УДК 515.12

М. М. Зарічний, канд. фіз.-мат. наук (Львів. ун-т)

Характеризація некомпактних АЕ(п)-просторів

Одержана характеризація сепарабельних метризовних AE (n)-просторів як n-оборотних образів абсолютних ретрактів.

Получена характеризация сепарабельных метризуемых AE (n)-пространств как n-обратимых образов абсолютных ретрактов.

Класичне поняття абсолютного екстензора для *n*-вимірних просторів (AE (*n*)-простору) істотно використовується при описанні топології фрактальних (локально самоподібних) множин [1]. Справді, для таких множин з глобальної (n - 1)-зв'язності, як правило, випливає локальна (n - 1)-зв'язність, а остання, за класичною теоремою Куратовського-Дугунджі [2], рівносильна властивості бути абсолютним околовим екстензором для *n*-вимірних просторів (ANE (*n*)-простором).

Метою даної статті є узагальнення одного результату О. Ч. Чигогідзе [3] про зображення повних сепарабельних метричних AE (*n*)-просторів як *n*-оборотних образів сепарабельного гільбертового простору *l*².

Наведемо деякі необхідні означення. Надалі всі простори вважаються сепарабельними метризовними, а всі відображення — неперервними, n означає невід'ємне ціле число. Відображення $f: X \to Y$ називається n-оборотним [4], якщо для кожного відображення $g: Z \to Y$, де dim $Z \leq n$, існує відображення $h: Z \to X$, для якого $g = f \circ h$. Через $\mathfrak{M}_{\alpha}(\mathfrak{A}_{\alpha})$ позначаються абсолютні мультиплікативні (адитивні) класи борелівських множин.

Наступна теорема про вкладення є узагальненням теорем Боте [5] та Чигогідзе [3].

Теорема 1. Нехай dim X = n. Тоді існуе AR (M)-простір \hat{X} такий, що $\hat{X} \supset X$ і dim $\hat{X} = n + 1$.

Для борелівських множин теорему 1 можна уточнити.

Теорема 1'. Для кожного ординала $\alpha < \omega_1$ існує (n + 1)-вимірний AR (M)-простір $Z \in \mathfrak{M}_{\alpha}$ (відповідно $Z \in \mathfrak{A}_{\alpha}$), що топологічно містить замкнену копію кожного п-вимірного простору класу \mathfrak{M}_{α} (відповідно \mathfrak{A}_{α}).

Наведемо доведення лише теореми 1'. Для визначеності розглядаємо мультиплікативний клас \mathfrak{M}_{α} .

Лема 1. Існує п-вимірний простір А_{п.α}, що містить замкнену копію будь-якого п-вимірного простору X ∈ M_α.

€ М. М. ЗАРІЧНИЙ, 1992

986

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

Доведення. Нехай $f_n: \mu_n \to Q - n$ -оборотне відображення універсального *n*-вимірного менгерівського компакта μ_n на гільбертів **ку**б Q, побудоване О. М. Дранішниковим [4]. Простір Q містить копію універсального простору Ω_{α} для класу \mathfrak{M}_{α} (див. [6]).

Приймемо $A_{n,\alpha} = f_n^{-1}(\Omega_{\alpha})$, тоді $A_{n,\alpha} \in \mathfrak{M}_{\alpha}$. Для кожного $X \in \mathfrak{M}_{\alpha}$ існує замкнене вкладення $g: X \to \Omega_{\alpha}$ і з *n*-оборотності відображення f_n випливає, що існує відображення $h: X \to A_{n,\alpha}$, для якого $f_n \circ h = g$. Тоді, очевидно, h — замкнене вкладення. Лема доведена.

Перейдемо до доведення теореми 1'. Ми модифікуємо конструкцію з [3]. Нехай $S = \{X_i, p_{ij}\}$ — обернений спектр з границею μ_n , у якому X_i — компактні поліедри, $X_0 = \{*\}$, dim $X_i \leq n$, $p_{i+1,i}$ — сюр'єктивні симпліціальні відображення. Утворимо спектр S' такою індуктивною конструкцією.

Приймемо $Y_0 = X_0$ і припустимо, що для всіх i < k, де $k \ge 1$, вже побудовані відображення $g_{i,i-1}: Y_i \to Y_{i-1}$ і вкладення $X_i \to Y_i$ такі, що $g_{i,i-1}|X_i = p_{i,i-1}: X_i \to X_{i-1} \subset Y_{i-1}$. Нехай Y_k – циліндр композиції відображень

$$X_k \xrightarrow{\mu_{k,k-1}} X_{k-1} \hookrightarrow Y_{k-1}$$

і $q_{k,k-1}: Y_k \to Y_{k-1}$ — природна проєкція циліндра на основу. Нехай $S' = = \{Y_i, q_{i,i-1}\}$ і $Y = \lim_{\leftarrow} S'$. Тоді простір $\mu_n = \lim_{\leftarrow} S$ природно вкладений в Y. Будемо розглядати $A_{n,\alpha}$ як підпростір в $\mu_n \subset Y$ і нехай $Z = (Y \setminus \mu_n) \bigcup \bigcup A_{n,\alpha}$.

Очевидно, що $Z \in \mathfrak{M}_{\alpha}$, dim Z = n + 1 і $A_{n,\alpha}$ — замкнена підмножина в Z. З очевидної стягуваності та локальної стягуваності простору Z випливає $Z \in AR$ (\mathfrak{M}) (див. [2]). Твердження теореми тепер випливає з леми 1.

Теорема 2. Для простору Х наступні умови еквівалентні:

1) $X \in AE (n + 1) (X \in ANE (n + 1));$

2) X є п-оборотним образом AR (M)-простору (ANR (M)-простору).

 Υ еорема 2'. Для простору $X \in \mathfrak{M}_{\alpha}$ (відповідно $X \in \mathfrak{A}_{\alpha}$) наступні умови еквівалентні:

1) $X \in AE(n + 1);$

2) $X \in n$ -оборотним образом універсального простору Ω_{α} (відповідно Λ_{α}).

Нагадаємо, що нескінченновимірні многовиди, модельовані на універсальних просторах Ω_α і Λ_α, розглядалися в [6].

Теорема 2". Для простору $X \in \mathfrak{M}_{\alpha}$ (відповідно $X \in \mathfrak{A}_{\alpha}$) наступні умови еквівалентні:

1) $X \in ANE (n + 1);$

2) X є п-оборотним образом Ω_{α} -многовиду (відповідно Λ_{α} -многовиду).

Доведення теорем 2—2" проводяться за схемою доведення теореми 3.1 з [4]; при цьому використовуються теореми 1 і 1', а також властивості Ω_{α} - (Λ_{α} -)многовидів [6].

Багатьма авторами розглядалась задача збереження класу ANR (M)просторів різними функторіальними конструкціями (див. [7]). Необхідні поняття, що стосуються теорії нормальних функторів в категоріях компактних та тихоновських просторів, можна знайти в [7, 8]. Нагадаємо, що кожен нормальний функтор F в категорії компактів має канонічне продовження F_{β} на категорію тихоновських просторів [8].

Лема 2. Функтор F_B зберігає клас сепарабельних метризовних просторів.

Доведення. Якщо $X \subset Q$,, то $F_{\beta}X \subset F_{\beta}Q = FQ$ і $F_{\beta}X$ — сепарабельний простір.

Теорема 3. Нехай F — нормальний функтор зі скінченними посіями. Якщо функтор F_{β} зберігає клас AR (M)-(ANR (M)-) просторів, то F_{β} зберігає клас AE (n)-(ANE (n)-) просторів.

Доведення проводиться за схемою доведення теореми О. М. Драніш**ни**кова [9], при цьому використовується теорема 2.

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

*

- 1. Mandelbrot B. Fractal geometry of nature .- Freeman, 1982.
- 2. Борсук К. Теория ретрактов. М. : Мир, 1971. 292 с.
- 3. Чигогидзе А. Ч. Характеристика польских АЕ (n)-пространств // Вестн. Моск. ун-та. Сер. 1.— 1987.— № 5.— С. 32—35. 4. Дранишников А. Н. Абсолютные экстензоры в размерности п и п-мягкие отображения,
- повышающие размерность // Успехи мат. наук. 1984. 39, вып. 5. С. 55-95.
- 6. Bestvina M., Mogilski J. Characterizing certain incomplete infinite-dimensional absolute retracts // Michigan Math. J. 1986. 33, N 1. P. 291–313.
- 7. Федорчик В. В. О некоторых геометрических свойствах ковариантных функторов // Успехи мат. наук. — 1984. — 39, вып. 5. — С. 169—209.
- 8. Чигогидзе А. Ч. О продолжении нормальных функторов // Вестн. Моск. ун-та. Мех., мат. — 1984. — № 6. — С. 23—26. 9. Дранишников А. Н. Ковариантные функторы и экстензоры в размерности n // Успехи
- мат. наук. 1985. 40, вып. 6. С. 185-186.

Одержано 23.03.91