УДК 517.5,517.58

В. А. Гроза, канд. фіз.-мат. наук (Київ. геофіз. від-ня УкрНДГРІ)

Квантові алгебри, *q*-многочлени Кравчука та *q*-функції Кравчука — Мейкснера

Методами теорії зображень квантових алгебр U_q (su_2) і $U_q(su_{1,1})$ доводяться теореми домвання та множення для q-многочленів Кравчука, вводяться q-функції Кравчука—Мейкснера і доводиться їх ортогональність на множині цілих чисел.

Методами теории представлений квантовых алгебр U_q (su_2) и U_q ($su_{1.1}$) доказываются теоремы сложения и умножения для q-многочленов Кравчука, вводятся q-функции Кравчука—Мейкснера и доказывается их ортогональность на множестве целых чисел.

На сучасному етапі все більшого значення набувають q-спеціальні функції та q-ортогональні многочлени. Вони застосовуються в алгебраїчній комбінаториці, теорії зображень груп Шевальє, теорії різницевих рівнянь, квантовій механіці та ін. В граничному випадку при $q \to 1$ q-функції та q-многочлени приводять до відповідних спеціальних функцій та многочленів. В той час, коли методи вивчення класичних спеціальних функцій добре розроблені, теорія q-спеціальних функцій знаходиться на стадії свого розвитку. В останні роки намітився зв'язок q-гіпергеометричних функцій та q-ортогональних многочленів із зображеннями квантових алгебр і квантових груп (див., наприклад, [1, 2]). Це дало можливість застосовувати потужний теоретико-груповий апарат в q-численні.

В даній роботі теорія зображень квантових алгебр застосовується для доведення теорем додавання та множення для q-многочленів Кравчука, а також для виведення співвідношення ортогональності для q-функцій Кравчука — Мейкснера.

q-Гіпергеометрична (або базисна гіпергеометрична) функція визнача-

ється формулою

$$_{n+1}\varphi_{n}\left(a_{1},\ldots,a_{n+1};b_{1},\ldots,b_{n};q,z\right)=\sum_{k=0}^{\infty}\frac{(a_{1};q)_{k}\ldots(a_{n+1};q)_{k}}{(b_{1};q)_{k}\ldots(b_{n};q)_{k}}\frac{z^{k}}{(q;q)_{k}},$$

де $(a;q)_k=(1-a)(1-aq)\dots(1-aq^{k-1}),\ a\in\mathbb{C},\ k\in\mathbb{Z}_+,\ (a;q)_0=1$ (тут і далі \mathbb{Z}_+ означає множину додатніх цілих чисел). Ми також будемо використовувати позначення

$$\alpha_{n+1}\Phi_n(\alpha_1,\ldots,\alpha_{n+1};\beta_1,\ldots,\beta_n;q,z) = \alpha_{n+1}\Phi_n(q^{\alpha_1},\ldots,q^{\alpha_{n+1}};q^{\beta_1},\ldots,q^{\beta_n};q,z).$$

Існує декілька видів q-многочленів Кравчука. Вони описані в роботі [3]. Ми розглядаємо q-многочлени Кравчука

$$K_n(q^{-x}; b, N \mid q) = {}_{2}\Phi_1(-n, -x; -N; q, bq^{n+1}),$$
 (1)
 $n = 0, 1, ..., N, N \in \mathbb{Z}_+,$

які утворюють ортогональну систему на множині $x \in \{0, 1, ..., N\}$.

Базисна гіпергеометрична функція ${}_2\Phi_1$ і q-многочлени Кравчука зв'язані із скінченновимірними зображеннями T^I квантової алгебри U_q (su_2).

B. A. ГРОЗА, 1992

А саме, матричні елементи цих зображень мають вигляд [2]

ження для *q*-многочленів Кравчука:

$$t_{mn}^{l} = \frac{q^{(m+n)(m+n-2l)/4} [2l]!}{([l-m]![l-n]![l+m]![l+n]!)^{1/2}} \pi_{12}^{l-n} \pi_{21}^{l-m} \times K_{l-m} (q^{-l+m}; q^{m-l-1/2}/(\pi_{12}\pi_{21}), 2l \mid q) \pi_{11}^{m+n},$$

якщо $m-n\geqslant 0,\ m+n\geqslant 0.$ Тут $[k]=(q^{k/2}-q^{-k/2})/(q^{1/2}-q^{-1/2}),\ [k]!=$ $=[1][2]\dots[k],\ k\in\mathbb{Z}_+,\ \pi_{ij},\ i,j=1,2,$ — матричні елементи двовимірного незвідного зображення алгебри U_4 (su_2). Запишемо в матричному вигляді розклад тензорного добутку $T^{l_1} \otimes T^{l_2}$ зображень квантової алгебри U_a (su₂) на незвідні:

$$t_{I_{1}I_{2}}^{l_{1}}t_{k_{1}k_{2}}^{l_{2}} = \sum_{l=|l_{1}-l_{2}|}^{l_{1}+l_{2}} \begin{bmatrix} l_{1} & l_{2} & l \\ j_{1} & k_{1} & m_{1} \end{bmatrix}_{q} \begin{bmatrix} l_{1} & l_{2} & l \\ j_{2} & k_{2} & m_{2} \end{bmatrix}_{q} t_{m_{1}m_{2}}^{l}.$$
(3)

(2)

Тут $\begin{bmatrix} l_1 & l_2 & l \\ j & k & m \end{bmatrix}_q$ — коефіцієнт Клебша — Гордана квантової алгебри $U_q(su_2)$. В роботі [4] виведені різноманітні вирази для коефіцієнтів Клебша—Гордана через базисну гіпергеометричну функцію ${}_{3}\Phi_{9}$. Підставляючи в (3) вираз (2) для матричних елементів та відповідний вираз для коефіцієнтів Клебша — Гордана з [4], після ряду перетворень одержимо формулу мно-

 $K_m(q^{-x}; b, M \mid q) K_n(q^{-y}; tb, N \mid q) = \frac{(b; q)_{m+1}}{(b; q)_{m+1}} \times$

$$\times \sum_{k=0}^{(M+N)/2-M_{1}} \frac{(q^{m-M};q)_{k} (q^{x-M};q)_{k} (q^{-N};q)_{k}}{(q;q)_{k} (q^{-M};q)_{k} (q^{k-M-N-1};q)_{k}} \times \\ \times_{3} \Phi_{2} \left(-k, -n, 1-k+M \middle| q, q \right)_{3} \Phi_{2} \left(-k, -y, 1-k+M \middle| q, q \right) \times \\ -N, 1-k+M-n \middle| q, q \right)_{3} \Phi_{2} \left(-k, -y, 1-k+M \middle| q, q \right) \times \\ \left(-k, -k+M-n \middle| q, q \right)_{3} \Phi_{2} \left(-k, -k+M-n \middle| q, q$$

$$\times q^{k(k-x)}b^k K_{M+n-m-k}(q^{x-y-M+k};q^{m-n-x+k}b,M+N-2k|q), \qquad (4)$$

$$\text{de } M,N,m,n,x,y\in\mathbb{Z}_+\cup\{0\},\ m\leqslant M,\ n\leqslant N,\ x\leqslant M,\ y\leqslant N \quad \text{ta } t=q^{m-n}$$

ge $M, N, m, n, x, y \in \mathbb{Z}_+ \cup \{0\}, m \leqslant M, n \leqslant N, x \leqslant M, y \leqslant N$ to $t = q^{m-n}$, $M_1 = \max\left(\left|\frac{N-M}{2}\right|, \left|m-n-\frac{M-N}{2}\right|, \left|x-y-\frac{M-N}{2}\right|\right)$. Функції $_3\Phi_2$ із (4) зв'язані з q-многочленами Хана

 $Q_n(q^{-x}; a, b, N | q) = {}_{3}\varphi_2(q^{-n}, abq^{n+1}, q^{-x}; aq, q^{-N}; q, q), \quad n \in \mathbb{Z}_+.$

Враховуючи співвідношення ортогональності для останніх [5], з (4) після

деяких перетворень виводимо теорему додавання для q-многочленів Кравчука:

$$\sum_{x=0}^{m} \sum_{m=0}^{m} \frac{(b;q)_{M-x+1} (q^{\sigma-M};q)_{M-m} (q^{-\sigma-M};q)_{m} (q^{\tau-M};q)_{M-x} (q^{-\tau-M};q)_{x}}{(b;q)_{m+1} (q;q)_{M-m} (q;q)_{m} (q;q)_{M-x} (q;q)_{x}} \times q^{-r_{1}-m(M-\sigma)-x(M-\tau)} b_{1}^{-r_{1}} K_{m} (q^{-x};b,M|q) K_{n} (q^{-y};tb,N|q) \times Q_{r_{1}} (q^{m-M};q^{-M+\sigma-1},q^{-N-\sigma-1},M|q) Q_{r_{2}} (q^{x-M};q^{-M+\tau-1},q^{-N-\tau-1},M|q) = \delta_{r_{1}r_{2}} A K_{M-\sigma-r_{1}} (q^{\tau-M+r_{1}};q^{\sigma-M+r_{1}}b_{1},M+N-2r_{1}|q),$$

де $b = b_1 q^{x-M}$, $\sigma = m - n \equiv \text{const}$, $\tau = x - y \equiv \text{const}$,

$$A = \frac{(q^{-M-N};q)_{M}^{2} \left(q;q\right)_{r_{1}} \left(q^{-N-\sigma};q\right)_{r_{1}} \left(q^{-N-\tau};q\right)_{r_{1}} \left(q^{-N};q\right)_{r_{1}} q^{r_{1}(\sigma+\tau-3M)}}{\left(q^{-M-N};q\right)_{r_{1}-1}^{2} \left(q;q\right)_{M}^{2} \left(q^{r_{1}-M-N-1};q\right)_{r_{1}} \left(q^{-M};q\right)_{r_{1}} \left(1-q^{2r_{1}-M-N-1}\right)^{2}} \,.$$

Тут r_1 і r_2 — цілі невід'ємні числа такі, що

$$M + N - 2r_i \geqslant \max(|M - N|, |2\sigma - M + N|, |2\tau - M + N|), i = 1, 2.$$

Застосування теоретико-групового підходу до q-числення дає можли-

вість не лише вивчати властивості вже відомих класів, але й вводити нові класи q-многочленів та q-спеціальних функцій. Матричні елементи зображень Τε, σ основної унітарної серії квантової

алгебри
$$U_q$$
 (s $u_{1,1}$) виражаються через функцію ${}_2\Phi_1$ [6, 7]:
$$t_{mn}^\sigma = q^{(n^2-m^2)/4+(n-m)(\sigma-m)/2} (q^{\sigma-m+1};q)_{m-n} (q;q)_{m-n}^{-1} \times$$

$$\chi_{2}\Phi_{1}(\sigma + m + 1, -\sigma + m; m - n + 1; q, -V_{q}\pi_{12}\pi_{21})\pi_{21}^{m-n}\pi_{22}^{m+n}, \quad (5)$$

де $\sigma \in \mathbb{C}$, $-m \leq n \leq m$. Для $n \in \mathbb{Z}$ введемо q-функції дискретної змінної

Для
$$n \in \mathbb{Z}$$
 введемо q -функції дискретної змінної $\mathcal{H}_n(x; p, \tau \mid q) = {}_2\Phi_1(\tau + x + 1, x - \tau; x - n + 1; q, pq^{-n+1})$ (6)

при $x \geqslant n$ і

$$\mathscr{K}_n\left(x;\,p,\, au\,|\,q
ight)=\mathscr{K}_x\left(n;\,p,\, au\,|\,q
ight)$$
 при $n\geqslant x$ і назвемо їх q -функціями Кравчука — Мейкснера. При $au\in\frac{1}{2}\mathbb{Z}_-$, $n\leqslant - au,\;x\leqslant - au,\;n+ au\in\mathbb{Z},\;x+ au\in\mathbb{Z}$ функція $\mathscr{K}_n\left(x;\,p,\; au\,|\,q
ight)$ зобра-

жується через
$$q$$
-многочлени Кравчука, а при $\tau \in \frac{1}{2}\mathbb{Z}_+$, $n \geqslant \tau$, $x \geqslant \tau$, $n + \tau \in \mathbb{Z}$, $x + \tau \in \mathbb{Z}$ — через q -многочлени Мейкснера

$$M_n\left(q^{-x};b,\gamma\mid q\right)={}_2\Phi_1(-n,-x;\gamma;q,bq^{n+1}), \quad \gamma\in\mathbb{R},\quad n\in\mathbb{Z}_+.$$
 Порівнюючи (5) і (6), легко впевнитись, що матричні елементи зображень основної унітарної серії квантової алгебри U_q ($su_{1,1}$) можуть бути

ваписані в термінах q-функцій Кравчука—Мейкснера. Враховуючи це, з умови унітарності для матричних елементів $t_{mn}^{i\rho-1/2}$, яка має вигляд $\sum_{k_m} t_{k_m}^{i\rho-1/2} (t_{k_n}^{i\rho-1/2})^* = \delta_{mn},$

виводимо співвідношення ортогональності для
$$q$$
-функцій кравчука—мейке нера
$$\sum_{m=0}^{\infty} M_{p}(x;q) \frac{(p;q)_{x}}{p^{x}} \mathcal{K}_{m}\left(x;p,ip-\frac{1}{2}\left|q\right) \overline{\mathcal{K}_{n}\left(x;p,ip-\frac{1}{2}\left|q\right)} =$$

$$= q^{m(m+1)/2} \frac{p^m}{(p; q^{-1})_m} \delta_{mn},$$

де

$$M_{\rho}(x;q) = q^{K} (q^{i\rho+m+1/2};q)_{x-m} (q^{-i\rho+m+1/2};q)_{x-n} (q;q)_{x-m}^{-1} (q;q)_{x-n}^{-1},$$

$$K = -\frac{1}{4} (2x^{2} - m^{2} - n^{2}) + \frac{1}{2} \left(i\rho - \frac{1}{2} - x \right) (m+n-2x) +$$

$$+\frac{1}{2}x(n+m+1)+nx.$$

Таким чином, функції K_n утворюють систему ортогональних на множин \mathbf{i} $\{0, \pm 1, \pm 2, ...\}$ функцій дискретної змінної.

Noumi M., Mimachi K. Askey-Wilson Polynomials and the Quantum Group SU_q (2) // Proc. Jap. Acad. A.— 1990.— 66.— P. 146—149.
 Koornwinder T. H. Representations of the twisted SU (2) quantum group and some q-hy-

pergeometric orthogonal polynomials // Proc. Nederl. Acad. Wetenson. A.— 1989.— 92.— P. 97—117.

3. Hahn W. Uber Orthogonal Polynome, die q-Differenzengleichungen genügen // Math.

Nachr.— 1949.— 2.— S. 4—34. 4. Groza V. A., Kachurik I. I., Klimyk A. U. On Clebsch-Gordan coefficients and matrix elements

Groza V. A., Kachurik I. I., Klimyk A. U. On Clebsch-Gordan coefficients and matrix elements
of representations of the quantum algebra U_q (su₂) // J. Math. Phys.— 1990.— 31, N 12.—
P. 2769—2780.

 Andrews G. E., Askey R. Classical orthogonal polynomials // Lect. Notes Math.— 1985.— 1171.— P. 36—62.

6. Гроза В. А. Представления квантовой алгебры $U_q(\mathbf{su}_{1,1})$ и базисные гипергеометрические функции.— Киев, 1990.— 20 с.— (Препринт / АН УССР. Ин-т теорет. физики, ИТФ-90-56Р).

ИТФ-90-56Р).
 Unitary representations of the quantum group SU_q(1,1): II-Matrix elements of unitary representations and the basic hypergeometric functions / T. Masuda, K. Mimachi, Y. Nakagami etc.// Lett. Math. Phys.—1990.—19, P. 195—204.

Одержано 29.01.92