювання на нескінченності.

Данная работа по священа исследованию эквивалентности и минимальности производных цепочек, построенных по корневым векторам полиномиального пучка операторов, которые отвечают характеристическим числам из замкну-

© Г. В. РАДЗИЕВСКИЙ, 1992

948

у ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

той левой полуплоскости. В отличие от результатов статей [1, 2] (где изучаются аналогичные вопросы, но производные цепочки строятся по всем корневым векторам) приведенные здесь признаки эквивалентности и минимальности части производных цепочек тесно связаны с краевыми задачами на полуоси для операторно-дифференциального уравнения, символом которого является изучаемый пучок операторов [3, с. 82—86]. Далее используются обозначения и определения, а также ряд построений из статей [1, 2], поэтому для сокращения ссылок на эти работы применяется двойная нумерация. Напр имер, формула (I.15) или теорема II.5 означают соответственно формулу (15) из статьи [1] или теорему 5 из статьи [2].

1. Основная теорема. Приведем вначале необходимые понятия и обозначения. Рассмотрим оператор-функцию

$$
L(\lambda) = L_0 + \lambda L_1 + \dots + \lambda^n L_n, \tag{1}
$$

де L_n —, вообще говоря, неограниченные операторы, действующие в гильбертовом пространстве \S , считая при этом область определения $L(\lambda)$ равной $\mathfrak{L} = \bigcap_{v=0} \mathfrak{D}(L_v)$. Пусть $x_{0,j,k}, \ldots, x_{h,j,k}$ — цепочка корневых векторов,

отвечающая характеристическому числу μ_h оператор-функции (1). Тогда, как отмечалось в статье [1, с. 84], вектор-функция

$$
\widehat{x}_{h,j,k}(t) = e^{\mu_k t} \left(\frac{t^h}{h!} x_{0,j,k} + \ldots + \frac{t}{1!} x_{h-1,j,k} + x_{h,j,k} \right) \tag{2}
$$

является решением уравнения $L (d/dt) x (t) = 0$ и называется элементарным решением этого уравнения, отвечающим характеристическому числу μ_h . Для произвольной $n-1$ раз дифференцируемой в сильном смысле вектор-функции $x(t)$ со значениями в прстранстве $\mathfrak h$ введем вектор-функцию

$$
x^{n}(t) = \{x(t), x'(t), ..., x^{(n-1)}(t)\}\tag{3}
$$

со значениями в пространстве \tilde{p}^n . Если вектор-функция задана равенством (2), то для построенной по ней согласно правилу (3) вектор-функции применяется обозначение $\tilde{x}_{h,j,k}^n(t)$. Отметим, что $\tilde{x}_{h,j,k}^n(t) \in \mathbb{R}^n$ при $-\infty$ $\lt t \lt \infty$. Далее векторы и вектор-функции с отрицательными индексами считаем равными нулю. В частности, $x_{-1,j,k}^n(t) = 0$.

Лемма 1. Пусть $\tilde{x}_{h_j,j}^n(0)$, $j=\overline{1,q}$, — производные по Келдышу векторы порядков h_j и размера n [1, с. 85], отвечающие одному и тому же характеристическому числу, целое число $d = \max\{h_1, ..., h_d\}$, а век-

$$
mop_{bl} x_n^n = \sum_{j=1}^n c_j \tilde{x}_{nj-d+h,j}^n(0) \text{ npu } h = \overline{0, d}, \text{ e\partial} e \text{ c_j}-n \text{ poussoabhole } \text{ konn-}
$$

лексные числа. Если \tilde{x}_{h}^{n} — первый отличный от нуля элемент в цепочке **векторов** \tilde{x}_0^n , ..., \tilde{x}_d^n , то элементы $\tilde{x}_{h_0}^n$, ..., \tilde{x}_d^n образуют производную по Келдышу цепочку.

Доказательство этой леммы полностью совпадает с доказательством леммы 6 из работы [4].

Для натурального числа *l* цепочка корневых векторов x_0, \ldots, x_h отвечающая характеристическому числу и оператор-функции (1), называется продолжаемой до цепочки длины $h+l+1$, если найдутся такие l векторов x_{n+1}, \ldots, x_{n+t} , что элементы x_0, \ldots, x_{n+t} образуют цепочку корневых векторов, отвечающую характеристическому числу и оператор-функции (1). Элементы x_{h+1}, \ldots, x_{h+l} называются продолжением цепочки x_0, \ldots, x_h до цепочки длины $h+l+1$. В случае, когда целое число $l \leqslant 0$, цепочку x_0, \ldots, x_h считаем продолжаемой до цепочки длины h + $l + l + 1$, но тогда продолжение цепочки x_0, \ldots, x_h до цепочки длины $h+l+1$ не определяется. Для любого целого неотрицательного числа q введем множество Δ^q (L, Ω), состоящее из таких мультииндексов (h, j, k) \in

 $\in \Delta$ (L, Ω) (определение Δ (L, Ω) см. в [1, с. 84]), что занумерованные этими мультииндексами векторы $x_{h,j,k}$ входят в цепочки корневых векторов $x_{0,j,k}, \ldots, x_{h,j,k}$, которые отвечают характеристическим числам $\mu_k \in \Omega$ оператор-функции $L(\lambda)$ и продолжаются до цепочек длины $2h-q+1$. При $q = \infty$ положим $\Delta^{\infty}(L, \Omega) = \Delta(L, \Omega)$. Отметим, что при $q < q_1$ справедливо включение $\Delta^q(L, \Omega) \subseteq \Delta^{q_1}(L, \Omega)$. Обозначим через R и *i*R соответственно множества действительных и мнимых чисел. Для целого неотрицательного числа q введем множества мультииндексов

$$
\Theta^{q}(L) = \Delta(L, \operatorname{Re}\lambda < 0) \cup \Delta^{0}(L, i\mathbb{R}) \cup \Delta^{q}(L, 0). \tag{4}
$$

Пусть множество $\Omega \subseteq \mathbb{C}$. Тогда положим $\Omega_* = \{\lambda : -\overline{\lambda} \in \Omega\}$. Если множество комплексных чисел Ω имеет свойства $\Omega \cap \Omega_* = \{ \emptyset \}$ и $\Omega \cup \Omega_* =$ $=\mathbb{C}\setminus i\mathbb{R}$, то определим множество мультииндексов

$$
\Theta(L, \Omega) = \Delta(L, \Omega) \cup \Delta(L, i\mathbb{R}). \tag{5}
$$

Согласно лемме 1 для целого неотрицательного и бесконечного q и для характеристического числа μ_k оператор-функции $L(\lambda)$ совокупность векторов $\tilde{x}_{h,j,k}^n(0)$ при $(h, j, k) \in \Delta^q(L, \mu_k)$ с добавленным нулевым векто-
ром из пространства \tilde{y}^n является линейным многообразием, принадлежащим \mathfrak{D}^n , которое обозначим через $\mathfrak{N}_{k,q}$. Пусть на \mathfrak{L}^n задана симметричная полуторалинейная форма $\Phi(\tilde{x}^n, \tilde{y}^n)$ (т. е. $\Phi(\tilde{x}^n, \tilde{y}^n) = \Phi(\tilde{y}^n, \tilde{x}^n)$ для \tilde{x}^n , $\tilde{y}^n \in \mathbb{R}^n$) и пусть Ф $[\tilde{x}^n] \geq 0$ (или ≤ 0) для всех векторов $\tilde{x}^n \in \tilde{\mathfrak{M}}$, где $\tilde{\mathfrak{M}}$ некоторое линейное многообразие, принадлежащее $\widetilde{\mathfrak{N}}_{k,q}$. Тогда множество мультииндексов $\Delta^q_+(L, \mu_k, \Phi) = \{(h, j, k) : \tilde{x}_{h, j, k}^n(0) \in \tilde{\mathfrak{M}}\}$ (соответственно $\Delta^q_-(L, \Phi)$ μ_h , Ф)). Отметим, что если форма Ф[\tilde{x}^n] не знакоопределена при $x^n \in$ $\in \widetilde{\mathfrak{N}}_{k,q}$, то многообразие \mathfrak{M} , а значит, и множества мультииндексов $\Delta^q_{\pm}(L, \mu_k, \Phi)$ определяются неоднозначно, поэтому было бы более тсчно, но более громоздко записать эти множества мультииндексов в виде $\Delta^q_+(L, \mu_h,$ Ф, $\overline{\mathfrak{M}}$). Если μ_k не является характеристическим числом, то положим $\Delta^q_+(L, \mu_k, \Phi) = \{\emptyset\}.$ Кроме того, определим $\Delta^q_+(L, \Omega, \Phi) = \begin{bmatrix} 1 & \Delta^q_+(L, \mu, \Phi), \end{bmatrix}$ причем при $q = \infty$ считаем, что $\Delta_+^{\infty}(L, \Omega, \Phi) = \Delta_+(L, \Omega, \Phi)$. Отметим,

что когда $q < q_1$, то справедливо включение $\Delta^q_{\pm}(L, \Omega, \Phi) \subseteq \Delta^q_{\pm}(L, \Omega, \Phi)$. Введем множества мультииндексов

$$
\Theta_{\pm}^{q}(L, \Phi) = \Delta(L, \operatorname{Re}\lambda < 0) \cup \Delta_{\pm}^{0}(L, i\mathbb{R}, \Phi) \cup \Delta_{\pm}^{q}(L, 0, \Phi), \tag{6}
$$

а для множества комплексных чисел Ω , имеющего свойства $\Omega \cap \Omega_* =$ $=\{\varnothing\}$ и $\Omega \cup \Omega_* = \mathbb{C} \setminus i\mathbb{R}$, зададим множества $\Theta_+ (L, \Omega, \Phi)$ мультииндексов (h, j, k) формулами

$$
\Theta_{\pm} (L, \Omega, \Phi) = \Delta (L, \Omega) \cup \Delta_{\pm} (L, i\mathbb{R}, \Phi). \tag{7}
$$

Далее при использовании обозначений (5) и (7) не оговариваются указанные свойства множества комплексных чисел Ω . Кроме того, отметим, что в левых и правых частях определений (6) и (7) одновременно участвует либо верхний знак «+» либо нижний знак «-».

Cчитая симметричные формы $\Phi_m(\tilde{x}^n, \tilde{y}^n)$ заданными равенствами (1.13) (в определении (I.10) вместо x^s следует писать u^s), для натурального числа д введем формы

$$
\Phi_{\tilde{\xi}}^{q}(\tilde{x}^{n},\tilde{y}^{n}) = \sum_{p=q}^{\lfloor n/2 \rfloor + 1} \xi_{p} \Phi_{2p-1}(\tilde{x}^{n},\tilde{y}^{n}), \quad q \leqslant \lfloor n/2 \rfloor + 1, \tag{8}
$$

$$
\mathbf{X}_{\widetilde{\mathbf{t}}}^{q}(\widetilde{\mathbf{x}}^{n},\widetilde{\mathbf{y}}^{n})=\sum_{p=q}^{[(n+1)/2]} \xi_{p}\Phi_{2p}(\widetilde{\mathbf{x}}^{n},\widetilde{\mathbf{y}}^{n}), \quad q \leqslant [(n+1)/2], \tag{9}
$$

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

$$
\Psi_{\tilde{\xi}}^q(\tilde{x}^n, \tilde{y}^n) = \sum_{p=q}^{n+1} \xi_p \Phi_p(\tilde{x}^n, \tilde{y}^n), \quad q \leq n+1,
$$
 (10)

в которых набор $\xi = {\xi_q, ..., \xi_r} \in \mathbb{R}^{r-q+1}$, где число *r* равно $[n/2] + 1$, $[(n+1)/2]$, или $n+1$ соответственно для форм (8), (9) или (10).

Далее предполагается, что формы операторов L_p подчинены одному из следующих условий при х ∈ 2:

$$
(-1)^{s}\operatorname{Im}\,(L_{2s}x,\,x)\leqslant 0,\quad s=\overline{0,\,[n/2]},\quad \operatorname{Re}\,(L_{2s+1}x,\,x)=0,\quad s=\overline{0,\,[(n-1)/2]},\tag{11}
$$

Im
$$
(L_{2s}x, x) = 0
$$
, $s = \overline{0, [n/2]}$, $(-1)^{s} \text{Re}(L_{2s+1}x, x) \ge 0$, $s = \overline{0, [(n-1)/2]}$,
(12)

Im (i)
$$
(L_s x, x) = 0, s = \overline{0, n},
$$
 (13)

совпадающих соответственно с условиями (I.17), (I.18) и (I.19).

Во введенных обозначениях справедливо основное утверждение работы.

Теорема 1. Пусть J_1 и J_2 — такие операторы, действующие в пространстве \mathfrak{F}^n , для которых $\mathfrak{L}^n \subseteq \mathfrak{D}(J_1) \cap \mathfrak{D}(J_2)$ и $c \|\tilde{J}_1\tilde{f}^n\| \leq \|\tilde{J}_1 +$ \tilde{J}_1) \tilde{f}^n || с независящей от $\tilde{f}^n \in \mathbb{S}^n$ постоянной $c > 0$. Предположим, что

$$
\Phi_{\tilde{\xi}}^q \left[\tilde{x}^n \right] \leqslant c_1 \, \|\tilde{J}_1 \tilde{x}^n\|^2 - c_2 \, \|\tilde{J}_2 \tilde{x}^n\|^2, \quad \tilde{\xi} \in \mathbb{R}_+^{[n/2]-q+2},\tag{14}
$$

$$
X_{\tilde{\xi}}^q \left[\tilde{x}^n \right] \leq c_1 \| \tilde{J}_1 \tilde{x}^n \|^2 - c_2 \| \tilde{J}_2 \tilde{x}^n \|^2, \quad \tilde{\xi} \in \mathbb{R}_+^{[(n+3)/2]-q}, \tag{15}
$$

$$
\Psi_{\tilde{\xi}}^q \left[\tilde{x}^n \right] \leqslant c_1 \|\tilde{J}_1 \tilde{x}^n\|^2 - c_2 \|\tilde{J}_2 \tilde{x}^n\|^2, \quad \tilde{\xi} \in \mathbb{R}^{n-q+2}, \tag{16}
$$

с независящими от $x^n \in \mathbb{S}^n$ постоянными $c_1, c_2 > 0$. Тогда соотношение $\widetilde{J}_i \widetilde{x}_{n,j,k}^n(0) \simeq (\widetilde{J}_1 + \widetilde{J}_2) \widetilde{x}_{n,j,k}^n(0)$ справедливо в следующих случаях: 1) когда еыполнены условия (11) и (14), а мультииндексы $(h, j, k) \in \Theta^{2q-2}_+ (L, \Phi^q_{\tilde{i}})$; 2) когда выполнены условия (12) и (15), а мультииндексы (h, j, $\overset{\circ}{k}) \in$ $\in \Theta^{2q-1}_+$ (L, $X^q_{\tilde{a}}$), 3) когда выполнены условия (13) и (16), а мультииндек- \mathfrak{col} $(h, j, k) \in \Theta_+(L, \Omega, \Psi_{\widetilde{t}}^q)$.

Вначале приведем вспомогательные утверждения, необходимые для доказательства теоремы 1.

Лемма 2. Пусть $x_0, ..., x_h$ — цепочка корневых векторов, отвечающая мнимому характеристическому числу iζ (т. е. ζ $\in \mathbb{R}$) оператор-функции (1), которая удовлетворяет условию (11). Тогда если iζ $\neq 0$ и цепочка x_0 ,, x_h продолжаема до цепочки длины $2h + 1$ то

$$
\operatorname{Im}\left(L_{2s}x_{p},\,x_{p}\right)=0\tag{17}
$$

и для всех векторов $y \in \mathcal{Q}$

$$
(L_{2s}x_p, y) = (x_p, L_{2s}y) \tag{18}
$$

при $p = 0, h$ и $s = 0, [n/2]$. Если же $i\zeta = 0$, а цепочка $x_0, ..., x_h$ продолжаема до цепочки длины $h + l + 1$, то равенства (17) и (18) справедли-Bbl npu $p + s \leq (h + l)/2$.

Доказательство. Согласно условию (11) и лемме II.3 достаточно установить лишь равенства (17). Считаем вначале, что $h \geqslant 1$. Пусть элементы x_{h+1} , ..., x_{2h} образуют продолжение цепочки x_0 , ..., x_h , отвечающей характеристическому числу $i\xi \neq 0$, до цепочки длины $2h + 1$. Тогда по оп-

ределению целочки корневых векторов
$$
\left\| L(\lambda) \sum_{p=0}^{\infty} (\lambda - i\zeta)^p x_p \right\| = O(|\lambda - \lambda|)
$$

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

— $i\zeta$ ^{2h+1}) в окрестности точки $i\zeta$. Поэтому

Im
$$
(L (i\tau) \sum_{p=0}^{2h} (i\tau - i\zeta)^p x_p
$$
, $\sum_{p=0}^{2h} (i\tau - i\zeta)^p x_p = O(|\tau - \zeta|^{2h+1})$

при вещественных т, лежащих в некоторой окрестности точки ζ . Отсюда и из условия (11) имеем

Im
$$
\left\{ \left\{ \sum_{s=0}^{\lfloor n/2 \rfloor} (-1)^s \tau^{2s} L_{2s} \right\} \sum_{p=0}^{2h} (i\tau - i\zeta)^p x_p, \sum_{p=0}^{2h} (i\tau - i\zeta)^p x_p \right\} = O(|\tau - \zeta|^{2h+1})
$$
 (19)

в вещественной окрестности точки ζ. Заметим, что соотношение (19) справедливо и при $h = 0$. Устремляя в нем параметр т к числу ζ и учитывая условие (11) и предположение: $\zeta \neq 0$, выводим тождества Im $(L_{2s}x_0, x_0) = 0$ при $s =$ $=$ 0, [n/2], т. е. получаем равенства (17), а значит, и (18) при $p = 0$ и $s = 0$, $\sqrt{n/2}$. Для $h \geq 1$, принимая во внимание полученные равенства (17) и (18) для значений $p = 0$ и $s = \overline{0, \lfloor n/2 \rfloor}$ и деля правую и левую части соотношения (19) на $(\tau - \zeta)^2$, находим

$$
\mathrm{Im}\left(\left\{\sum_{s=0}^{[n/2]}(-1)^{s}\tau^{2s}L_{2s}\right\}\sum_{p=1}^{2h}\left(i\tau-i\zeta\right)^{p-1}x_{p},\ \sum_{p=1}^{2h}\left(i\tau-i\zeta\right)^{p-1}x_{p}\right)=O\left(\left|\tau-\zeta\right|^{2h-1}\right)
$$

в вещественной окрестности точки ζ . Из этого соотношения, как и прежде, выводятся равенства (17), а значит, и (18), но уже для $p = 1$ и $s = 0$, $\lfloor n/2 \rfloor$. Продолжая этот процесс *r* раз, где $r = \overline{0, h}$, получаем на каждом шаге равенства (17), а значит, и (18) для значений $p = r$ и $s = 0$, $\lfloor n/2 \rfloor$, что и доказывает первое утверждение.

В случае характеристического числа $i\zeta = 0$ и цепочки x_0, \ldots, x_h продолжаемой векторами $x_{h+1},..., x_{h+l}$ до цепочки длины $h+l+1$, соотношение (19) запишется в виде

Im
$$
\left\{ \left\{ \sum_{s=0}^{[n/2]} (-1)^s \tau^{2s} L_{2s} \right\} \sum_{p=0}^{h+l} (i\tau)^p x_p, \sum_{p=0}^{h+l} (i\tau)^p x_p \right\} = O \left(\left[\tau \right]^{h+l+1} \right)
$$
 (20)

в вещественной окрестности нуля. Устремляя в (20) параметр т к нулю, имеем Im $(L_0x_0, x_0) = 0$, т. е. получаем равенства (17) и (18) при значениях $p = s = 0$. Отсюда, деля правую и левую части соотношения (20) на τ^2 , находим

$$
\operatorname{Im}\left(L_{0}\sum_{p=1}^{h+l} (i\tau)^{p-1}x_{p}, \sum_{p=1}^{h+l} (i\tau)^{p-1}x_{p}\right) +
$$

+
$$
\operatorname{Im}\left(\left\{\sum_{s=1}^{[n/2]} (-1)^{s}\tau^{2(s-1)}L_{2s}\right\}\sum_{p=0}^{h+l} (i\tau)^{p}x_{p}, \sum_{p=0}^{h+l} (i\tau)^{p}x_{p}\right) = O\left(\left|\tau\right|^{h+l-1}\right)
$$

в вещественной окрестности нуля. Устремляя в этом соотношении параметр π к нулю, заключаем, что Im (L_0x_1, x_1) — Im $(L_2x_0, x_0) = 0$. Поэтому согласно условию (11) Im $(L_0x_1, x_1) =$ Im $(L_2x_0, x_0) = 0$, т. е. получаем равенства (17) и (18) при $p + s = 1$. Продолжая этот процесс *r* раз, где $h + l + 1$ – $-2r > 0$, выводим на каждом шаге соотношения (17) и (18), но уже при $p + s = r$, а так как $r < (h + l + 1)/2$, то $r \leq (h + l)/2$, что и завершает доказательство леммы.

Лемма 3. Пусть $x_0, ..., x_h$ — цепочка корневых векторов, отвечаюшая мнимому характеристическому числу і ў оператор-функции (1), которая удовлетворяет условию (12). Тогда если iζ \neq 0 и цепочка x_0 , ..., x_h продолжаема до цепочки длины $2h + 1$, то для всех векторов $y \in \mathcal{Q}$

$$
(L_{2s+1}x_p, y) + (x_p, L_{2s+1}y) = 0 \tag{21}
$$

$$
\sqrt{ISSN} 0041-6053. Y\kappa p. \text{mar.} \text{myph.} 1992, r. 44, N27
$$

.952

при $p = \overline{0, h}$ и $s = \overline{0, [(n-1)/2]}$. Если же iζ = 0, а цепочка $x_0, ..., x_h$ продолжаема до цепочки длины $h+l+1$, то равенство (21) справедливо npu $p + s \leq (h + l - 1)/2$.

Доказательство. Рассмотрим оператор-функцию $L_1(\lambda) =$ $=$ i λ L (λ), которая удовлетворяет условиям леммы 2, если считать в ней L_0 = 0, а операторы $L_{2(s+1)}$ равными iL_{2s+1} , где операторы L_{2s+1} удовлетворяют условиям леммы 3. Отметим, что когда x_0 , ..., x_h — цепочка корневых векторов, отвечающая характеристическому числу и оператор-функции L (λ), то эта же цепочка является цепочкой корневых векторов и операторфункции L_1 (λ). Более того, в случае характеристического числа $\mu = 0$ векторы $x_0, ..., x_h$, 0 также образуют цепочку корневых векторов $L_1(\lambda)$, т. е. для нулевого характеристического числа из продолжаемости цепочки x_0 ,, x_h корневых векторов L (λ) до цепочки длины $h+l+1$ следует продолжаемость этой же цепочки корневых векторов до цепочки длины $h + l + 2$, но уже для оператор-функции $L_1(\lambda)$. Отсюда, учитывая отмеченную связь операторных коэффициентов у оператор-функций $L(\lambda)$ и $L_1(\lambda)$, а также лемму 2, получаем первое утверждение леммы 3, а второе для значений индексов $p + s + 1 \leq (h + l + 1)/2$. Значит, в случае нулевого характеристического числа тождество (21) верно при $p + s \leq (h + l - 1)/2$, т. е. лемма 3 доказана.

Лемма 4. Пусть $x_0, ..., x_d$ — цепочка корневых векторов операторфинкции L (λ), отвечающая характеристическому числу μ , x_0 (t), ..., x_d (t) – элементарные решения уравнения L (d/dt) \hat{x} (t) = 0, построенные по этой цепочке, а $r - \mu$ елое неотрицательное число. Тогда если $\mu \neq 0$ либо $r = 0$, то при каждом фиксированном $t \in (-\infty, \infty)$ векторы $\hat{x}_0^{(r)}(t), \ldots, \hat{x}_d^{(r)}(t)$
образуют цепочку корневых векторов $L(\lambda)$, отвечающую характерис-
тическому числу μ . В случае $\mu = 0$ выполнено тождество $\hat{x}_h^{(r)}(t)$ $h = \overline{0, d}$, поэтому если $r \leq d$, то для векторов $\hat{x}_r^{(r)}(t), \ldots, \hat{x}_d^{(r)}(t)$ справедливо предыдущее утверждение леммы.

Доказательство проведем считая вначале $r=0$. Так как

$$
\sum_{n=0}^{d} (\lambda - \mu)^{h} \widehat{x}_{h} (t) = e^{\mu t} \sum_{h=0}^{d} (\lambda - \mu)^{h} \sum_{q=0}^{h} \frac{t^{q}}{q!} x_{h-q} =
$$

$$
= e^{\mu t} \sum_{q=0}^{d} \frac{t^{q}}{q!} (\lambda - \mu)^{q} \sum_{h=0}^{d-q} (\lambda - \mu)^{h} x_{h},
$$

то из определения цепочки корневых векторов вытекает соотношение $\left\| L(\lambda) \sum_{h=0}^{a} (\lambda - \mu)^h \hat{x}_h(t) \right\| = O(|\lambda - \mu|^{d+1})$ в окрестности точки μ , т. е. установлено первое утверждение леммы 4 для значения $r = 0$. Отсюда и из очевидного равенства $\hat{x}_{h}^{(r)}(t) = \hat{x}_{h-r}(t)$, справедливого в случае характеристического числа $\mu = 0$, следует второе утверждение. Пусть теперь $r \geqslant 1$, так как

$$
\sum_{h=0}^d (\lambda - \mu)^h \widehat{x}_h^{(r)}(t) = \sum_{q=0}^r C_r^q \mu^{r-q} (\lambda - \mu)^q \sum_{h=0}^{d-q} (\lambda - \mu)^h \widehat{x}_h(t),
$$

то используя первое утверждение леммы, полученное при $r = 0$, и определение цепочки корневых векторов, заключаем, что $||L(\lambda)\sum_{k=0}^{\infty} (\lambda -$ — $\|\mu\|^{h} \hat{x}_{h}^{(r)}(t)\| = O(|\lambda - \mu|^{d+1})$ в окрестности точки μ . Кроме того, если $\mu \neq 0$, то вектор $\hat{x}_0^{(r)}(t) \neq 0$, откуда следует лемма 4 в случае $\mu \neq 0$ $\neq 0$ H $r \geqslant 1$. В первом утверждении леммы 4 предположение о $\mu \neq 0$ либо $r = 0$

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7 $7 - 2 - 215$ 953

связано с тем, что в противном случае векторы $\hat{x}_0^{(r)}(t) = ... = \hat{x}_{r-1}^{(r)}(t) = 0$, а значит, элемент $x_t^{(r)}(t)$ — первый отличный от нуля вектор в цепочке $\hat{x}_{0}^{(r)}(t),...,\hat{x}_{d}^{(r)}(t)$ (предполагаем, что $r \le d$). Из леммы 4 следует, в частности, что когда $x_0, ..., x_h$ - цепочка корневых векторов, отвечающая характеристическому числу и оператор-функции (1), продолжаема до цепочки длины $h+l+1$, то в случае $\mu \neq 0$ цепочка корневых векторов $x_0^{(r)}(t), \ldots, x_n^{(r)}(t)$ также продолжаема до цепочки длины $h + l + 1$, а в случае $\mu = 0$ и $r \leq h$ цепочка корневых векторов $\hat{x}^{(r)}(t), \ldots, \hat{x}^{(r)}_h(t)$ продолжаема до длины $h+l+r+1$. Отсюда и из лемм 2 и 3 вытекает следующее утверждение.

Лемма 5. Пусть $x_{h,j,k}(t)$ — элементарное решение уравнения L (d/dt) $x(t) = 0$, построенное по правилу (2) по цепочке корневых векто $pos \ x_{0,j,k},..., x_{h,j,k}$ оператор-функции (1), отвечающей мультииндексу (h, j, k) $\in \Delta^0(L, i\mathbb{R} \setminus \{0\})$. Тогда для любого вектора $y \in \mathcal{X}$ и всех $t \in (-\infty,$ ∞) справедливо равенство

$$
(L_{2s}\hat{x}_{h,j,k}(t), y) = (\hat{x}_{h,j,k}(t), L_{2s}y), \quad s = \overline{0, [n/2]},
$$
 (22)

если выполнено условие (11), и равенство

$$
(L_{2s+1}\hat{x}_{h,j,k}(t), y) + (\hat{x}_{h,j,k}(t), L_{2s+1}y) = 0, \quad s = \overline{0, \, [(n-1)/2]},
$$

если выполнено условие (12). В случае, когда ноль является характеристическим числом оператор-функции (1), т — натуральное число, а мультииндекс $(h, j, k) \in \Delta^{m-1}(L, 0)$, равенство

$$
(L_{2s} \hat{x}_{h,j,k}^{(r+s)}(t), y) = (\hat{x}_{h,j,k}^{(r+s)}(t), L_{2s}y), \quad s = \overline{0, [n/2]},
$$
\n(23)

справедливо, если $r \geqslant [m/2]$ и выполнено условие (11), а равенство

$$
(L_{2s+1}\hat{x}_{h,j,k}^{(r+s)}(t), y) + (\hat{x}_{h,j,k}^{(r+s)}(t), L_{2s+1}y) = 0, s = \overline{0, [(n-1)/2]}, \quad (24)
$$

справедливо, если число $r \geqslant [(m+1)/2]$ и выполнено условие (12).

Выведем теперь из лемм 4, 5 и I. 2 следующее утверждение.

Лемма 6. Пусть $x(t)$ — произвольное решение (в смысле работы [1, c. 87]) уравнения $L \frac{d}{dt} x(t) = 0$, а $x_{h,i,k}(t)$ — элементарное решение этого же уравнения, построенное по правилу (2) по цепочке корневых векторов x_{0,j,k}, ..., x_{h,j,k} оператор-функции (1), отвечающей мультииндексу $(h, j, k) \in \Delta^0 (L, i\mathbb{R}) \cup \Delta^{m-1} (L, 0)$. Тогда для вектор-функций $x^n(t)$ и $x_{h,i,k}^n(t)$, заданных равенством (3), справедливо тождество

$$
\Phi_m(\tilde{x}_{h,j,k}^n(T), \tilde{x}^n(T)) = \Phi_m(\tilde{x}_{h,j,k}^n(0), \tilde{x}^n(0)), \quad -\infty < T < \infty,\tag{25}
$$

если натуральное число $m = \overline{1, n+1}$ и 1) m — нечетно и выполнено условие (11); 2) $m -$ четно и выполнено условие (12).

Доказательство проведем в случае нечетного числа $m = 2q - 1$ и выполнения условия (11). Если $(h, j, k) \in \Delta^0 (L, i\mathbb{R} \setminus \{0\})$, то из лемм 4 и 5 выводим равенства $(L_{s,s}^{(r)}, k(t), \hat{x}^{(r)}(t)) = (\hat{x}_{h,j,k}^{(r)}(t), L_{s,s}^{(r)}(t))$ для $-\infty$ lt t lt ∞ и индексов $r = 0, 1, ...$ и $s = 0, \lfloor n/2 \rfloor$, подставляя которые в формулу (I.25), получаем тождество (25). Пусть теперь мультииндекс (h, j, k) \in $(L_{2s}x_{h,j,k}^{(q+s-1)}(t),$ $\in \Delta^{2q-2}(L, 0)$. Воспользовавшись равенством (23), имеем $\hat{\chi}^{(q+s-1)}(t) = \hat{\chi}^{(q+s-1)}_{h,t,k}(t), L_{ss}\hat{\chi}^{(q+s-1)}(t)$ при $s = 0, \overline{\lfloor n/2 \rfloor}$, откуда и из формулы (1.25) получаем тождества (25) в случае, когда мультииндекс $(h, j, k) \in \Delta^{2q-2}(L, 0)$. Аналогично устанавливается второе утверждениз леммы.

| ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

Лемма 7. Пусть k и v - такие индексы, нумерующие характеристические числа μ_k и μ_v , что $\mu_k \neq -\overline{\mu}_v$. Тогда для $m = \overline{1, n+1}$ тождество $\Phi_m(x_{h,j,k}^n(T), x_{r,u,v}^n(T)) = 0$ при $-\infty < T < \infty$ справедливо в следующих случаях: 1) т - нечетно и выполнено условие (11), а мультииндекс (h, j, k) $\in \Delta^0(L, i\mathbb{R}) \cup \Delta^{m-1}(L, 0);$ 2) m - четно и выполнено условие (12), а мультииндекс (h, j, k) $\in \Delta^0(L, i\mathbb{R})$ | $\Delta^{m-1}(L, 0)$; 3) выполнено условие (13).

Доказательство. В первом и во втором случаях согласно лемме 6, а в третьем случае согласно тождеству (I.27) из леммы I.2 справедливо равенство

$$
\Phi_m(x_{h,j,k}^n(T), x_{r,u,v}^n(T)) = \Phi_m(\tilde{x}_{h,j,k}^n(0), \tilde{x}_{r,u,v}^n(0)), \quad -\infty < T < \infty. \tag{26}
$$

На основании формул (2) и (3) заключаем, что

$$
\widetilde{x}_{h,j,k}^n(T) = e^{\mu_k T} \sum_{s=0}^n \frac{T^s}{s!} \widetilde{x}_{h-s,j,k}^n(0),
$$

откуда и из (26) имеем

$$
e^{(\mu_{k}+\bar{\mu}_{v})T} \sum_{s=0}^{h} \sum_{w=0}^{r} \frac{T^{s+w}}{s!w!} \Phi_{m}(\tilde{x}_{h-s,j,k}^{n}(0), \tilde{x}_{r-w,u,v}^{n}(0)) =
$$

= $\Phi_{m}(\tilde{x}_{h,j,k}^{n}(0), \tilde{x}_{r,u,v}^{n}(0)), \quad -\infty < T < \infty.$ (27)

Так как $\mu_h + \mu_v \neq 0$, то из линейной независимости при $v \neq 0$ функций 1, e^{vT} , Te^{vT} , ... (зависящих от T) из равенства (27) получаем $\Phi_m(x_{h,j,k}^n(0))$, $x_{r,u,v}^{n}(0)$) = 0. Отсюда и из тождества (26) вытекает утверждение леммы.

Лемма 8. Для любого натурального числа $m = \overline{1, n+1}$ и конечного набора комплексных чисел с_{п. ј, к} неравенство

$$
\Phi_m \Big[\sum_{(h,j,k) \in \Theta^{m-1}(L)} c_{h,j,k} \tilde{x}_{h,j,k}^n(0) \Big] \ge \Phi_m \Big[\sum_{(h,j,k) \in \Delta^{m-1}(L,0)} c_{h,j,k} \tilde{x}_{h,j,k}^n(0) \Big] + \\ + \sum_{k:\mu_k \in \mathcal{I}(\mathbb{R}\setminus\{0\}} \Phi_m \Big[\sum_{(h,j,k) \in \Delta^o(L,\mu_k)} c_{h,j,k} \tilde{x}_{h,j,k}^n(0) \Big] \tag{28}
$$

справедливо в следующих случаях: 1) m - нечетно и выполнено условие (11); 2) m - четно и выполнено условие (12). Если же выполнено условие (13), то

$$
\Phi_m\Big[\sum_{(h,j,k)\in\Theta(L,\Omega)}c_{h,j,k}\tilde{x}_{h,j,k}^n(0)\Big]=\sum_{k:\mu_k\in\mathcal{E}_k}\Phi_m\Big[\sum_{(h,j,k)\in\Delta(L,\mu_k)}c_{h,j,k}\tilde{x}_{h,j,k}^n(0)\Big].
$$
\n(29)

Докажем первое утверждение леммы 8. Для этого, подставляя $\hat{x}(t) = \hat{y}(t) =$ равенство (I.25) вектор-функции в $c_{h,j,k}$ \times $(h,j,k) \in \Theta^{m-1}(L)$

 $\times x_{h,i,k}(t)$ и учитывая условие (11), совпадающее с условием (I.17), получаем

$$
\Phi_m\left[\tilde{x}^n(T)\right] \leq \Phi_m\left[\tilde{x}^n(0)\right], \quad 0 \leqslant T < \infty. \tag{30}
$$

На основании лемм 6 и 7 и определения (4) множества $\Theta^q(L)$ имеем

$$
\Phi_m[\tilde{x}^n(T)] = \Phi_m \Big[\sum_{(h,j,k) \in \Delta(L, \text{Re}\lambda < 0)} c_{h,j,k} \tilde{x}^n_{h,j,k}(T) + \Phi_m \Big[\sum_{(h,j,k) \in \Delta^m-1} c_{h,j,k} \tilde{x}^n_{h,j,k}(0) + \Big] + \sum_{k: \mu_k \in i \mathbb{R} \setminus \{0\}} \Phi_m \Big[\sum_{(h,j,k) \in \Delta^o(L, \mu_k)} c_{h,j,k} \tilde{x}^n_{h,j,k}(0) \Big].
$$
\n(31)

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

В силу определений (2) и (3) элементарных решений $x_{h,j,k}$ (f) и вектор-функций x⁷ (t) первое слагаемое в правой части равенства (31) стремится к нулю при $T \rightarrow +\infty$, поэтому из соотношений (30) и (31) вытекает неравенство (28). Аналогично доказывается второе утверждение. Равенство (29) вытекает из третьего утверждения леммы 7, если считать в нем $T=0$ и заметить, что в силу определения (5) множества мультииндексов Θ (L, Ω) множество комплексных чисел Ω U iR не содержит характеристических чисел μ_h и μ_p , для которых $\mu_h = -\overline{\mu}_p$, в случаях, когда μ_h и $\mu_p \in \Omega$ и когда $\mu_h \in \Omega$, a $\mu_v \in i\mathbb{R}$.

Доказательство теоремы 1. Если выполнено условие (11), то в силу определений множеств мультииндексов $\Delta^q_+(L, \mu_k, \Phi)$ и $\Theta^q_+(L, \Phi)$ и включения $\Delta^q_+(L, \mu_k, \Phi) \subseteq \Delta^{q_1}_+(L, \mu_k, \Phi)$ при $q < q_1$ из леммы 8 и формулы (8) получаем

$$
\Phi_{\tilde{\xi}}^q \Big[\sum_{(h,j,k)\in\Theta^{2q-2}(L,\Phi_{\tilde{\xi}}^q)} c_{h,j,k} \tilde{x}_{h,j,k}^n(0) \Big] \geq 0, \quad \tilde{\xi} \in \mathbb{R}_+^{[n/2]-q+2}.
$$

Отсюда с учетом условия (14), полностью повторяя доказательство теоремы I.1, получаем первое утверждение теоремы 1. Аналогично устанавливаются второе и третье утверждения этой теоремы.

Приведем одно следствие из теорем и 1, предполагая, что формы операторов L_p , входящих в полиномиальный пучок операторов (1), подчинены одному из следующих условий при $x \in \mathbb{S}$:

$$
(-1)^{s} \operatorname{Im} (L_{2s}x, x) \geqslant 0, \quad s = \overline{0, [n/2]}, \quad \operatorname{Re} (L_{2s+1}x, x) = 0, \quad s = \overline{0, [(n-1)/2]}, \tag{32}
$$

Im
$$
(L_{2s}x, x) = 0
$$
, $s = 0, \overline{[n/2]}$, $(-1)^{s} \text{Re}(L_{2s+1}x, x) \leq 0$, $s = 0, \overline{[(n-1)/2]}$.
(33)

Из теоремы 1 непосредственно вытекает следующее утверждение.

Теорема 2. Пусть \tilde{J}_1 и \tilde{J}_2 — такие операторы, действующие в пространстве \mathfrak{H}^n , для которых $\mathfrak{L}^n \subseteq \mathfrak{D}(J_1) \cap \mathfrak{D}(J_2)$ и $c \parallel J_1 \tilde{f}^n \parallel \leq \parallel (J_1 +$ \tilde{J} ») \tilde{f}^n || с независящей от $\tilde{f}^n \in \mathbb{R}^n$ постоянной $c > 0$. Предположим, что

$$
\Phi_{\tilde{\xi}}^{\sigma} \left[\tilde{x}^{n} \right] \geqslant c_{2} \left\| \tilde{J}_{2} \tilde{x}^{n} \right\|^{2} - c_{1} \left\| \tilde{J}_{1} \tilde{x}^{n} \right\|^{2}, \quad \tilde{\xi} \in \mathbb{R}_{+}^{\lceil n/2 \rceil - q + 2}, \tag{34}
$$

$$
\mathbf{X}_{\tilde{\xi}}^{\sigma} \left[\tilde{x}^{n} \right] \geqslant c_{2} \left\| \tilde{J}_{2} \tilde{x}^{n} \right\|^{2} - c_{1} \left\| \tilde{J}_{1} \tilde{x}^{n} \right\|^{2}, \quad \tilde{\xi} \in \mathbb{R}_{+}^{[(n+3)/2] - q}, \tag{35}
$$

$$
\Psi_{\tilde{\xi}}^q \left[\tilde{x}^n \right] \geq c_2 \left\| \tilde{J}_2 \tilde{x}^n \right\|^2 - c_1 \left\| \tilde{J}_1 \tilde{x}^n \right\|^2, \quad \tilde{\xi} \in \mathbb{R}^{n-q+2},\tag{36}
$$

с независящими от $x^n \in \mathbb{R}^n$ постоянными $c_1, c_2 > 0$. Тогда соотношение $\tilde{J}_1\tilde{x}_{h,j,k}^n(0) \simeq (\tilde{J}_1 + \tilde{J}_2)\tilde{x}_{h,j,k}^n(0)$ справедливо в следующих случаях: 1) когда выполнены условия (32) и (34), а мультииндексы $(h, j, k) \in \Theta^{2q-2}$ (L, Φ^q_z); 2) когда выполнены условия (33) и (35), а мультииндексы (h, j, k) \in $\epsilon \Theta_{-}^{2q-1}(L, X_{\epsilon}^{q})$; 3) когда выполнены условия (13) и (36), а мультииндексы $(h, j, k) \in \Theta_-(L, \Omega, \Psi_{\widetilde{t}}^q).$

Доказательство. Рассмотрим вместо оператор-функции $L(\lambda)$ оператор-функцию — $L(\lambda)$. Тогда квадратичные формы $\Phi_{\tilde{\epsilon},L}^q[x^n]$, $X_{\tilde{\epsilon},L}^q[x^n]$ и $\Psi_{\tilde{t},L}^q$ [\tilde{x}^n], построенные по коэффициентам оператор-функции $L(\lambda)$, связаны с квадратичными формами $\Phi_{\tilde{\xi},-L}^{\sigma}[\tilde{x}^n]$, $X_{\tilde{\xi},-L}^{\sigma}[\tilde{x}^n]$ и $\Psi_{\tilde{\xi},-L}^{\sigma}[\tilde{x}^n]$, пост-
роенными по коэффициентам оператор-функции - $L(\lambda)$, равенствами

\ ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

 $\Phi_{\tilde{\xi},L}^q[\tilde{x}^n] = -\Phi_{\tilde{\xi},-L}^q[\tilde{x}^n], \ X_{\tilde{\xi},L}^q[\tilde{x}^n] = -X_{\tilde{\xi},-L}^q[\tilde{x}^n] \times \Psi_{\tilde{\xi},L}^q[\tilde{x}^n] = -\Psi_{\tilde{\xi},-L}^q \times$ \times [x^n] для всех элементов $x^n \in \mathbb{R}^n$. Отсюда видно, что условия (32), (33) и (34) - (36) для оператор-функции $L(\lambda)$ преобразуются соответственно в условия (11), (12) и (14) — (16) для оператор-функции — $L(\lambda)$; условие же (13) остается прежним как для оператор-функции $L(\lambda)$, так и для оператор-функции — $L(\lambda)$. Кроме того, множества мультииндексов $\Theta^p_-(L, \Phi^q_{\tilde{t}_I}) =$ $=\Theta^p_+(-L, \Phi^q_{\tilde{\xi}, -L}), \ \Theta^p_-(L, X^q_{\tilde{\xi}, L}) = \Theta^p_+(-L, X^q_{\tilde{\xi}, -L}) \ \ \text{in} \ \ \Theta_-(L, \Omega, \Psi^q_{\tilde{\xi}, L}) =$ $\mathcal{A} = \Theta_+ \left(-L, \Omega, \Psi_{\widetilde{E}-L}^q \right)$ для любых целых неотрицательных значений ри допустимых значений натурального числа q. Отметим, что характеристические числа у оператор-функций $L(\lambda)$ и $-L(\lambda)$ совпадают, как совпадают и отвечающие этим характеристическим числам цепочки корневых векторов. Из этих пояснений и из теоремы 1 непосредственно вытекают утверждения теоремы 2.

2. Некоторые свойства форм $\Phi_m(\tilde{x}^n, \tilde{y}^n)$. В этом пункте приводятся вспомогательные утверждения, показывающие, в частности (см. лемму 13), что при выполнении, например, условия (11) $\Theta_{\pm}^{2q-2}(L, \Phi_{\mp}^q)$ $=\Theta_{\pm}^{2q-2}(L, \Phi_{2q-1}),$ если в определении (8) формы $\Phi_{\tilde{\epsilon}}^{q}(\tilde{x}^{n}, \tilde{y}^{n})$ набор $\tilde{\epsilon} \in$ $\in \mathbb{R}^{[n/2]-q+2}_+$ и $\xi_q > 0$. Утверждения такого типа потребуются лля получения следствий из теорем 1 и 2.

Лемма 9. Пусть $\hat{x}(t)$ —произвольное решение уравнения L(d/dt) $\hat{x}(t)$ = $= 0$, а элемент $\tilde{y}^n = {y^1, ..., y^n} \in \mathbb{S}^n$. Тогда для натурального числа $m \leq n$

$$
\Phi_m\left(\frac{d}{dt}\tilde{x}^n(t),\tilde{y}^n\right) = -i\Phi_{m+1}\left(\tilde{x}^n(t),\tilde{y}^n\right) + \sum_{s=1}^{m-1}(-1)^s\left[(i)^m(L_{2s-m}\hat{x}^{(s)}(t),\ y^s\right) -
$$

$$
-(-i)^m\left(\hat{x}^{(s)}(t),\ L_{2s-m}\mathcal{Y}^s\right) - \sum_{s=m}^{\infty}(-1)^s\left[(i)^m(L_{2s-m+1}\hat{x}^{(s)}(t),\ y^{s+1}\right) +
$$

$$
+(-i)^m\left(\hat{x}^{(s)}(t),\ L_{2s-m+1}\mathcal{Y}^{s+1}\right)].
$$
\n(37)

В частности, если операторы L_p удовлетворяют условию (11) или (32) и натуральное число $q \leq [n/2]$, то

$$
\Phi_{2q-1}\left(\frac{d^2}{dt^2} \tilde{x}^n(t), \tilde{y}^n\right) = -\Phi_{2q+1}\left(\tilde{x}^n(t), \tilde{y}^n\right) -
$$
\n
$$
-i \sum_{s=0}^{[n/2]} (-1)^s \left[(L_{2s}\hat{x}^{(q+s)}(t), y^{q+s}) - (\hat{x}^{(q+s)}(t), L_{2s}y^{q+s}) \right],
$$
\n(38)

если же выполнено условие (12) или (33) и $q \leq [(n-1)/2]$, то

$$
\Phi_{2q}\left(\frac{d^2}{dt^2}\,\tilde{x}^n\left(t\right),\,\tilde{y}^n\right) = -\Phi_{2q+2}\left(\tilde{x}^n\left(t\right),\,\tilde{y}^n\right) -
$$

$$
-\sum_{s=0}^{\lfloor (n-1)/2 \rfloor} (-1)^s [(L_{2s+1} \hat{\chi}^{(q+s+1)}(t), y^{q+s+1}) + (\hat{\chi}^{(q+s+1)}(t), L_{2s+1} y^{q+s+1})], \quad (39)
$$

а когда выполнено условие (13) и $m \leq n$, то

$$
\mathcal{D}_m\left(\frac{d}{dt}\,\tilde{x}^n\left(t\right),\,\tilde{y}^n\right) = -i\mathcal{D}_{m+1}\,\left(\tilde{x}^n\left(t\right),\,\tilde{y}^n\right) \tag{40}
$$

В равенстве (37), как и в работе [1], предполагается, что операторы $L_p = 0$ при индексе $v < 0$ или $v > n$, а также, что векторы $y^s = 0$, если $s > n$.

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

Доказательство. Вычисления показывают, что из формулы (I.10) следуют равенства

$$
\Phi_{1,m}\left(\frac{d}{dt}\tilde{x}^{n}(t),\tilde{y}^{n}\right) = -i\Phi_{1,m+1}\left(\tilde{x}^{n}(t),\tilde{y}^{n}\right) - (-i)^{m}\sum_{v=0}^{m-1}\left(L_{v}\hat{x}^{(v)}(t),y^{m}\right) -
$$

$$
-(i)^{m}\sum_{s=0}^{m-1}(-1)^{s}\left(L_{2s-m+1}\hat{x}^{(s)}(t),y^{s+1}\right),
$$

$$
\Phi_{1,m}\left(\tilde{y}^{n},\frac{d}{dt}\tilde{x}^{n}(t)\right) = -i\Phi_{1,m+1}\left(\tilde{y}^{n},\tilde{x}^{n}(t)\right) -
$$

$$
-(-i)^{m-1}\sum_{s=1}^{m-1}(-1)^{s}\left(\hat{x}^{(s)}(t),L_{2s-m}y^{s}\right),
$$

а из формулы $(I.11)$ —

$$
\Phi_{2,m}\left(\frac{d}{dt}\tilde{x}^{n}(t),\tilde{y}^{n}\right) = -i\Phi_{2,m+1}\left(\tilde{x}^{n}(t),\tilde{y}^{n}\right) - (-i)^{m}\sum_{v=m}^{\infty}\left(L_{v}\hat{x}^{(v)}(t),y^{m}\right) +
$$

$$
+ (i)^{m}\sum_{s=m}^{\infty}(-1)^{s}\left(L_{2s-m}\hat{x}^{(s)}(t),y^{s}\right),
$$

$$
\Phi_{2,m}\left(y^{n},\frac{d}{dt}\tilde{x}^{n}(t)\right) = -i\overline{\Phi_{2,m+1}\left(y^{n},\tilde{x}^{n}(t)\right)} -
$$

$$
-(-i)^{m}\sum_{s=m}^{\infty}(-1)^{s}\left(\hat{x}^{(s)}(t),L_{2s-m+1}y^{s+1}\right),
$$

из формулы $(I.12)$ —

$$
\Phi_{3,m}\left(\frac{d}{dt}\tilde{x}^{n}(t),\tilde{y}^{n}\right) = (i)^{m}\sum_{s=1}^{m-1}(-i)^{s} (L_{2s-m}\hat{x}^{(s)}(t), y^{s}) -
$$

$$
-(i)^{m}\sum_{s=m}^{\infty}(-1)^{s} (L_{2s-m}\hat{x}^{(s)}(t), y^{s}),
$$

$$
0 = -i\Phi_{3,m+1}(\tilde{x}^{n}(t), y^{n}) + (i)^{m}\sum_{s=0}^{m-1}(-1)^{s} (L_{2s-m+1}\hat{x}^{(s)}(t), y^{s+1}) -
$$

$$
-(i)^{m}\sum_{s=m}^{\infty}(-1)^{s} (L_{2s-m+1}\hat{x}^{(s)}(t), y^{s+1}).
$$

Складывая левые и правые части этих равенств и учитывая, что $L(d/dt) \hat{\boldsymbol{x}}(t) = 0$, получаем тождество (37). Если $\hat{\boldsymbol{x}}(t)$ — решение (в смысле п. 1 работы [1]) уравнения $L (d/dt) \hat{x}(t) = 0$, то решением этого уравнения будет и вектор-функция $\hat{x}'(t)$, откуда, подставляя в формулу (37) вместо $\hat{x}(t)$ функцию $\hat{x}'(t)$ и применяя два раза формулу (37) с учетом условий (11), (12), (32), (33) и леммы II.3, получаем тождества (38) и (39). Равенство (40) непосредственно следует из формулы (37), условия (13) и леммы II.3.

Лемма 10. Пусть $\tilde{x}_{h,j,k}^n(t)$ — вектор-функция, построенная согласно формулам (2) и (3) по цепочке корневых векторов $x_{0,j,k},...,x_{h,j,k}$ оператор-функции (1), отвечающей нулевому характеристическому чис-Тогда для любого элемента $y^n \in \mathbb{S}^n$ и натурального числа $m =$ λy .

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

 $= 1, n + 1$ равенство

$$
\Phi_m(x_{h,j,k}^n(t), y^n) = 0, \quad -\infty < t < \infty, \quad h < m-1,\tag{41}
$$

справедливо в следующих случаях: 1) т - нечетно и выполнено условие (11) или (32), а мультииндекс (h, j, k) $\in \Delta^{m-1}(L, 0)$; 2) m - четно и выполнено условие (12) или (33), а мультииндекс $(h, j, k) \in \Delta^{m-1}(L, 0)$; 3) выполнено условие (13).

Доказательство. При $m = 1$ равенство (41) следует из предположения $x_{h,j,k}^n(t) = 0$, если $h < 0$, а при $m = 2$ оно непосредственно вытекает из определения (I.13) формы $\Phi_m(\tilde{x}^n, \tilde{y}^n)$ и тождества $\tilde{x}^n_{0,i,k}(t) =$ = $x_{0,j,k} \oplus 0_{n-1}$, в котором $x_{0,j,k}$ — собственный вектор, отвечающий нуле-
вому характеристическому числу, а 0_{n-1} — нулевой элемент пространства \mathfrak{S}^{n-1} , т. е. при $m = 1, 2$ равенство (41) установлено без предположения о выполнении условий (11) - (13), (32), (33). Предположим, что равенство (41) установлено в случае выполнения условия (11) или (32) и нечетного индекса $m = 2q - 1$ при $q < [n/2]$. Выведем отсюда это же равенство, но уже для индекса $m = 2q + 1$. Так как мультииндекс $(h, j, k) \in \Delta^{2q}(L, 0)$, то согласно тождеству (23) (которое справедливо и при выполнении условия (32)) и (38), имеем $\Phi_{2q-1}\left(\frac{d^2}{dt^2} \tilde{x}_{h,j,k}^n(t), \tilde{y}^n\right) = -\Phi_{2q+1}(\tilde{x}_{h,j,k}^n(t), \tilde{y}^n).$ Но элементарное решение $x_{h,j,k}$ (t) отвечает нулевому характеристическому числу, поэтому, исходя из формул (2) и (3), получаем $\frac{d^2}{dt^2}$ $\tilde{x}_{n,j,k}^n(t) =$ $=\tilde{x}_{h-2,j,k}^n(t)$. Tem cambin $\Phi_{2q-1}(\tilde{x}_{h-2,j,k}^n(t), \tilde{y}^n) = -\Phi_{2q+1}(\tilde{x}_{h,j,k}^n(t), \tilde{y}^n)$. Из этой формулы и предположения о справедливости равенства (41) при $m = 2q - 1$ вытекает это же равенство, но уже при $m = 2q + 1$. Значит, утверждение леммы 10 установлено в случае 1. Аналогично устанавлива-

ется равенство (41) и в случаях 2 и 3, однако в случае 2 вместо тождеств (23) и (38) используются тождества (24) и (39), а в случае 3 лишь тождество (40).

Лемма 11. Пусть $x_{0,j,k}^n(t)$ и $x_{r,u,k}^n(t)$ — вектор-функции, построенные согласно правилам (2) и (3) по собственному вектору $x_{0,j,k}$ и цепочке корневых векторов $x_{0,u,k},...,x_{r,u,k}$ оператор-функции (1), отвечающих одному и тому же мнимому характеристическому числу μ_k , причем цепочка $x_{0,u,k}$, ..., $x_{r,a,k}$ продолжаема до длины $r+2$. Тогда $\Phi_m(x_{0,j,k}^n(t),$ $\tilde{x}_{r,u,k}^n(t) = 0$ npu $-\infty < t < \infty$, kozda $m = \overline{1, n+1}$ u 1) m — нечетно и выполнено условие (11) или (32); 2) $m-$ четно и выполнено условие (12) или (33).

Доказательство. Согласно лемме 6, утверждение которой справедливо и при выполнении условий (32) или (33), $\Phi_m(x_{0,j,k}^n(t), x_{r+1,u,k}^n(t)) =$ = $\Phi_m(x_{0,j,k}^n(0), x_{r+1,u,k}(0))$. Дифференцируя по *t* это тождество, имеем $\mu_k \Phi_m (\tilde{x}_{0,j,k}^n(t), \tilde{x}_{r+1,u,k}^n(t)) + \bar{\mu}_k \Phi_m (\tilde{x}_{0,j,k}^n(t), \tilde{x}_{r+1,u,k}^n(t)) + \Phi_m (\tilde{x}_{0,j,k}^n(t),$ $\tilde{\chi}_{r,u,k}^{n}(t)$ = 0, а так как μ_{k} — мнимое число, то сумма первого и второго слагаемых равна нулю, откуда и вытекает утверждение леммы.

Лемма 12. Пусть $x_{0,j,k}$, ..., $x_{h,j,k}$ и $x_{0,u,k}$, ..., $x_{r,u,k}$ — две цепочки корневык векторов, отвечающие одному и тому же мнимому характеристическому числу, причем цепочка корневых векторов хо, и, к, ..., xr, и, к продолжаема до цепочки длины $r + s + 1$, где $s \ge 0$. Тогда для $m =$ $= 1, n + 1$ равенство

$$
\Phi_{m}(\tilde{x}_{h,j,k}^{n}(0), \tilde{x}_{r,u,k}^{n}(0)) = (-1)^{s} \Phi_{m}(\tilde{x}_{h-s,j,k}^{n}(0), \tilde{x}_{r+s,u,k}^{n}(0)) \quad (42)
$$

справедливо в следующих случаях: 1) т - нечетно и выполнено условие

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

(11) или (32), а мультииндекс $(h, j, k) \in \Delta^{0}(L, i\mathbb{R}) \cup \Delta^{m-1}(L, 0);$ 2) m четно и выполнено условие (12) или (33), а мультииндекс (h, j, k) $\in \Delta^{\rm o}(L)$, $i\mathbb{R}$) $\bigcup \Delta^{m-1}(L, 0)$; 3) выполнено условие (13). В частности, если $h < s$, то

$$
\Phi_m(\tilde{x}_{h,j,k}^n(0), \quad x_{r,u,k}^n(0)) = 0. \tag{43}
$$

Кроме того, равенство (43) справедливо, если выполнено условие (13) и хотя бы одна из цепочек корневых векторов хо, і, к, ..., х, і, к или хо, и, к,, xr,u,k, отвечающая нулевому характеристическому числу, продолжаема до длины $h+r-m+3$.

Доказательство. Из формулы (27) следует, что коэффициент при $T \exp(\mu_b + \mu_n) T (= T)$ равен нулю, поэтому

$$
\Phi_{m}(\tilde{x}_{h,j,k}^{n}(0), \quad \tilde{x}_{r-1,u,k}^{n}(0)) + \Phi_{m}(\tilde{x}_{h-1,j,k}^{n}(0), \quad \tilde{x}_{r,u,k}^{n}(0)) = 0,
$$

а значит,

 $\Phi_m(\tilde{x}_{h,i,k}^n(0), \tilde{x}_{r,u,k}^n(0)) = -\Phi_m(\tilde{x}_{h-1,j,k}^n(0), \tilde{x}_{r+1,u,k}(0)),$

когда $h \geq 1$. Применяя это тождество *s* раз с учетом леммы 11 получаем равенство (42). Если $h < s$, то из предположения $x_{d,i,k}^n(0) = 0$ при $d < 0$ и равенства (42) выводим соотношение (43). Установим теперь второе утверждение леммы в предположении, что цепочка корневых векторов $x_{0,u,k}, ..., x_{r,u,k}$ продолжаема до длины $h+r-m+3$. Положим число $s = h - m + 2$. Если $s \le 0$, то $h \le m - 2$ и равенство (43) вытекает из леммы 10. Если же $s > 0$, то согласно тождеству (42) $\Phi_m(x_{h,i,k}^n(0))$, $\tilde{x}_{r,u,k}^n(0) = (-1)^s \Phi_m(\tilde{x}_{m-2,j,k}^n(0), \tilde{x}_{h+r-m+2}^n(0)),$ откуда и из леммы 10 следует равенство (43).

Лемма 13. Пусть производные по Келдышу векторы $x_{h,j,k}^n(0)$ и $x_{r,u,k}^n(0)$ построены по цепочкам корневых векторов, отвечающих одному и тому же мнимому характеристическому числу μ_b , а натуральное число q≤р. Тогда справедливы следующие утверждения:

1) в случае $p \leqslant [n/2] + 1$, выполнения условия (11) или (32), а мультиundercos (h, j, k) u $(r, u, k) \in \Delta^0(L, i\mathbb{R})$

$$
\Phi_{2p-1}(\tilde{x}_{h,j,k}^n(0), \tilde{x}_{r,u,k}^n(0)) = |\mu_k|^{2(p-q)} \Phi_{2q-1}(\tilde{x}_{h,j,k}^n(0), \tilde{x}_{r,u,k}^n(0)); \quad (44)
$$

если же мультииндексы (h, j, k) и $(r, u, k) \in \Delta^{2q}(L, 0\mathbb{R})$, то

$$
\Phi_{2p-1}(\tilde{x}_{h,j,k}^n(0), \tilde{x}_{r,u,k}^n(0)) = \Phi_{2q-1}(\tilde{x}_{h-p+q,j,k}^n(0), \tilde{x}_{r-p+q,u,k}^n(0)); \quad (45)
$$

2) в случае $p \leq (n + 1)/2$, выполнения условия (12) или (33), а мульmuundekcos (h, j, k) u $(r, u, k) \in \Delta^0(L, i\mathbb{R})$

$$
\Phi_{2p}(x_{h,j,k}^n(0), x_{r,u,k}^n(0)) = |\mu_k|^{2(p-q)} \Phi_{2q}(\tilde{x}_{h,j,k}^n(0), \tilde{x}_{r,u,k}^n(0));
$$

если же мультииндексы (h, j, k) и $(r, u, k) \in \Delta^{2q+1}(L, 0)$, то

$$
\Phi_{2p}(x_{h,j,k}^n(0), x_{r,u,k}^n(0)) = \Phi_{2q}(\tilde{x}_{h-p+q,j,k}^n(0), \tilde{x}_{r-p+q,u,k}^n(0));
$$

3) в случае $p \leqslant n + 1$, выполнения условия (13) и продолжаемости хотя бы одной цепочки корневых векторов хо, i,k, ..., Xh, j,k или хо, и,k,, $x_{r,u,k}$ (по которым строятся векторы $x_{h,j,k}^n(0)$ и $x_{r,u,k}^n(0)$) до цепочки длины $h+r+1$

$$
\Phi_p(x_{h,j,k}^n(0), x_{r,u,k}^n(0)) = (i\mu_h)^{p-q} \Phi_q(x_{h,j,k}^n(0), x_{r,u,k}^n(0));
$$

если же мультииндексы (h, j, k) и $(r, u, k) \in \Delta(L, 0)$, то

$$
\Phi_p(x_{h,j,k}^n(0), x_{r,u,k}^n(0)) = (i)^{p-q} \Phi_q(\tilde{x}_{h-p+q,j,k}^n(0), \tilde{x}_{r,u,k}^n(0)).
$$

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

Доказательство. В силу включений Δ^m (L, 0) $\leq \Delta^{m_1}(L, 0)$, если $m \leq m_1$, утверждение леммы достаточно установить при $p = q + 1$. Пусть выполнены условия (11) или (32). Тогда согласно лемме 4, формулам (22), (23) и (38) и включению (h, j, k) $\in \Delta^0(L, i\mathbb{R}) \cup \Delta^{2q}(L, 0)$ получаем

$$
\Phi_{2q+1}(\tilde{x}_{h,j,k}^n(0), \tilde{x}_{r,u,k}^n(0)) = - \Phi_{2q-1}\left(\frac{d^2}{dt^2} \tilde{x}_{h,j,k}^n(t) \Big|_{t=0}, \tilde{x}_{r,u,k}^n(0)\right).
$$

Используя равенства (2) и (3), имеем

$$
\frac{d^2}{dt^2} \tilde{x}_{h,j,k}^n(t) \Big|_{t=0} = \mu_k^2 \tilde{x}_{h,j,k}^n(0) + 2\mu_k \tilde{x}_{h-1,j,k}^n(0) + \tilde{x}_{h-2,j,k}^n(0)),
$$

откуда с учетом мнимости числа μ_{ν} заключаем

$$
\Phi_{2q+1} (x_{h,j,k}^n(0), x_{r,u,k}^n(0)) = |\mu_k|^2 \Phi_{2q-1} (\tilde{x}_{h,j,k}^n(0), \tilde{x}_{r,u,k}^n(0)) -
$$

$$
-2\mu_k \Phi_{2q-1} (\tilde{x}_{h-1,j,k}^n(0), \tilde{x}_{r,u,k}^n(0)) - \Phi_{2q-1} (\tilde{x}_{h-2,j,k}^n(0), \tilde{x}_{r,u,k}^n(0)),
$$

$$
(h, j, k) \in \Delta^0 (L, i\mathbb{R}) \cup \Delta^{2q} (L, 0).
$$
 (46)

Предположим, что $h \leq r$. Так как $(r, u, k) \in \Delta^0(L, i\mathbb{R})$, то цепочка корневых векторов $x_{0,u,k}, ..., x_{r,u,k}$ продолжаема до длины $2r + 1$. Т. е. в обозначениях леммы 12 $s = r$, а значит, на основании тождества (43) и предположения об $h \le r$ имеем $\Phi_{2q-1}(x_{h-w,j,k}^n(0), x_{r,u,k}^n(0)) = 0$ при $w \ge 1$. откуда с учетом формулы (46) следует утверждение (44), если $h \leq r$. Случай $h \ge r$ сводится к предыдущему в силу симметричности форм. $\Phi_{2q-1}(x^n, y^n)$, которая вытекает из условия (11) или (32). Для нулевого характеристического числа μ_h равенство (45) вытекает из формулы (46) и тождества

$$
\Phi_{2q-1}(\tilde{x}_{h-2,j,k}^n(0), \tilde{x}_{r,u,k}^n(0)) = -\Phi_{2q-1}(\tilde{x}_{h-1,j,k}^n(0), \tilde{x}_{r-1,u,k}^n(0)),
$$

которое следует из (42). Второе утверждение леммы доказывается аналогично, а при выводе третьего вместо равенства (46) используется тождество

$$
\Phi_{q+1}(\tilde{x}_{h,j,k}^n(0), \tilde{x}_{r,u,k}^n(0)) = i\mu_h \Phi_q(\tilde{x}_{h,j,k}^n(0), \tilde{x}_{r,u,k}^n(0)) + + i\Phi_q(\tilde{x}_{h-1,j,k}^n(0), \tilde{x}_{r,u,k}^n(0)),
$$

вытекающее из формулы (40).

3. Эквивалентность и минимальность части корневых векторов пучков операторов высокого порядка. В этом пункте рассматриваются лишь ограниченные операторы, что специально далее не оговаривается. Введем полиномиальные скалярные оператор-функции

$$
V_{l}(\lambda) = \sum_{r=1}^{n-1} \lambda^{r-1} \alpha_{l,r} I, \qquad l = \overline{1, m}, \qquad (47)
$$

где $\alpha_{l,r}$ — комплексные числа. Оператор-функции (47) соответствуют [3, с. 82 — 86] краевым условиям $V_l(\hat{x}(t)) = \sum_{l=1}^{n-1} \alpha_{l,r} \hat{x}^{(r-1)}(0) = f_l$, где $\hat{x}(t)$ решение однородного операторно-дифференциального уравнения $L(d/dt) \times$ \times $x(t) = 0$, символом которого является оператор-функция (1), а векторы $f_i \in \mathfrak{H}$. Исследование эквивалентности корневых векторов, отвечающих характеристическим числам из замкнутой левой полуплоскости, связано с изучением задач на полуоси $t \ge 0$ для уравнения $L(d/dt) x(t) = 0$, причем

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7.

мнимые характеристические числа определяют условия типа условий излучения на бесконечности [5, с. 202-203].

Чтобы сформулировать следствия из теорем 1 и 2, введем обозначения. По коэффициентам $\alpha_{l,r}$, входящим в оператор-функции (47), определим систему линейных однородных уравнений

$$
\sum_{r=1}^{n-1} \alpha_{l,r} \zeta_r = 0, \qquad l = \overline{1, m}, \tag{48}
$$

относительно комплексных неизвестных ζ_r . По набору $\xi = \{\xi_1, ..., \xi_d\}$ построим квадратичные формы

$$
\Psi_{1,\ \tilde{\xi}}^{d} \ [\tilde{\xi}] = -i \sum_{q=1}^{d} \xi_{q} \sum_{s=1}^{2q} (-1)^{q+s} \xi_{2q-s+1} \overline{\xi}_{\bullet}, \tag{49}
$$

$$
\mathbb{W}_{2,\,\tilde{\xi}}^{d} \quad [\tilde{\xi}] = \sum_{q=1}^{d} \xi_{q} \sum_{s=1}^{2q-1} (-1)^{q+s} \xi_{2q-s} \overline{\xi}_{s}, \tag{50}
$$

$$
\Psi_{\tilde{\xi}}^d \; [\tilde{\xi}] = \sum_{q=1}^d \left(i \right)^{q+1} \xi_q \sum_{s=1}^q \left(-1 \right)^s \xi_{q-s+1} \overline{\xi}_s, \tag{51}
$$

зависящие от комплексных переменных ζ_r , причем в (49) - (51) $\tilde{\zeta} =$ $=\{\zeta_1, \ldots, \zeta_{2d}\}, \ \tilde{\zeta} = \{\zeta_1, \ldots, \zeta_{2d-1}\}$ $\tilde{\zeta} = \{\zeta_1, \ldots, \zeta_d\}$ соответственно. Отметим, что формы W_1^d , \tilde{E} $[\tilde{E}]$ и W_2^d , \tilde{E} $[\tilde{E}]$ являются частными случаями формы $W_{\tilde{E}}^d$ $[\tilde{E}]$. Действительно, по набору $\tilde{\xi} = {\xi_1, ..., \xi_d} \in \mathbb{R}^d$ введем два набора $\tilde{\xi}_1 =$ $= \{0, \xi_1, 0, \ldots, \xi_d\} \in \mathbb{R}^{2d}$ и $\tilde{\xi}_2 = \{\xi_1, 0, \xi_2, \ldots, \xi_d\} \in \mathbb{R}^{2d-1}$. Тогда

$$
\overline{V}_{1,\ \overline{\xi}}^d \ [\overline{\xi}] = \overline{W}_{\overline{\xi}_1}^{2d} \ [\overline{\xi}], \quad \overline{W}_{2,\ \overline{\xi}}^d \ [\overline{\xi}] = \overline{W}_{\overline{\xi}_2}^{2d-1} \ [\overline{\xi}].
$$

В силу вещественности чисел ξ_q форма $W^d_{\tilde{\xi}}$ [$\tilde{\zeta}$] (а значит, и формы $\overline{W}_{1,\tilde{L}}^d$. [$\tilde{\zeta}$] и $\overline{W}_{2,\tilde{L}}^d$. [$\tilde{\zeta}$]) эрмитова, что установлено в следующем утверждении.

Лемма 14. Форма $W^d_{\tilde{\epsilon}}$ [$\tilde{\zeta}$], заданная равенством (51), — эрмитова. Пусть число $\xi_d \neq 0$. Тогда форма $W^d_{\tilde{K}}[\tilde{\xi}]$ не сингулярна и в случае четного числа d имеет ровно d/2 положительных и d/2 отрицательных квадратов. В случае же нечетного числа d и $\xi_d > 0$ форма $W^d_{\tilde{x}}$] ξ] имеет $(d+1)/2$ положительных и $(d-1)/2$ отрицательных квадратов, а при $\xi_d < 0$ положительных квадратов $(d-1)/2$, а отрицательных $(d+1)/2$. Доказательство. Заметим, что

$$
W_{\tilde{\xi}}^d \quad [\tilde{\xi}] = \sum_{q=1}^d \xi_q \sum_{s=1}^q (i)^{q-s+1} \xi_{q-s+1} \overline{(i)^s} \xi_s
$$

поэтому в переменных

$$
\eta_s = (i)^s \zeta_s, \quad s = \overline{1, d}, \tag{52}
$$

форма (51) примет вид

$$
\mathbb{W}_{\tilde{\xi}}^d \left[\tilde{\xi} \right] = \sum_{q=1}^d \xi_q \sum_{s=1}^q \eta_{q-s+1} \overline{\eta}_{\mathbf{s}}.
$$
 (53)

Так как

$$
\sum_{s=1}^{2q-1} \eta_{2q-s} \overline{\eta}_s = \begin{cases} |\eta_1|^2, & q=1, \\ |\eta_q|^2 + 2\mathrm{Re} \sum_{s=1}^{q-1} \eta_{2q-s} \overline{\eta}_s, & q=2,3,\dots, \end{cases}
$$
(54)

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

$$
\sum_{s=1}^{2q} \eta_{2q-s+1} \overline{\eta}_s = 2 \text{Re} \sum_{s=1}^{q} \eta_{2q-s+1} \overline{\eta}_s, \qquad q = 1, 2, ..., \qquad (55)
$$

а числа ξ_q — вещественны, то форма $W^d_{\tilde{\xi}}$ [$\tilde{\zeta}$] эрмитова. Установим следующие два равенства: при четном $d = 2k$, $k = 1, 2, ...$,

$$
W_{\tilde{\xi}}^{2k}[\tilde{\xi}] = 2 \sum_{s=1}^{k} \text{Re} \left[\left(\frac{\xi_{2s-1}}{2} \eta_s + \sum_{q=2s}^{2k} \xi_q \eta_{q-s+1} \right) \overline{\eta}_s \right], \tag{56}
$$

а при нечетном $d = 2k + 1$, $k = 0, 1, ...$,

$$
W_{\tilde{\xi}}^{2k+1} [\tilde{\xi}] = \xi_{2k+1} |\eta_{k+1}|^2 + + 2 \sum_{s=1}^{k} \text{Re} \left[\left(\frac{\xi_{2s-1}}{2} \eta_s + \sum_{q=2s}^{2k+1} \xi_q \eta_{q-s+1} \right) \overline{\eta}_s \right].
$$
 (57)

Заметим, что равенство (56) вытекает из равенства (57), если положить в (57) число $\xi_{2k+1} = 0$. Поэтому достаточно установить формулу (57) при $k = 1, 2, ...$. Учитывая тождества (53) — (55), имеем

$$
W_{\tilde{\xi}}^{2k+1} [\bar{\zeta}] = \xi_{2k+1} |\eta_{k+1}|^2 + 2\xi_{2k+1} \operatorname{Re} \sum_{s=1}^k \eta_{2k-s+2} \bar{\eta}_s +
$$

+
$$
\sum_{s=1}^k \xi_{2s-1} |\eta_s|^2 + 2 \sum_{q=2}^k \xi_{2q-1} \operatorname{Re} \sum_{s=1}^{q-1} \eta_{2q-s} \bar{\eta}_s + 2 \sum_{q=1}^k \xi_{2q} \operatorname{Re} \sum_{s=1}^q \eta_{2q-s+1} \bar{\eta}_s.
$$

Объединяя вначале второе и четвертое слагаемые в правой части последнего тождества, а затем переставляя во всех двойных суммах суммирование по *q* и s, получаем

$$
W_{\tilde{g}}^{2k+1}[\bar{\zeta}] = \xi_{2k+1} |\eta_{k+1}|^2 + 2\text{Re} \sum_{s=1}^k \sum_{q=s}^k \xi_{2q+1} \eta_{2q-s+2} \bar{\eta}_s +
$$

+ 2\text{Re} \sum_{s=1}^k \frac{\xi_{2s-1}}{2} \eta_s \bar{\eta}_s + 2\text{Re} \sum_{s=1}^k \sum_{q=s}^k \xi_{2q} \eta_{2q-s+1} \bar{\eta}_s,

откуда вытекает формула (57), а значит, и формула (56). Выполняя следующую замену переменных η_s в формуле (57):

$$
\theta_{s} = \frac{1}{2\sqrt{2}} \left[\left(\frac{\xi_{2s-1}}{2} + 1 \right) \eta_{s} + \sum_{q=2s}^{2k+1} \xi_{q} \eta_{q-s+1} \right], \qquad s = \overline{1, k},
$$

$$
\theta_{k+s} = \frac{1}{2\sqrt{2}} \left[\left(\frac{\xi_{2s-1}}{2} - 1 \right) \eta_{s} + \sum_{q=2s}^{2k+1} \xi_{q} \eta_{q-s+1} \right], \qquad s = \overline{1, k}, \qquad (58)
$$

 $\theta_{2k+1} = \eta_{2k+1}$

и замечая, что $\theta_s + \theta_{k+s} = \frac{1}{\sqrt{2}} \left(\frac{\xi_{2s-1}}{2} \eta_s + \sum_{q=2s}^{2k+1} \xi_q \eta_{q-s+1} \right)$ и $\theta_s - \theta_{k+s} =$

 $=\eta_s/\sqrt{2}$, $s=\overline{1,k}$, с учетом неравенства нулю числа ξ_{2k+1} , делаем заключение о невырожденности преобразования (58) и о справедливости равенства

$$
W_{\tilde{\xi}}^{2k+1}[\tilde{\zeta}] = \xi_{2k+1} |\theta_{2k+1}|^2 + \sum_{s=1}^k (|\theta_s|^2 - |\theta_{k+s}|^2)
$$

Из этого тождества с учетом замен (52) и (58) вытекают утверждения леммы.

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

963

崩

Приведем теперь следствия из теоремы 1.

Теорема 3. Пусть оператор-функция (1), у которой $L_0 \gg 0$, а нечетное число $n \geqslant 3$, удовлетворяет условию (11) и для всех ненулевых решений системы уравнений (48), где $m = (n - 1)/2$, форма W_{1}^{m} \tilde{E} [\tilde{E}] < 0 для некоторого фиксированного набора $\xi = {\xi_1, ..., \xi_m} \in \mathbb{R}_+^m$, причем $\xi_m > 0$. Тогда найдется такое $\tau_0 > 0$, что для всех $\tau > \tau_0$ справедливо соотношение

$$
\begin{aligned} \n\kappa_{h,j,k} \left(V_1(\mu \tau), \dots, V_m(\mu \tau), \mu^{n-1} \left[(-i)^n L_n \right]_{-}^{1/2} \right) &\simeq \\ \n&\simeq \left[(\text{diag}^{n-1} \ I) \oplus \left[L_n \right]_{-}^{1/2} \right] \tilde{x}_{h,j,k}^n \left(0 \right) \n\end{aligned} \tag{59}
$$

при мультииндексах $(h, j, k) \in \Theta^0_+(L, \Phi_n)$.

Теорема 4. Пусть оператор-функция (1), у которой $L_0 \gg 0$, а чет-
ное число n ≥ 2, удовлетворяет условию (12) и для всех ненулевых решений системы уравнений (48), где $m = n/2$, форма $W_{2,\tilde{e}}^{m}[\tilde{\zeta}] < 0$ для некоторого фиксированного набора $\xi = {\xi_1, ..., \xi_m} \in \mathbb{R}_+^m$, причем $\xi_m > 0$. Тог-
да найдется такое $\tau_0 > 0$, что для всех $\tau > \tau_0$ справедливо соотношение (59) при мультииндексах $(h, j, k) \in \Theta^0_+(L, \Phi_n)$.

Теорема 5. Пусть оператор-функция (1), у ксторой $L_0 \gg 0$, $n \geqslant 2$, удовлетворяет условию (13) и для всех ненулевых решений системы уравнений (48), где $m = [n/2]$, форма $W_{\tilde{\xi}}^{n-1}$ [$\tilde{\xi}$] $<$ 0 для некоторого фиксировении (40), его *m* — pu 2₁, форма n s
ванного набора $\xi = {\xi_1 \dots, \xi_{n-1}} \in \mathbb{R}^{n-1}$, причем $\xi_{n-1} > 0$. Тогда найдется
такое $\tau_0 > 0$, что для всех $\tau > \tau_0$ справедливо соотношение (59) при мультииндексах $(h, j, k) \in \Theta_+(L, \Omega, \Psi_{\tilde{z}_i}^2)$, где форма $\Psi_{\tilde{z}_i}^2$ задана равенством (10) при наборе $\xi' = {\xi'_2, ..., \xi'_n, 0}$ с числами $\xi' = \xi_{q-1}$ при $q = \overline{2, n}$. Если требование $\xi_{n-1} > 0$ в теореме 5 заменить требованием $\xi_{n-1} < 0$,

то эта теорема допускает следующее уточнение.

Теорема 6. Пусть оператор-функция (1), у которой $L_0 \gg 0$, $n \geqslant 3$, удовлетворяет условию (13) и для всех ненулевых решений системы уравнений (48), где $m = [(n-1)/2]$, форма $W_{\tilde{s}}^{n-1}$ [ξ] < 0 для некоторого фиксированного набора $\tilde{\xi} = {\xi_1, ..., \xi_{n-1}} \in \mathbb{R}^{n-1}$, причем $\xi_{n-1} < 0$. Тогда най-
дется такое $\tau_0 > 0$, что для всех $\tau > \tau_0$ справедливо соотношение

$$
x_{h,j,k} (V_1(\mu \tau), \dots, V_m(\mu \tau), \mu^{n-1} [(-i)^n L_n]_+^{1/2}) \simeq
$$

$$
\simeq [(\text{diag}^{n-1} I) \oplus |L_n|^{1/2}] \tilde{x}_{h,j,k}^n(0) \tag{60}
$$

при мультииндексах $(h, j, k) \in \Theta_+(L, \Omega, \Psi_{\tilde{z}_I}^2)$, где форма $\Psi_{\tilde{z}_I}^2$ задана равенством (10) при наборе $\tilde{\xi}' = {\xi'_2, ..., \xi'_n, 0}$ с числами $\xi'_s = \xi_{q-1}$ при $q=\overline{2, n}$.

Отметим, что теорема 3 относится и к случаю четного n , а теорема 4 — к случаю нечетного *п*, если положить в этих теоремах оператор $L_n =$ = 0. Но тогда добавки, связанные со вкладом оператора $[(-i)^n L_n]^{1/2}_-,$ не булут учтены. Для формулировок соответствующих утверждений введем оператор-функции

$$
V_l^{\mathrm{I}}\left(\lambda\right) = \sum_{r=1}^n \lambda^{r-1} \alpha_{l,r} I, \qquad l = \overline{1, m}, \tag{61}
$$

а по ним определим систему линейных однородных уравнений

$$
\sum_{r=1}^{n} \alpha_{l,r} \zeta_r = 0, \qquad l = \overline{1, m}. \tag{62}
$$

относительно комплексных неизвестных ζ .

Следствие 1. Пусть оператор-функция (1), у которой $L_0 \gg 0$, а четное число $n \geqslant 2$, удовлетворяет условию (11) и для всех ненулевых решений системы (62), где $m = n/2$, форма $W_{1,\tilde{\epsilon}}^{m}$ [$\tilde{\zeta}$] < 0 для некоторого фиксированного набора $\xi = {\xi_1, ..., \xi_m} \in \mathbb{R}^m_+$, причем число $\xi_m > 0$. Тогда найдется такое $\tau_0 > 0$, что для всех $\tau > \tau_0$

$$
c_{h,i,k} \ (V_1^1(\mu \tau), \ \dots \ , \ V_m^1(\mu \tau)) \simeq x_{h,j,k}^n \ (0) \tag{63}
$$

при мультииндексах $(h, j, k) \in \Theta^{\circ}_{+}(L, \Phi_{n}).$

Это следствие вытекает из теоремы 3, если положить $L_n = 0$ и заметить, что форма Φ_{n+1} [x^{n+1}], построенная по коэффициентам L_p полиномиального пучка операторов $n + 1$ порядка с оператором $L_{n+1} = 0$, связана с формой $\Phi_n[x^n]$, построенной по коэффициентам полиномиального пучка операторов *n* порядка, равенством $\Phi_{n+1}[x^n \oplus x^{n+1}] = \Phi_n[x^n]$.

Аналогичные следствию 1 утверждения вытекают из теорем 4-6.

Замечание 1. Приведенные в лемме 14 свойства формы W_{ε} [ζ] показывают, что при выполнении условий теорем 3-6 или следствия 1 функции (47) или (61) являются линейно независимыми. Отметим еще, что если $n = 2$, то в теоремах 4 и 5 требование выполнения неравенств $W_{2,\tilde{t}}^1$ [ζ] < 0 и $W_{\tilde{t}}^1$ [ζ] < 0 опускается, если считать $\alpha_{1,1} \neq 0$. Действительно, тогда множество ненулевых решений уравнения $\alpha_{1,1}\zeta_1 = 0$ - пустое, а значит, неравенства $W^1_{2,\tilde{k}}$ [$\tilde{\zeta}$] $<$ 0 и $W^1_{\tilde{k}}$ [$\tilde{\zeta}$] $<$ 0 выполняются. Кроме того, заметим, что теорема 4 при $n = 2$ является частным случаем приведенной ниже теоремы 10.

Доказательство теорем 3-6, основанное на проверке требований теоремы 1, полностью повторяет доказательство теоремы $I.2$, если считать векторы $y^n = 0$, числа $\beta_{l,r} = 0$, а число $2n - 2$ "заменить числом $n-1$. В частности, матрицу A_1 , заданную равенствами (I.52) и (I.53), при доказательстве теорем 3-6 надо положить равной

$$
A_1 = \{ \gamma_{s,v} \}_{s,v=1}^{n-1},\tag{64}
$$

где

$$
\mathbf{P}_{s,v} = \begin{cases} \alpha_{s,v} & \text{impls} = \overline{1, m} \text{ if } v \ge \overline{1, n-1}, \\ 0 & \text{impls} = \overline{m+1, n-1} \text{ if } v = \overline{1, n-1}. \end{cases} \tag{65}
$$

При доказательстве теорем 3 и 4 соотношение (59) устанавливается при мультииндексах (h, j, k), принадлежащих соответственно множествам $\Theta^2_+ (L, \Phi^2_{\bar{z}},)$ и $\Theta^1_+ (L, X^1_{\bar{z}})$, где $\xi' = {\xi'_2, ..., \xi'_{m+1}}, \xi'_q = \xi_{q-1}$, а набор $\xi = {\xi_1, ..., \xi_m}$ удовлетворяет условиям теорем 3 и 4. Но в силу требования $L_0 \gg 0$ ноль не является характеристическим числом $L(\lambda)$, поэтому $\Theta_{\Phi}^2(L, \Phi_{\tilde{I}^*}^2) = \Theta_{+}^0(L, \Phi_{\tilde{I}^*}^2)$ и $\Theta_{+}^1(L, X_{\tilde{I}^*}^1) = \Theta_{+}^0(L, X_{\tilde{I}^*}^1)$. А так как $\tilde{\xi} \in \mathbb{R}^m_+$ и $\xi_m > 0$, то на основании леммы 13 $\Theta^0_+(L, \Phi^z_{\tilde{t}}) = \Theta^0_+(L, \Phi_n)$ и $\Theta^0_+(L, \Phi_n)$ X_{τ}^+) = $\Theta_{+}^0(L, \Phi_n)$. Из сделанных пояснений вытекают теоремы 3 и 4. Утверждения, аналогичные теоремам 3-6, выводятся и из теоремы 2.

Приведем здесь лишь аналог теоремы 4. Теорема 7. Пусть оператор-функция (1), у которой $L_0 \gg 0$, а четное число $n \geqslant 4$, удовлетворяет условию (33) и для всех ненулевых решений системы уравнений (48), где $m = (n-2)/2$, форма $W_{2,\frac{7}{5}}^{m+1}$ [$\tilde{\xi}$] > 0 для некоторого фиксированного набора $\tilde{\xi} = {\xi_1, ..., \xi_{m+1}} \in \mathbb{R}^{m+1}_+$, причем $\xi_{m+1} > 0$. Тогда найдется такое $\tau_0 > 0$, что для всех $\tau > \tau_0$ справедливо соотношение (60) при мультииндексах $(h, j, k) \in \Theta^0$ (L, Φ_n).

При выводе теоремы 7 из теоремы 2 потребуется следующая переформулировка леммы I.3.

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

965

¢

Лемма 15. Пусть A_1 и Ф — скалярные блок-операторы, действиющие в пространстве \mathfrak{D}^n , причем \mathfrak{D} — самосопряжен, а для соответствующих им матриц А, и Ф справедливо соотношение (Фg, g) > 0 для всех ненулевых элементов $g \in \mathfrak{Z}(A) \ (\equiv \mathbb{C}^n)$. Тогда найдется такой скалярный блок оператор $\tilde{A}_2 \in [\tilde{\mathfrak{D}}^n]$, что $\mathfrak{R}(\tilde{A}_1) \oplus \mathfrak{R}(\tilde{A}_2) = \tilde{\mathfrak{D}}^n$, $\mathfrak{Z}(\tilde{A}_1) \oplus \mathfrak{Z}(\tilde{A}_2) = \tilde{\mathfrak{D}}^n$ и для положительных постоянных с, с, и х справедливо неравенство

$$
(\tilde{\Phi} \tilde{g}^n,~\tilde{g}^n) \cdots \times \|\tilde{g}^n\|^2 \geqslant c_2\, \|\tilde{A}_2 \tilde{g}^n\|^2 - c_1\, \|\tilde{A}_1 \tilde{g}^n\|^2,~\tilde{g}^n \in \mathfrak{H}^n.
$$

Лемма 15 вытекает из леммы І.3 при замене оператора Ф на -Ф (в формулировке леммы I.3 ошибочно предполагается, что операторы A_1 и Ф действуют в пространстве \mathfrak{H} , хотя необходимо чтобы они действовали в пространстве \mathfrak{D}^n).

Вывод теоремы 7 из теоремы 2 почти полностью повторяет вывод теоремы I.2 из теоремы I.1, поэтому сделаем здесь лишь необходимые пояснения. Полагая в оценках (1.40) $m = 2q$, используя условие $L_0 \gg 0$, а также коммутируемость оператора diagⁿ⁻¹ $L_0^{1/2}$ с операторами $\tilde{\Phi}_m^0$, из леммы I.4 выводим неравенство

$$
\sum_{q=1}^{n/2} \xi_q \tau^{2q-2} \Phi_{2q} \left[\tilde{x}^n \right] \geqslant \Gamma_{\tau}^1 \left(\tilde{x}^{n-1} \right) + \Gamma_{\tau}^2 \left(x^n \right), \tag{66}
$$

в котором $\tau > \tau_1$ (где $\tau_1 > 0$ из леммы 1.4),

$$
\Gamma_{\tau}^{1}(\tilde{x}^{n-1}) = \sum_{q=1}^{n/2} \xi_{q} (\tilde{\Phi}_{2q}^{0} (\text{diag}^{n-1} L_{0}^{1/2}) \tilde{x}_{\tau}^{n-1},
$$

(diagⁿ⁻¹L₀^{1/2}) \tilde{x}_{τ}^{n-1}) - $c\tau^{-1}$ || (diagⁿ⁻¹L₀^{1/2}) \tilde{x}_{τ}^{n-1} ||², (67)

$$
\Upsilon_{\tau}^{2}(x^{n}) = -\sum_{q=1}^{(n/2)-1} \xi_{q} \tau^{2q-2} || | L_{n} |^{1/2} x^{n} ||^{2} - \xi_{n/2} \tau^{n-2} (-i)^{n} (L_{n} x^{n}, x^{n}), \quad (68)
$$

где в выражении (67) скалярные блок-операторы $\tilde{\Phi}_{2q}^{0}$ заданы формулой (I.39). По коэффициентам скалярных оператор-функций (47) согласно формулам (64) и (65) построим квадратную матрицу A_i . В этих обозначениях условие теоремы $W_{2,\tilde{k}}^{m+1}$ [$\tilde{\zeta}$] > 0 примет вид $\sum_{i=1}^{n/2} \xi_q(\Phi_{2q}^0 g, g)$ > 0 для всех ненулевых элементов $g \in \mathfrak{Z}(A_1) \ (\equiv \mathbb{C}^{n-1})$. Отсюда, из леммы 15 и из определения (67) выражения Υ^1 (\tilde{x}^{n-1}) следует, что найдется такой скалярный блок-оператор $\tilde{A}_s \in [\tilde{\mathfrak{H}}^{n-1}]$, для которого справедливо неравенство

$$
\Upsilon_{\tau}^{1}(\tilde{x}_{\tau}^{n-1}) \geq c_{2} \|\tilde{A}_{2} \left(\text{diag}^{n-1}L_{0}^{1/2}\right) \tilde{x}_{\tau}^{n-1} \|^{2} - c_{1} \|\tilde{A}_{1} \left(\text{diag}^{n-1}L_{0}^{1/2}\right) \tilde{x}_{\tau}^{n-1} \|^{2} \tag{69}
$$

при всех достаточно больших т. На основанни условия (33) и четности числа *п* в теореме 7 оператор $(-i)^n L_n$ — самосопряжен, поэтому с учетом требования $\xi_{n/2} > 0$ выражение (68) допускает оценку

$$
\Gamma_{\tau}^{2}(x^{n}) \geq \xi_{n/2} \tau^{n-2} \{2^{-1} \left| \left[(-i)^{n} L_{n} \right]_{-}^{1/2} x^{n} \right|^{2} - 2 \left| \left[(-i)^{n} L_{n} \right]_{+}^{1/2} x^{n} \right|^{2} \} \tag{70}
$$

при достаточно больших положительных т. Из оценок (66), (69) и (70), принимая во внимание замечания, сделанные при выводе теорем 3-6, и полностью повторяя доказательство теоремы 1.2 из теоремы 2 выводим теорему 7.

Следствие 2. Пусть оператор-функция (1), у которой $L_0 \gg 0$, а четное число п≥ 4, удовлетворяет условию (33). Тогда

$$
x_{h,j,k}(\mu^{n/2}I, \ldots, \mu^{n-2}I, \mu^{n-1}[(-i)^n L_n]_+^{1/2}) \simeq [(\text{diag}^{n-1}I) \oplus [L_n]^{1/2}] \tilde{x}_{h,j,k}^n(0)
$$

при мультииндексах $(h, j, k) \in \Theta^{\circ}(L, \Phi_n)$.

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

 (71)

Доказательство. Положим $n = 2d$ и будем считать, что $d \geqslant 3$, так как случай $d=2$ существенно проще. Введем скалярные операторфункции $V_1(\lambda) = \lambda^{d+l-1} I$, $l = \overline{1, d-1}$, для которых ненулевыми решениями системы уравнений (48) являются такие наборы чисел $\xi_1, \ldots, \xi_{2d-1}$, что не все числа $\zeta_1, ..., \zeta_d$ равны нулю, а $\zeta_{d+1} = ... = \zeta_{2d-1} = 0$. С учетом равенств (50), (52) и (54) условие $W_2^d \tilde{f}$ $[\tilde{\zeta}] > 0$ из теоремы 7 примет вид

$$
\Psi_{2,\,\tilde{t}}^d \text{ is } = \sum_{q=1}^d \xi_q \text{ if } \zeta_q \text{ is } + 2\text{Re}\sum_{q=2}^d \xi_q \sum_{s=1}^{q-1} (i)^{2q-s} \xi_{2q-s} \overline{(i)^s \xi_s} > 0. \tag{72}
$$

Так как $\zeta_{d+1} = ... = \zeta_{2d-1} = 0$, то

$$
\Psi_{2,\, \tilde{\xi}}^{d} \left[\tilde{\xi} \right] = \sum_{s=1}^{d} \xi_{s} \left| \xi_{s} \right|^{2} + 2 \text{Re} \sum_{q=2}^{d-1} \xi_{q} \sum_{s=2q-d}^{q-1} (i)^{2q-s} \xi_{2q-s} \overline{(i)^{s} \xi_{s}} \geq
$$
\n
$$
\geq \sum_{s=1}^{d} \xi_{s} \left| \xi_{s} \right|^{2} - \sum_{q=2}^{d-1} \sum_{s=2q-d}^{q-1} \xi_{q}^{2} \left| \xi_{2q-s} \right|^{2} - \sum_{q=2}^{d-1} \sum_{s=1}^{q-1} \left| \xi_{s} \right|^{2} =
$$
\n
$$
= \sum_{s=1}^{d} \xi_{s} \left| \xi_{s} \right|^{2} - \sum_{q=2}^{d-1} \sum_{s=q+1}^{d} \xi_{q}^{2} \left| \xi_{s} \right|^{2} - \sum_{s=1}^{d-1} \left| \xi_{s} \right|^{2} \left(\sum_{q=s+1}^{d-1} 1 \right).
$$

Переставляя во второй сумме суммирование по q и s, получаем оценку

$$
W_{2,\,\tilde{k}}^d \left[\tilde{\zeta}_1 \right] \geqslant \left(\xi_1 - d \right) \left| \xi_1 \right|^{2} + \left(\xi_2 - d \right) \left| \xi_2 \right|^{2} + \sum_{s=3}^d \left(\xi_s - d - \sum_{q=1}^{s-1} \xi_s^2 \right) \left| \xi_s \right|^{2},
$$

из которой видно, что при соответствующем наборе положительных чисел ξ_1, \ldots, ξ_d неравенство (72) справедливо при всех не равных одновременно нулю комплексных числах $\zeta_1, ..., \zeta_d$ и $\zeta_{d+1} = ... = \zeta_{2d-1} = 0$. Отсюда в силу теоремы 7 вытекает, что для всех достаточно больших положительных т справедливо соотношение

$$
x_{h,j,k}(\mu^{n/2}\tau^{n/2}I, \ldots, \mu^{n-2}\tau^{n-2}I, \mu^{n-1}[(-i)^n L_n]_+^{1/2}) \simeq
$$

$$
\simeq [(\text{diag}^{n-1}I) \oplus |L_n|^{1/2}] x_{h,j,k}(0)
$$

при мультииндексах $(h, j, k) \in \Theta_{-}^{0}(L, \Phi_{n})$. Но

$$
x_{h,j,k} \left(\mu^{n/2} \tau^{n/2} I, \ldots, \mu^{n-2} \tau^{n-2} I, \mu^{n-1} [(-i)^n L_n]_+^{1/2} \right) \simeq
$$

$$
\simeq x_{h,j,k} \left(\mu^{n/2} I, \ldots, \mu^{n-2} I, \mu^{n-1} [(-i)^n L_n]_+^{1/2} \right).
$$

Из этих соотношений эквивалентности и следует утверждение (71).

Чтобы сформулировать утверждение о минимальности, введем необходимые обозначения. Пусть на многообразии \mathcal{L}^n задана симметричная полуторалинейная форма $\Phi(\tilde{x}^n, y^n)$; $x_{0,j,k}, ..., x_{d_{j,k,j},k}, j = 1$, dim $\mathfrak{Z}(L(\mu_k))$, каноническая система корневых векторов, отвечающая мнимой дискретной точке спектра μ_h оператор-функции (1) [2, с. 195], а \mathcal{F}_h - некоторое подмножество натуральных чисел от 1 до dim $\mathfrak{Z}(L(\mu_k))$. Тогда через $\Lambda^0_{\pm}(L,$ μ_{k} , Ф) обозначим такое множество мультииндексов (h, j, k), что либо h < $\mathcal{L}[d_{j,k}/2]$ либо $h = [d_{j,k}/2]$ при $j \in \mathcal{F}_h$ и выражение Ф $\left[\sum_{i=1}^k c_i x_{[d_{j,k}/2],j,k}^{n_k}(0)\right]$

для любых комплексных чисел c_j неотрицательно, если $([d_{j,k}/2], j, k) \in$ $\in \Lambda^0_+$ (L, μ_k , Ф), соответственно неположительно, если ([$d_{j,k}/2$], j, k) \in $\in \Lambda^0_-(L, \mu_h, \Phi)$. Отметим, что согласно лемме 12 $\Phi_m(x^n_{h,j,k}(0), x^n_{r,u,k}(0)) =$ $= 0$, если $h < [d_{j,k}/2]$ и $r < [d_{u,k}/2]$, поэтому $\Lambda^0_{\pm}(L, \mu_k, \Phi_m) \subseteq \Lambda^0_{\pm}(L, \mu_k, \Phi_m)$ Φ_m). И наконец, определим множества мультииндексов $\Lambda^*_{\pm}(L, i\mathbb{R}, \Phi) =$

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

 $=$ [] $\Lambda^*_{\pm}(L, \mu_k, \Phi)$. Во введенных обозначениях из следствия 2 вытекает $\mu_k \in i \mathbb{R}$

следующее утверждение.

Следствие 3. Пусть оператор-функция (1), у которой $L_0 \gg 0$, четное число $n \geqslant 4$, удовлетворяет условию (33). Тогда система векторов $x_{h,j,k}$ $(I, ..., \mu^{(n/2)-2}I, \mu^{(n/2)-1}[(-i)^n L_n]^{1/2}_+)$ минимальна, если мультиundercol $(h, j, k) \in \Lambda (L, Re \lambda < 0) \cup \Lambda^0_-(L, iR, \Phi_n)$.

Доказательство. Согласно лемме II. 2 и следствию 2 система векторов $x_{h,j,k}$ ($\mu^{n/2}I$, ..., $\mu^{n-2}I$, μ^{n-1} [(- i)ⁿL_n]¹/2) минимальна, если мультинидексы $(h, j, k) \in \Lambda (L, \text{Re } \lambda < 0) \cup \Lambda^0$. (L, iR, Φ_n) , причем множество мультииндексов $\Lambda(L, \text{ Re } \lambda < 0) \cup \Lambda^0$. (L, iR, Ф_п) является правильным [2, с. 200]. Отсюда и из леммы II. 8 вытекает утверждение следствия 3.

Следствие 4. Пусть оператор-функция (1), у которой $L_0 \gg 0$, нечетное число $n \geq 3$, удовлетворяет условию (33). Тогда система век-
торов $x_{h,j,k}$ (I, ..., $\mu_{(n-3)/2}^{(n-3)/2}$) минимальна, если мультииндексы (h, j, k) $\in \Lambda$ (L, Re $\lambda < 0$) U Λ_-^0 (L, i_R, Φ_n).

Это следствие выводится из следствия 3 точно так же, как следствие 1из теоремы 3.

4. Эквивалентность части корневых векторов квадратичного пучка операторов. Рассмотрим пучок операторов (1) при $n = 2$, т. е. оператор-функцию

$$
L(\lambda) = L_0 + \lambda L_1 + \lambda^2 L_2, \tag{73}
$$

для которой условия (11) и (12) принимают соответственно вид (II.24) и (П.25), а условие (13) — вид Im $(L_0x, x) = \text{Re}(L_1x, x) = \text{Im}(L_2x, x)$ для $x \in$ $\mathcal{L}(\mathcal{L}) = \mathfrak{D}(L_0) \cap \mathfrak{D}(L_1) \cap \mathfrak{D}(L_3)$. В формулировках приведенных далее теорем используются вектор-функции (2).

Теорема 8. Пусть оператор-функция (73) удовлетворяет условию (11), а α и β — такие комплексные числа, что $\alpha\beta > 0$. Тогда справедливы соо тношения

$$
[(\alpha iL_1 + \beta I)\,\hat{x}_{h,j,k}\,(0) + 2\alpha i L_2 \hat{x}'_{h,j,k}\,(0)] \simeq \begin{pmatrix} L_1 & 2L_2 \\ I & 0 \end{pmatrix} \tilde{x}_{h,j,k}^2(0) \qquad (74)
$$

для мультииндексов $(h, j, k) \in \Theta^0_+ (L, \Phi_1)$ и

$$
[2\alpha i L_0 \hat{x}_{h,j,k}(0) + (\alpha i L_1 - \beta I) \hat{x}_{h,j,k}'(0)] \simeq \begin{pmatrix} 2L_0 & L_1 \\ 0 & I \end{pmatrix} \tilde{x}_{h,j,k}^2(0) \tag{75}
$$

для мультииндексов $(h, j, k) \in \Theta^2_+ (L, \Phi_s)$.

Теорема 9. Пусть оператор-функция (73) удовлетворяет условию (11). Тогда если $i(L_1x, x) \leq -c ||x||^2$ с независящей от $x \in \mathcal{X}$ постоянной $c > 0$, то при $(h, \tilde{j}, k) \in \Theta^0_+ (L, \Phi_1)$ справедливы соотношения

$$
L_2 x_{h,j,k} (0) \simeq \text{diag} \{I, L_2\} x_{h,j,k}^2 (0), \tag{76}
$$

$$
(L_2 + I - L_2^0) \hat{x}_{h,j,k}(0) \simeq \text{diag}\{I, L_2 + I - L_2^0\} \tilde{x}_{h,j,k}^2 \tag{77}
$$

Если же $i(L_1x, x) \ge c ||x||^2$ с независящей от $x \in \mathbb{R}$ постоянной $c > 0$, то n_{μ} (h, j, k) $\in \Theta^2_+(L, \Phi_3)$ справедливы соотношения

$$
L_0 x_{h,j,k} (0) \simeq \text{diag} \{L_0, I\} x_{h,j,k}^2 (0), \qquad (78)
$$

$$
(L_0 + I - L_0^0) \hat{x}_{h,j,k}(0) \simeq \text{diag}\{L_0 + I - L_0^0\} \tilde{x}_{h,j,k}^2(0). \tag{79}
$$

Теорема 10. Пусть оператор-функция (73) удовлетворяет условию (12), а F - такой самосопряженный оператор, действующий в пространстве \mathfrak{F}^2 , что $\mathfrak{D}(F) \subseteq \mathbb{S}^2$ и $(Fx^2, x^2) \geq (\text{diag }{L_{\alpha}, L_{\beta}})$, x^2, x^2) для всех

₹ ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

векторов $x^2 \in \mathbb{S}^2$. Тогда при $(h, j, k) \in \Theta^1_+ (L, \Phi_2)$ справедливо соотношение

$$
F_{+}^{1/2} \tilde{\chi}_{h,j,k}^{2} (0) \simeq F_{-}^{1/2} \tilde{\chi}_{h,j,k}^{2} (0). \tag{80}
$$

Доказательства теорем 8 — 10 вытекают из теоремы 1 точно так же, как и доказательства теорем II.3-II.5 вытекают из теоремы I.1. Например, при получении соотношений (76) и (77) используется вид $(II.21)$ формы Ф₁ [x²], условие $i(L,x, x) \leq -c ||x||^2$, неравенство Коши — Буняковского и лемма II.3, на основании которых $\Phi_t[x^2] \leq c_t \|L_s x^2\|^2$ — $c_2 ||x^1||^2 \leqslant c_2 ||(L_2 + I - L_2^0)x^2||^2 - c_2 ||x^1||^2$ с независящими от x^1 и x^2 ($\in \mathbb{R}$ постоянными $c_1, c_2 > 0$. Полагая теперь в теореме 1 форму Φ_{ϵ}^q [\tilde{x}^2] = $=\Phi_1[x^2]$ (r. e. $q=1$, a $\xi = \{1, 0\}$), oneparop $J_2 = \text{diag } \{I, 0\}$, a oneparop $J_1 =$ diag {0, L₂} либо $J_1 =$ diag {0, L₂ + I - L₂}, из теоремы 1 выводим соотношения (76) и (77). (Кроме того, заметим, что в равенствах (II.28) -

(II.30) ошибочно написан вектор βx^2 , а следует писать вектор βx^1 .)
3 амечание 2. Если оператор-функция (73) удовлетворяет условию (13), то она удовлетворяет одновременно условию (11) и (12). Поэтому к ней возможно применение утверждений теорем 8-10. Однако в этом случае соотношения (74), (76), (77) справедливы при мультииндексах (h, j, k) $\{\Theta_+ (L, \Omega, \Phi_1), \text{ coorthouenum } (75), (78), (79)$ — при мультииндексах $(h, j, k) \in \Theta_+ (L, \Omega, \Phi_3),$ а соотношение (80) — при $(h, j, k) \in \Theta_+ (L, \Omega, \Phi_2).$ Кроме того, отметим, что когда оператор-функция $L(\lambda)$ удовлетворяет условию (13), то и оператор-функция - $L(\lambda)$ так же удовлетворяет условию (13), а корневые векторы у оператор-функций $L(\lambda)$ и - $L(\lambda)$, отвечающие одним и тем же характеристическим числам, одинаковые, причем Θ_+ (L, Ω, Φ_m) = Θ_{\mp} (-L, Ω, Φ_m) при верхнем или нижнем наборе индексов « \pm ». Поэтому из теоремы 1 вытекает следующее уточнение, например, теоремы 9.

Теорема 11. Пусть у оператор-функции (73) операторы L_0 и L_2 ограничены и самосопряжены, і $(L_1x, x) \leq -c ||x||^2$ с независящей от $x \in$ $\in \mathcal{D}(L_1)$ постоянной $c > 0$, а число $\alpha \in [0, 1]$. Тогда соотношения

$$
L_2^{\alpha} x_{h,j,k}(0) \simeq \text{diag}\{I, L_2^{\alpha}\} x_{h,j,k}^2(0),\tag{81}
$$

$$
(L_2^{\alpha} + I - L_2^0) \tilde{x}_{h,j,k} (0) \simeq \text{diag} \{I, L_2^{\alpha} + I - L_2^0\} \tilde{x}_{h,j,k}^2 (0) \tag{82}
$$

справедливы при $(h, j, k) \in \Theta_+$ (L, Ω, Φ_i) , а соотношения

$$
L_0^{\alpha} x_{h,j,k}(0) \simeq \text{diag}\{L_0^{\alpha}, I\} x_{h,j,k}^2(0),\tag{83}
$$

$$
(L_0^{\alpha} + I - L_0^0) \ x_{h,j,k} (0) \simeq \text{diag} \{L_0^{\alpha} + I - L_0^0, I\} \ \tilde{x}_{h,j,k}^2 (0) \tag{84}
$$

npu $(h, j, k) \in \Theta_-(L, \Omega, \Phi_3)$.

Доказательство соотношений (81), (82) основано на оценках $\Phi_1[x^2] \leqslant c_1 ||L_2^{\alpha} x^2||^2 - c_2 ||x^1||^2 \leqslant c_1 ||(L_2^{\alpha} + I - L_2^0) x^2||^2 - c_2 ||x^1||^2$ с неза-висящими от x^1 , $x^2 \in \mathfrak{D}(L_1)$ постоянными $c_1, c_2 > 0$. Аналогично оценивая форму Ф₃ [x^2], получаем соотношения (83), (84).

Замечание 3. Для замкнутого оператора L со всюду плотной областью определения $\mathcal{D}(L)$ и Ini v $(Lx, x) \ge 0$ при постоянной $v \ne 0$ и всех $x \in \mathcal{D}(L)$ определен оператор L^{α} (см., например, [6, с. 366]). Поэтому, если в теореме 9 дополнительно считать оператор $L_2 \in \{\mathfrak{h}\}$ (или $L_2 + I - L_2^0$ ограниченно обратимым), то соотношения (76), (77) в этой теореме можно заменить соотношениями (81), (82) при $0 \leq \alpha \leq 1$ (соответственно пр Если же считать $L_0 \in [\mathfrak{H}]$ (или $L_0 + I - L_0^0$ ограниченно обратимым оператором), то соотношения (78), (79) в теореме 9 заменяются соотношениями (83), (84) при $0 \le \alpha \le 1$ (соответственно при $\alpha \ge 1$).

Из теорем 8-11 несложно вывести утверждения о минимальности части канонических систем корневых векторов, как это сделано в следствиях 3 и 4. Приведенные здесь признаки эквивалентности содержат основные ре-

зультаты работ [7-9]. Из них вытекают также уточнения признаков минимальности из работ [10, 11], хотя в полной мере они их и не охватывают (ср., например, следствия 3 и 4 с теоремами 6 и 7 из [11]).

- 1. Радзиевский Г. В. Эквивалентность производных цепочек, отвечающих краевой задаче на конечном отрезке, для полиномиальных пучков операторов // Укр. мат. журн.-1990. - 42, № 1. - С. 83-95.
- 2. Радзиевский Г. В. Минимальность производных цепочек, отвечающих краевой задаче на конечном отрезке // Там же. - 1990. - 42, № 2. - С. 195-205.
- 3. Радзиевский Г. В. Задача о полноте корневых векторов в спектральной теории операторот политика и сталица и сталица в 1982. - 37, № 2. - С. 81-145.
4. Радзиевский Г. В. О линейной независимости произволных по Келдышу цепочек у ана-
- литических в полуплоскости оператор-функций // Мат. сб. 1987. 132, N_2 4. С. $556 - 577$.
- 5. Шкаликов А. А. Эллиптические уравнения в гильбертовом пространстве и спектральные задачи, связанные с ними // Тр. сем. им. И. Г. Петровского. - 1989. - Вып. 14. -C. $140 - 224$.
- 6. Като Т. Теория возмущений линейных операторов. М. : Мир, 1972. 740 с.
- 7. Радзиевский Г. В. Квадратичный пучок операторов (эквивалентность части корневых
- векторов). Киев, 1984. 52 с. (Препринт / Ин-т математики АН УССР; 84.32).
8. Радзиевский Г. В., Ашуров С. Б. Полиномиальный пучок операторов (эквивалентность части корневых векторов). - Киев, 1985. - 64 с. - (Препринт / Ин-т математики АН VCCP; 85.44).
- 9. Радзиевский Г. В., Ашуров С. Б. Полиномиальный пучок операторов (минимальность части корневых векторов). - Киев, 1985. - 44 с. - (Препринт / Ин-т математики АН VCCP; 85.71).
- 10. Шкаликов А. А. О минимальности производных цепочек, отвечающих части собственных и присоединенных элементов самосопряженных пучков операторов // Вестн. Моск. ун-та. Математика, механика. - 1985. - № 6. - С. 10-19.
- 11. Шкаликов А. А. О принципах отбора и свойствах части собственных и присоединенных элементов пучков операторов // Там же. 1988. № 4. С. 16—25.

Получено 28,02,92