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Contitional symmetry and reduction
of partial differential equations

YmoBHa cnmeTpia i pepyknia qndepenniatbHuX
PiBHAHB 3 YACTHHHAMH IOXi{HHUMH

We establish sufficient conditions of reduction of partial differential equations admitting non-
trivial conditional symmetry. The results obtained generalize the classical conditions of reduc-
tion of differential equations by using group-invariant solutions. Some examples of reduction of
systems of partial differential equations both by number of independent and dependent varia-
bles are considered.

Beranorneni fgoctatHi ymoBH peiayKuil audepenuiajsHHX piBHAHb 3 UACTHHHHMH NOXiIHWMH,
AKI MaloTh HeTpHBiaibRY yMOBHY cuMerpilo. OneprkaHi De3yTbTATH y3arajibHIOOTh Knackudi
YMOBH peavKuil nudepenuiaJpHHX piBHAHEL 3a 10MOMOTOI iHBAPiAHTHO-TPYNOBHX PO3B'A3KiB.
Poarnsnyto psan npuxaanis peayxuii cuereM jmdepenuianbinx pIBHANL 3 YACTHHHHMM noxii-
HHMH 3a YHCJIOM He3aJeMHHX i 3aIeMHHX IMIHHHX,

Analysing the already-known methods of construction of exact solutions of
nonlinear partial differential equations (PDE) (such as the methods of group-
theoretical reduction [1, 21, differential constraints 3], ansatzes |4—6l) we
came to conclusion that the majority of them was based on the idea of narro-
wing the set of solutions, i. e. choosing from the whole set of solutions of the
equation under study specific subsets that admitted analytical description. To
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realize this idea one has to impose on the set of solutions some additicual con-
straints (equations) picking out such subsets. Clearly, additional equations are
supposed to be simpler than the initial one. Supplementing the initial equation
with additional conditions we come, as a rule, to over-determined system of
PDE. Consequently, there arises a problem of investigating the matter of its
compatibility. Another restriction on the choice of additional conditions is
that the resulting system of PDE has to have wider (or another) symmetry
than the initial equation has.

In the present paper we establish sufficient conditions of reduction of dif-
ferential equations which generalize the classical conditions of reduction of
PDE admitting non-trivial Lie transformation group. The subject of the -tu-
dy is an over-determined system of PDE

UA(x’ u, ul’ sery u)=09 AZI; M: (I)

Ean (%, ) uf, — i (x, ) =0, a=T,N, (2)

where x = (Xp, X0 ooy Xn—1)y #(x) = @°(x), ..., 0™ (%), u={0u®0x,, ...
0%y, 0K <<n—1}, s=1,r, U,, &, n* are smooth enough functions,

N<n—1.
Hereafter the summation over repeated indices is understood. Let us in-
troduce designations
R, = rank || Eay (x, ©) ”a_l u_n ¥
—1 m—1I

R2 = l'aﬂk ” Emu_ (x, u), na (x; u) I|a=l u=0 =0 -

It is evident that inequality R, << R, holds. We shall prove that the case
R, = R, leads to reduction of PDE (1) by the number of independent variab-
les and the case R, << R, — to reduction of PDE (1) by the number of indepen-

dent and dependent variables.
1. Reduction of PDE by the number of indepen-
dent variables. In this point we suppose that the equality R, = R,

holds.
Definition 1. The set of the first-order differential operators

Qu = Ean (¥, 1) ny + M2 (%, 1) Dy @)
where 0Oy, = 0/0xy, 0,0 = 0/0u®; Eap, Ma are smooth functions, is called invo-
lutive one, provided there exist such functions [u (x, u), that

[Qu Q)] = fisQ., @, b=1, N. (4)
Here [Q,, Q] = Q,Q, — Q,0;

The simplest example of the involutive set of operators is a Lie algebra.

It is common knowledge that conditions (4) provide compatibility of over-
determined system of PDE (2) (the Frobenius theorem [7]). The general solution
of system (2) is given by formulas

-Fm (0}1, Wy, nn sy wn{m—R,) = 0\ o= 0, m— ls {5)

where o; = w;(x, u) are functionally-independent first integrals of system of
PDE (2), Fq, are arbitrary smooth functions.

By force of the condition B, = R,, one can choose first integrels (say,
@y, ..., 0,) satisfying the following condition:

det || 9o ;/0u* |77 alo 5 0. (6)
On resolving relations (5) with res pect to w;, j = 1, m, we have
;= Q; (Omt1, Omizy ey Ompn—r), j=1,m, (7)

where ¢; are arbitrary smooth functions.
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Definition 2. Expression (7) is called the ansaiz for field u®=u® (x)
invariant under the involutive set to operators (3) provided relation (6) holds.
Formulas (7) take especially simple and clear form if

Oap/ou® =0, 1% =3P (x)uf,
a=1,N, p=0n—1, afpy=0m—1 (8)

Under conditions (8) operators (3) can be rewritten in non-Lie form (8]

Qo = Eau (%) 9x, + 1, (x), a=1, N, ©)
where 1, = || — on%ou® ||z 5o are (m x m)-matrices, system (2) taking the
form

Bap (X) ux, + M, ()u=0, a=1,N. (10)
Here u = (¢ u, ..., u™")" is the function-column.’
In such a case, the set of functionally-independent first integrals of system
(2) with R; = R, can be chosen as follows [7]

©; = bja(x) u*, j=T1,m, (11)

®; = 0;(x), i=m-+1, m4+n-+R

arid what is more det ||bje (x) |7l oo 5= O.
Substituting (11) into (7) and resolving with respect to the wvariables
u* a=0, m—1, we have
u® = A" (x) P (Omp1, Oy ees Omtn—Rry)
or {in the matrix notation)
U=A(X)P(Oni1, Oty .cey Omin—nr,)- (12)
It is not difficult to verify that the matrix ‘
A(x) = (|l bja @) =T 5L0™
satisfies system of PDE
QA=Ew(®) Ar, + 1, () A=0, a=1,N, (13)

while the functions @my1(x), ®mys (%), ..., Onin—r, (¥) form the complete set
of functionally-independent first integrals of system of PDE

op (%) 05, =0, a=1,N. (14)

We say that ansatz (7) reduces system of PDE (1) if substitution of formu-
las (7) into (1) yields system of PDE for functions ¢°, ¢, ..., ¢m—! that contains
only new independent variables ®uyi1, ®mi2, ooy Omin—rg,.

Definition 3. System of PDE (1) is conditionally-invariant under
the involutive set of differential operators (3) provided over-determined system of
PDE (1), (2) is invariant, in Lie’s sense, under the one-parameter transformation
groups having generators Q,, a = 1, N.

Before formulating the reduction theorem, we shall prove some auxiliary
assertions.

Lemma 1. Suppose that operators (3) form an involutive set. Then the
set of differential operators

Q=A (¥ Q a=1N, (15)

with det || Agy (x, u) I 5154 0 is also involutive one.
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Proof is carried out by direct computation. Really,
[Qa, Q6] = [MaeQes A0aQal = Moo (Qhog) Qu — Moa (Quae) Qc +
+ NachoaldQa, = fab Qo= favhed' Qa -

Here A;; are the elements of the inverse of the matrix || Ay, (x, ) l]f,g,zr.
Lemma 2. Let differential operators (3) satisfy the conditi-
on Ry = R, and besides the conditions

[Qu Qpl =0, a,b=1,N (16)
hold. Then there exists the change of variables
Xp=falx,u), p=0,n—1, W =g, u), a=0m—1 (17)
reducing operators Q, to the form Qi — ax;_l
Proof. Itis known that for any first-order differential operator

Q = El.l- (X' u) axu '+' '!]m (x’ u) aua ]

where &, n* are smooth enough functions, there exists change of variables

(17) reducing it to the form Q" = a”& (see, for example, [1]). Consequently,

the operator Q, frpm the set (3) with the change of variables (17) is redu-

ced to the form Q, = d,. From conditions [Q,, Q,] =0, a=2, N, it follows
0

that the coefficients of operators Qs, Q, ..., Qv do not depend on the variable
xo. That is why the operator Q> with the change of variables

Xy =%

L3 r r ———————
Xy = f',_t X1y eeey Xn—t, &), pn=1, n—1,
'a !a L » A —

u"=g%"(x, e, Xp—y '), a=0 m—1

not changing the form of the operator Qi is reduced to the operator Q5 — a,,;.
On repeating the above procedure (N —- 2) times we complete the proof.
Lemma 3. System of PDE of the form (1), conditionally-invariant

under the set of differential operators axu, nw=0, N—1, has the following

structure:

Ua= FasWpg(xy, Xny1s ooy Xn—1, U, Uy ey u) -+
+Fﬁuu§u,A=1,M.a=0.m—l,p=0,N~—l, (18)
where Fap, F3, are arbitrary smooth functions on x, u, u,..., u, Wgp are
1 r

arbitrary smooth functions and besides det || Fag||X.5—1 5% 0.
We shall prove the lemma under N = 1. By force of the definition 3, sy-
stem (1) isg,conditionally-invariant under the operator Q = 0d,, if the system

Uatx, u, Uy e s =0 A=I1M, (19)
uy, =0, a=1,m—1

is invariant in Lie’s sense under the one-parameter translation group with

respect to the variable v,. After denoting by the symbol Q the r-th prolongation
of the operator Q, the Lie criteria of the invariance of system of PDE (19) un-
der this group reads (see, for example, [1, 2])

QUalug=o=0, A, B=T, N, a=0,m—]1, (19a)

u® =0
Xo
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Ou® =0, B=T,N, a,p=0,m—1. © (19b)

As a direct computation shows, the relations
Q=0s, Quf=0;u%) =0
hold (let us recall that in the prolonged space x, u, lu, ..., u the variables

x, and ug, are independent) that is why, using the undefined coefficients
method we can rewrite (19a), (19b) in the form

0Ual0xy = RapUp + Piu?,. A=1M, (19¢)
where Rag, P% are arbitrary smooth functions on x, u, u,..., u.
1

System (19 ¢) can be considered as a system of inhomogen;ous ordinary
differential equations for the functions Ua, A = 1, M. Integrating (19 c) with
P% =0, we have

U'.:&li” = FABW,B' — I» M’
where Wp, B = 1, M, are arbitrary smooth functions on xy, x,, ..., xu—1, u,
Uy .o, u; F=| Fap||X =1 is the fundamental matrix of system (19 c) (which,
| r

as is well-known, satisfies the condition det F 5% 0).
Further, applying the method of variation of arbitrary constant we get
the formula (18) with N = 1, where

F% = Fap§ (F)acPedx,, A=T1T, M, a=0, m—l.

The lemma is proved.

Theorem 1. Let system of PDE (1) be conditionally-invariant under
the involutive set of operators (3). Then the ansalz invariant under the set of opera-
tors (3) reduces this system. :

Proof. By definition of the quantity R, the inequality R, <C N holds.
We denote by the symbol 8 the difference N — R,. Then R, equations of system
(2) are linearly-independent (without loosing generality, we can suppose that
the first R, equations are linearly-independent) and the rest § equations are
their linear combinations.

By force of the condition R, = R,, there exists such non-singular (R;X

X R,)-matrix || Ay (%, @) |lab—ithat
—1
Aoy @buﬂgu—-'!’lg‘) =uz,_, + E Eauu?:“ —7, a=1,R, a=0 m—1I.
w=R,

By definition of the conditional invariance, system of PDE (1), (2) is in-
variant under the one-parameter transformation groups having the generators
(3). That is why, the equivalent system of PDE

Ua(x,u, tty..., ) =0, A=1 M,
1 r

n—1 _ . -
w4+ ¥ Tt —1n7=0, a=0L R, a=0 m—1 20)
n=R,
is invariant under the one-parameter group having the generators
n—I1
Qa = AqpQp = 0x,; + Y, Zaudi, + Mi0a - @

n==R,

Really, the action of the one-parameter transformation group having the
infinitesimal operator Q, on solution manifold of system (20) is equivalent to
the identity transformation.
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As the set of operators (21) is involutive (the lemma 1), there exist such
functions fa (x, u) that - :

Qo Q5] = farQe, @, b, ¢ = I, R, (22)
Computating commutators in the left parts of equalities (22) and equa-
ting coefficients of linearly-independent operators 0x,, Ox,, ..., Oz, _,, we have

far =0, a, b, c = 1, R,. Consequently, the operators Q, commute. Hence, by
force of the lemma 2, it follows that there exists a change of variables (17)
reducing these operators to the form Q. = 8/dx,_1.

In the new variables x’, u’ (x") system (20) reads

Halds 85 iy u)=0 A=1,M,
1 r

ugy =0, a=0,m—1, a=1, R, (23)

a—1

And besidesﬂ, system of PDEﬁS) is conditionally-invariant under the set of
operators Qz = 0y, ;, a =1, R;. That is why, by force of the lemma 3 sy-
stem (23) is rewritten in the form

UA =FABW}3(.\5;?£, nny Kiteily u'. t;’,’. o u') —I—
r r

+Fiuu;‘i. A=1I,M, a=0,m—1, p=0R,—1,

uf =0, a=0,m—1, a=1,R,,
a—I1

where det || Fas||5'5=15~0, whence

WA (x;?,: ity x:l—lt Il.’, t{-’: ey u’) == 0; (24)

u¥ =0, A=1,R, a=0,m—1, a=1,R,

The ansatz for field u’“_:: u'*(x’) invariant under the involutive set of
operators Q' =d,. , a=1, Ry, is given by the following formulas:

a—1

U = Q% (XRy» XRy#ls eres Xn—1)y @ =0, m—1. (25)

Here ¢ are arbitrary smooth enough functions.
Substituting expressions (25) into (24), we get

WA (x,R‘s seny x;l—l: u'i g"l see u’) = W.:l (x’Rn ey x:l-——ls @, l]1}, see gy ‘P) =0! (26)

where ¢ is the set of partial derivatives of the functions ¢% = ¢ (XR,s +o

xn;l) of the order -.
Rewritting the ansatz (25) in the initial variables x, u(x)

g*(x, u) = @*(fx, (x, U), ey fnm1 (X, 1)), a =0, m—1, (27)

we get the ansatz for ‘ield u* =u*(x), @ =0, m — 1, invariant ‘under the
involutive set of operators (3), that reduces system (1) to system of PDE
with n — R, independent variables. Theorem is proved.

Consequence. Lel the operators

Qu=2Cau(x, u) 0z, +M*(x,0) 0y, a=1N, N<n—1

be basis elements of a subalgebra of the invariance algebra of system of equations
(1) and besides the condition Ry = R, holds. Then the ansatz invariant under the
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Lie algebra (Q,,Q,, ..., Qn) reduces system (1) to system of PDE having n — N
independent variables.

Proof. From the definition of the Lie algebra it follows that operators
Q, satisfy (4) with fz = const. Consequently, they form an involutive set
of the first-order differential operators. That is why, the above assertion is
the direct consequence of the theorem I.

By force of the above proved assertion, the classical theorem about reduc-
tion of differential equations by using group-invariant solutions [1, 2, 9] is
the particular case of the theorem 1. Provided one of the operators Q, do not
belong to the invariance algebra of the equation under study and conditions
of the theorem 1 hold, we have the reduction via Q, conditionally-invariant
ansatzes (numerous examples of conditionally-invariant solutions were con-
structed in [4—6, 10—14]).

In the following, we shall consider some examples.

Example 1. The maximal, in Lie’s sense, invariance algebra of the
Schrédinger equation

Agu+U () u=0 (28)
with arbitrary function U is the Lie algebra of the rotation group having the
following basis elements:

Jap = X0z, — %0z, @ b=1,3. (29)

To obtain the ansatz invariant under the set of operators (29) one has to
construct the complete set of the first integrals of system of PDE

Xollx, — Xz, = 0, a,b=T,3. (30)
The above set contains 3 — R, functionally-invariant first integrals, where
0 —x Xo =
R, =rank || &g (1) [Bpmt = rank || *s 0 —xfl =2
— X, x4 0

Consequently, the ansatz for field u = u (.;c_i invariant under the Lie al-
gebra having basis elements (29) has the form

u(x) = ¢ (), @31

where ¢ € C? (RY, ') is an arbitrary smooth functions, ® = @ (?) is the first
integral of system of PDE (30). It is not difficult to become convinced of that

@ = x* satisfies (30) and, consequentiy, is the first integral. Substitution of
(31) into (28) yields the ordinary differential equation for the function ¢ (®)

40 + 6¢ + U (0) ¢ = 0.

Thus, the ansatz for field u = u (x) invariant under the three-dimensional
Lie algebra having the basis elements (29), reduces equation (28) to (3 — R,)-
dimensional PDE (in the case involved, to ordinary differential equation).

Example 2. Consider the nonlinear eikonal equation

i, — it — o —ul, +1=0. (32)
As is established in [15], the maximal invariance algebra of equation (32)
is the 21-parameter conformal algebra AC (2, 3). This algebra contains, in par-
ticular, one-dimensional subalgebra generated by the operator Q@ = x40, —
— UOy,.
'f"o obtain the ansatz invariant under the operator Q, one has to construct
the complete set of the first integrals of PDE

Utty, + x5 = 0. (33)

Solution of (33) is looked for in the implicit form f (x, &) = 0, whence
ufy, — xofy = 0. .
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The complete set of the first integrals of the above PDE is as follows

@, = u*+ x3, 0, = Xy, ®, = X,, ®, = X5. Resolving the relation f (0, ©,
w, 0g) = 0 with respect to @,, we have

u* 4 X% = g (0, 0, 0 (34)

Consequently, formula (34) gives the ansatz for field u* = u* (x) invari-
ant under the operator Q. On resolving (34) with respect to u we get

u={— xzﬂ + ¢ (04, 0, ms)}lﬂ . (35)

Let us emphasize that ansatz (34) can not be represented in the form (12)
since coefficients of the operator Q do not satisiy condition (8).
Substituting (35) into (32) we get three-dimensional PDE for a function

?= ¢ (o)
e, + 95, + 95, —9*=0.
Example 3. In [16] the detailed group-theoretical analysis of the
nonlinear wave equation

Uy = (a?. (u) u:r)x' (36)

where a (1) is some smooth function, was carried out. It was established that
the maximal invariance algebra of equation (36) had the following basis opera-

tors:
Q =20, Q,=20, Qy=10;+ x0,. (37)

That is why, the most general group-invariant ansatz for PDE (36) is given
by the formula u = ¢ (®), where ® = o (¢, x) is the first integral of PDE

{00, + PO, + 8 (19, + x0,)} @ (¢, x) = 0. (38)

Here o, p, 8 are arbitrary real constants. Using transformations from the
group G with generators of the form (37) one can reduce equation (38) to one
of the equations

1) aw, + pfo, = 0 (under & = 0);

2) tw, + xw, —= 0 (under § == 0),

The first integrals of the above equations are given by the formulas » =
= ax — Pt and © = xi—!, accordingly.

Thus, there are two inequivalent group-invariant ansatzes for PDE (36)
with arbitrary function a (u)

1) u (i! X) = q:{or.x | ﬁt)i

2 ult, x) = ¢(xt). 39

Substitution of the above ansatzes into equation (36) yields ordinary di-
fferential equations

1) (p* — a*a* () ¢ — 20%a (9) a (9) @* =0,
2) (0* —a*(¢)) ¢ — 20¢ — 2a(¢) a (¢) ¢* = 0.

It was established not long ago [17] that ansatzes (39) do not exhaust all
possible ansatzes reducing PDE (36) to ordinary differential equations. This
fact is the consequence of the conditional symmetry that can not be found wit-
hin the framework of the infinitesimal Lie method.

Let us show following [17] that equation (36) is conditicnally-invariant
under the operator

Q = 0, —ea(u) 0, (40)
where e = == 1.
Acting by the second prolongation of the operator Q on (36), we have

Q {ty, — (a® () uy).} = eau, {uy — (@%u,),} + & (au, + ad,) (i — a%ul), (41)

whence it follows that PDE (36) is non-invariant, in Lie’s sense, under the
group having infinitesimal operator (40). But, if we impose on the function
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u (i, x) the additional constraint
Qu=u;—ea()u, =0, (42)

the right part of (41) vanishes. Consequently, system (36), (42) is invariant, in
Lie’s sense under the group having generator (40), whence we conclude that the
initial PDE (36) is conditionally-invariant under the operator Q.

The complete set of functionally-independent first integrals of equation
(42) can be chosen in the form o, = u, 0, = x -} £a (v) ¢.

Consequently, the ansatz invariant under the operator Q is given by the
formula 0, = ¢ (o,) or

x + ea )t = ¢ (), (43)

where @ («) is an arbitrary smooth enough function.

Substituting (43) into (36) we come to conclusion that PDE (36) is identi-
cally satisfied. Saying it another way, formula (43) gives solution of nonlinear
equation (36) under arbitrary function ¢ (4). Let us recall that solutions obtai-
ned by using group-invariant ansatzes (39) contain two arbitrary integration
constants and can not, in principle, contain arbitrary function.

Thus, conditional symmetry of PDE essentially extends our possibilities
to reduce it.

Example 4. Consider the system of nonlinear Dirac equations

{iv,0, — A ()} b =0, (44)

where y,, p =0, 3, are (4 x 4)-Dirac matrices, =1 (xy, X3, %, Xo) is the

four-dimensional complex function-column, ) = ($*)"y,, A, k are real con-
stants, 9, = d/dxu, p =0, 3.

As is known (see, for example, [5]), the maximal, in Lie’s sense, invarian-
ce group of system of PDE (44) is the eleven-parameter extended Poincaré group
supplemented by the three-parameter group of linear transformations in the
space %, Pp*=. In [5, 10] it is established that conditional symmetry of the non-
linear Dirac equation is essentially wider. From. [10] it follows that system (44)
is conditionally-invariant under the involutive set of operators

Q= _; (Op—09), Q,= w9, — {Biqj}aa‘b“ *

1 ] &
Q= 5 (0 + 05) — w4 (x40, + %,0,) — w,0; — {B,h}* b (45)
where B,, B, are variable (4 x 4)-matrices of the form

1 a ¥ - @
By = 9 (1—2k) Wiy, (Vo + Vo) By = —kwy + (207" (2] —

— @0y) (yexy + 2k — 1) ¥a%p) (Vo + ¥0) + (20" X
X (20w, — wiw,) Y1 + 2 (@50, — @@5) Ps) (o + To)s

©,, ©,, w; are arbitrary smooth functions on x, 4+ x; by the symbol {¥}*
the a-th component of the function ¥ is designated.

As coefficients of the operators (45) satisfy conditions (8) they can be rew-
ritten in non-Lie form

1
Q= i (0p—093), Q,= w0, + By,

1 L] 4
Q= 5 (0p + 03) — @, (x40 + X,0,) — w,0; + Br_

Consequently, the ansatz for field 1 (x) invariant under the set of opera-
tors Q,, @, Qs is looked for in the form (12), where A (x) is a (4 X 4)-matrix
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and ® = o (x) is a real function satisfying the system of PDE

1
'—é— (Ax. = Ax,) =0, wle, + BiA =0,

1 . . .
H._‘Z_ (Axu -+ Ax,)—(w,x, -+ wz) Ax, = wiszx, -+ B.zA = 0.

Wy, — 0x, =0, @y =0,

o
@y, + 0p, — 2(Wx; + w,) 0y, — 2w, x,04, = 0.

Not going into details of integration of the above system we write down
the final result-the ansatz for field ¢ = v (x) invariant under the involutive
set of operators (45)

Y(x) = wf exp {Cw) " [@x, + ;) ¥y (1o + 79 + (46)

1w (2k — 1) wyx, + @) ¥y (o + T2} @ (@4x; + wy).

The above ansatz reduce system of PDE (44) to system of ordinary diffe-
rential equations for four-component function ¢ = ¢ ()

iy — A (e0) "¢ = 0. (47)
The general solution of system (47) has the form [5]
¢ = exp {iky, (x0) o} %,
where 7 is arbitrary constant four-component column. On substituting the ob-
tained expression for ¢ = ¢ () into (46) we get the class of exact solutions of
the nonlinear Dirac equation that contains three arbitrary functions.

Analysis of nonlinear mathematical and theoretical physics equations ad-
mitting non-trivial conditional symmetry had been carried out in [14].

3. Reductionjof PDE by the number of indepen-
dent and dependent variables. Let (3) be involutive set of
operators satisfying the condition R, — Ry == 8 = 0. In such a case the above
technique of reduction of PDE by using ansatzes invariant under the involuti-
ve set (3) needs some modification. It is worth noting that the case when (3)
are basis operators of some subalgebra of the Lie invariance algebra of the equa-
tion under study satisfying the condition R; << R, leads to «partially-inva-

riant solutions» [18].
Solution of the initial system of PDE is looked for in implicit form

w*(x,u)=0, a=0m—1, (48)
where w* are smooth functions satisiying the condition
det || 0w®/0u” ||z 50 5= 0. (49)
As a result, equations (1), (2) take the form
Ha (%, u, ©, @, .., ©) =0, A=1,M, (50)
Ean (v, @) ©F, 4 (r, Wiy =0, a=1LN, (1)

where @ = {0"w/0xy, ... 0%,,,0u™ ... 0u™, p +q =s}.
It is clear, that operators (3) being defined in the space of variables x,
u, w(x, u) satisfy the condition R; = R; (since coefficients of 9 , are equal

to zero). Using the same arguments as those applied to prove the theorem I,
we establish the following fact: there is a change of variables (17) that re-
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duces system (51) to the form
w(:o '-_-‘0’ !_],:0, Ri—l' wz;azo, ﬁzo. 6_1. (52]
n
Provided system (48), (50) is conditionally-invariant under the set of ope-
rators (3) and (52) holds, it is rewritten as follows
2% (x', u") =0, a=0 m—1:

" , ’ 8 frr—1
Halxn, o i Fnaiv 8 awey @87 5, @, ..., w) =0, (53)
r

where the symbol w designates collection of partial derivatives of the functi-

on @ of the order s with respect to the variables x, ,..., x, 8, iy WK
Integrating equations (52) we get the ansatz for field w®

W = F% (s s k) _jo U0y 4™, a=0,m—1, (54)

where F* are arbitrary smooth functions. But, one can not obtain the ansatz
for field u’*(x’) by substituting (54) into relations w*(x’, 4’ (x’)) =0, o =
= 0, m — 1, because the inequality R, — R, = 6 > 0 break the condition (49)
(under 8> 0 the matrix || 0w®/du"® |5 Lo has null columns).

To avoid this difficulty we shall consider, by definition, the expressions

F® (%R vees Xmets 80 e, 4™ N =0, a=28, m— L,
ey T =1

to be the ansatz for field u'* — w’'*(x’) invariant under the set of operators

Q;=9, 4 j=1, Ry X;=0,4-, i=10. (55)
i
The above ansatz is rewritten in the form
4 =Co =0, 6—1, *P= (pB(x:ql, ey Xn—1)s p=0 m—8—1,
(56)

where f are arbitrary smooth functions, C, are arbitrary constants.
On rewritting (56) in the initial variables, we have

g (x,u)=Cq, a=0, d—1, ghto(x, u) = @b (fg, (x, 1), evy fr—(x, w),
p=0 m—o6—1. (57)

And what is more, substitution of expressions (57) into the initial sys-
tem of PDE (1) or, equivalently, expressions w® = g* —Cq, & =0, §— I,
wh = ghtd — b, B =0, m— 08— 1 into PDE (50) yields system of M dif-
ferential equations for m — 8 functions. Consequently, the dimension of svs-
tem (1) is decreased by R, independent and § dependent variables.

Let us rewrite formulas (57) in the form that is more convinient in applica-
tions. For this purpose, we note that, without loss of generality, operators (3)

satisfying the condition R, — R, == p > 0 can be renumerated in such a way
that the first R, operators satisfy the condition

rank || & [lat1"imo = rank || Eap, M% [|I8% "m0 pb

and the last N — R, operators are linear combinations of the previous R, ope-
rators.

Let w; (x, w), j = 1, m 4+ n — R, be the complete set of functionally-in-
dependent first integrals of system (51) and besides

rank || do;/0u® |[5° " =m —§
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and p; (x, u) be solutions of equations Quyr,0 (¥, u) =1 with i=1,2,..., &.
Then formulas (57) can be expressed in the equivalent form

pl(x’u)zcl‘ IZI' 6!

0;(x, u) = ¢/ (og, (x, u), ..., @,—1(x, 1), j=1, m—8. (58)
Definition 4. Expressions (58) are called the ansatz for field u* =
=u*(x) invariant under the involutive set of operators (3) provided R, — R, =

= 0= 0.
The above arguments can be sumimarized in the form of the following asser-
tion. '
Theorem 2. Let system of PDE (1) be conditionally-invariant under
the involutive set of operators (3) and besides R, << R,. Then the ansatz invari-
ant under the set of operators (3) reduce this system.
Example 1. System of two wave equations

Ou=—0, Cov=0 (59)

is invariant under the one-parameter group having the infinitesimal operator
Q=0,. Since R, = 0, R, = 1, the parameter 0 is equal to 1. The complete set
of the first integrals of equation dw (x, u, v)/dv = 0 is given by the functions

op=1xy, =03 o,=u.

That is why, the ansatz for field u (x), v (x) invariant under the operator
Q has the form (58)

U= qlo, 0, 0, o), v=~C, C=const.
Substituting the above expressions into (59), we get
Py, — Po,0, — Po,0, — Po,o, =0

i. e. the reduction of the initial system (59) by the number of dependent variab-
les takes place.
Example 2. Consider the system of nonlinear Thirring equations

iU: = mu - lg I u |203 iuy =muv + lglvigus {60)

where u, v are complex functions on x, y and m, A,, A, are real constants.
The above system admits the one-parameter transformation group having
the generator
Q = iud, - ivd, — iu*0y» — i0*0ys .

After the change of variables
w(x, y) = Hy(x, y) exp {iZ (x, y) + iZ,(x, Y)}
v(x, y) = H,(x, y) exp {iZ, (x, y) —iZ,(x, y)},

where H;, Z; are new dependent variables, the operator Q takes the form
Q' =0z,. Consequently, the ansatz invariant under the operator Q reads

”. (x, y) = Hi (x, y) exp {iC + izz (x, y)}’ (61)
v(x, y) = Hy(x, y) exp {iC—iZ, (x, y)}.
Substitution of (61) into (60) yields system of four PDE for three functions
H,y, H,, Z,
H, = mH,, sin 2Z,, H,,=—mH,sin 2Z,,
H,Z,. = mH, cos 2Z, + MH,H3 ,
— H,Z,, = mH, cos 2Z, + AH:H} .

Example 3. Group analysis of the one-dimensional gas dynamics
equations

U+ e+ 0 pe=0, p;+(p)=0, p+Up)e+@—1)pu,=0 (62
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had been carried out by Ovsjannikov [1]. He established, in particular, that
invar iance algebra of system of PDE (62) contains the basis element

Q = pd, + pop. (63)

The complete set of functionally-independent first integrals of the equation
Quw (t, x, u, p, p) = 0 is as follows @, = u, w, = pp~!, 0; = {, v, = x. Con-
sequently, the ansatz invariant under the operator Q (63) can be chosen in the
form

u=09¢, x), pp'=9*¢ x), Inp+ F(pp~™)=C, (64)

where C = const, F is some smooth [unction.
Substituting the ansatz (64) into system of PDE (62) we get system of three
differential equations for two unknown functions ¢! (¢, x), ¢* (Z, x):

o+ ¢'or — ¢*F (9 @F = 0,
o + 9'9x + (v — 1) ¢z = 0, (65)

@ (1 —7) ¢*F (%) — 1) = 0.

Thus, the reduction of gas dynamics equations by the number of dependent
variables takes place.
It is interesting to note that under ¢!=-0 it follows from the third

equation of system (65) that F = A+ (1 —1v)~" In (p—'p). Substituting this
expression into (62) we obtain p = kpv, k€ R!— the relation characterizing
polytropic gas.

. Ousjannikov L. V. Group analysis of differential equations.— M. : Nauka, 1978.— 400 p.
. Olver P. Applications of Lie groups to differential equations.— New York : Springer,
1986.— 497 p.
. Sidorov A. F., Shapeev V. P., Yanenko N. N. Method of differential constraints and its app-
lications in gas dynamics.— Novosibirsk: Nauka, 1984, — 270 p.
. Fushchich W. I., Shtelen W. M., Serov N. /. Symmetry analysis and exact solutions of non-
linear mathematical physics equations.— Kiev : Nauk. Dumka, 1989.— 336 p.
. Fushchich W. I., Zhdanov R. Z. Symmetry and exact solutions of nonlinear spinor equa-
tions // Phys. Repts.— 1989.— 172, N 4.— P. 123—174.
. Fushchich W. I., Zhdanov R. Z. On some new exact solutions of the nonlinear d’Alembert —
Hamilton system // Phys. Lett A.— 1989.— 141, N 3—4.— P. 113—115.
3 60:;;ranf R., Gilbert D. Methods of mathematical physics.— M. : Gostehizdat, 1951.—
ol. 1, 2.
i fgsgchfch W. I., Nikitin A. G. Symmetry of quantum mechanics equations.— M. : Nauka,
89.— 400 p.
. Morgan A. The reduction by one of the number of independent variables in some systems
of partial differential equations // Quart. J. Math.— 1952.— 3, N 12.— P. 250—259,
. Fushchich W. I., Zhdanov R. Z. Non-Lie ansatzes and exact solutions of the nonlinear spi-
nor equation // Ukr. Mat. Zh.— 1990.— 42, N 7.— P. 958—962.
. Zhdanov R. Z., Andreifsev A. Yu. On non-Lie reduction of Galilei -invariant spinor equa-
tions // Dokl. Akad. Nauk Ukr. SSR.— 1990.— N 7A.— P. 8—11.
. Olver P., Rosenau P. The construction of special solutions to partial differential equations //
Phys. Lett A.— 1986.— 114, N 3.— P. 107—11i2.
. Clarkson P., Kruskal M. New similarity solutions of the Boussinesq equation // J. Math.
Phys.— 1989.— 30, N 10.— P. 2201—2213. :
14. Fushchich W. I. Conditional symmetry of the nonlinear mathematical physics equations //
© Ukr. Mat. Zh.— 1991.— 43, N 11.— P. 1456—1471.
15. Fushchich W. I., Shielen W. M. The symmetry and some exact solutions of the relativistic
eikonal equation // Lett. nuovo cim.— 1982.— 34, N 6.— P. 498—501.
16. Ames W. F., Lohner R., Adams E. Group properties of u, = (f (w) ul,lx;"/ Nonlinear pheno-
mena in mathematical sciences. New York: Acad. press, 1982.— P. 1—6.
17. Fushchich W. I., Revenko I. V., Zhdanov R. Z. Non symmetry approach to construction of
exact solutions of some nonlinear wave equation // Dokl. Akad. Nauk Ukr.SSR.— 1991. —
N 7A.— P. 15—16.
18. gvsfanngksou L. V, Partial invariance // Dokl. Akad. Nauk SSSR.— 1969.— 186, N 1.—

W 00 N o e W N

—
-0

el

—
]

Receivea 25.02.92

982 ISSN 0041-6053. ¥kp. mar. xcypn., 1992, 1. 44, M 7



	T44_0970-1
	T44_0971
	T44_0972
	T44_0973
	T44_0974
	T44_0975
	T44_0976
	T44_0977
	T44_0978
	T44_0979
	T44_0980
	T44_0981
	T44_0982

