УДК 513.83

Л. П. Плахта, канд. фіз.-мат. наук (Ін-т прикл. пробл. механіки і математики АН України, Львів)

Когомологічні співвідношення для множин сингулярних точок дій групи $\mathbb{Z}/4$ на $(S^n)^k$

Досліджені $\mathbb{Z}/2$ -градуйовані модулі когомологій з коефіцієнтами в полі \mathbb{F}_2 множин сингулярних точок кліткових дій групи $\mathbb{Z}/4$ на просторах X, кільця когомологій яких ізоморфні H^* ($(S^n)^k$, \mathbb{F}_2).

Исследованы $\mathbb{Z}/2$ -градуированные модули когомологий с коэффициентами в поле \mathbb{F}_2 множеств сингулярных точек клеточных действий группы $\mathbb{Z}/4$ на пространствах X, кольча когомологий которых изоморфны H^* ((S^n) k , \mathbb{F}_2).

Нехай G — скінченна група, X — клітковий G-простір, Λ — комутативне кільце з одиницею. Група G індукує на градуйованому модулі H^* (X, Λ) когомологій простору X структуру G-модуля. Сингулярними точками дії групи G на X будемо називати такі точки x простору X, для яких стабілізатор G_x не є тривіальною групою. В даній статті розглядаються дії циклічної групи $\mathbb{Z}/4$ на кліткових просторах X, які мають кільце когомологій з коефіцієнтами в Λ , ізоморфне кільцю H^* ($(S^n)^k$, Λ) або кільцю H^* ($(S^n) \times S^m$, Λ), де $\Lambda = \mathbb{F}_2$ або $\Lambda = \mathbb{Z}$. Ми одержимо співвідношення для градуйованих модулів $H^{(*)}$ ($X^{\mathbf{Z}/2}$, \mathbf{F}_2), де $X^{\mathbf{Z}/2}$ — множина сингулярних точок дії групи $\mathbb{Z}/4$ на просторі X. При цьому використовуються методи і результати,

© Л. П. ПЛАХТА, 1992

описані в монографіях Таммо том Діка [1] ї Г. Бредона [2]. В даній статті ми використовуємо термінологію і позначення праць [1-3].

Наведемо необхідні означення і відомості з еквіваріантної теорії кого-

через (X_G, A_G) позначимо пару $(EG \times_G X, EG \times_G A)$, а через p_X — розша-

рування з типовим шаром X, $p_X: (X_G, A_G) = (EG \times_G X, EG \times_G A) \rightarrow BG$.

Далі нехай $H_G^c(X,\Lambda)$ — градуйований модуль (градуйована алгебра) еквіваріантних когомологій з коефіцієнтами в кільці Λ , тобто $H_G^*(X,\Lambda)\cong$ $\cong H^*(X,\Lambda)$. Крім того, $\Lambda=\mathbf{Z}$ або $\Lambda=\mathbf{F}_2$, де \mathbf{F}_2 — поле лишків за модулем 2. Градуйовану алгебру $H_G^*(X, A, \Lambda)$ можна розглядати як градуйований модуль над кільцем $H^*(BG,\Lambda)$, вводячи множення наступним чином. Нехай $x \in H^*$ (BG, Λ), $y \in H_G^*(X, A; \Lambda)$. Тоді $p_X^*(x) \in H_G^*(X, A; \Lambda)$. Покладемо $x \cdot y = p_X^*(x) \cdot y$, де «•» — спарювання $H_G^*(X, A; \Lambda) \otimes H_G^*(X, A; \Lambda)$ $A; \Lambda) \to H^*_G(X, A; \Lambda)$, яке визначається \cup -добутком [1]. Далі для довільного $b \in BG$ позначимо через $j_b: X \to EG \times_G X$, $x \to (b, x)$, включення типового шару над b в тотальний простір X_G . Оскільки EG — лінійно зв'язаний простір, то два довільні включення $j_b,\ j_a$ гомотопні і визначають в когомологіях гомоморфізм $j_b^*: H_G^*(X, A; \Lambda) \to H^*(X, A; \Lambda)$ для довіль-

Означення 1. Будемо називати пару (X, A) цілком Λ -негомологічною нулю, якщо гомоморфізм $j^*: H_G^*(X, A; \Lambda) \to H^*(X, A; \Lambda)$ сюр'єк-

Означення 2. Нехай G — скінченна група, яка діє на просторі X. Точка $x \in X$ називається сингулярною, якщо стабілізатор G_x її не ϵ три-

Позначимо через X^G множину нерухомих точок дії групи G на X. Далі будемо вживати позначення $X \sim_p Y$, якщо кільця когомологій $H^*(X, \mathbf{F}_p)$, $H^*(Y, \mathbf{F}_p)$ просторів X і Y ізоморфні, де \mathbf{F}_p — поле лишків

за простим модулем p. Відповідно будемо вживати запис $X \sim Y$, якщо кільця когомологій $H^*(X,\mathbf{Z}),\ H^*(Y,\mathbf{Z})$ ізоморфні. T вердження 1. $Hexaŭ \quad X \sim_2 (S^n)^k - \kappa$ літковий $\mathbb{Z}/4$ -простір, $X^{\mathbf{Z}/4} \neq \emptyset$ і група $\mathbf{Z}/4$ діє на когомологіях $H^*(X, \mathbf{F}_2)$ тривіально. Тоді має місце ізоморфізм $\mathbb{Z}/2$ -градуйованих модулів $H^{(*)}(X,x,\mathbb{F}_2)\cong H^{(*)}(X^{\mathbb{Z}/2},$

Доведення. Нагадаємо, що $H^*(B\mathbf{Z}/4, \mathbf{F}_2) \cong \mathbf{Z}/2[t] \otimes \Lambda$ (s), де deg t=2, deg s=1, $\Lambda(s)$ — зовнішня алгебра з твірною s, a $\mathbf{Z}/2[t]$ — кільце поліномів над $\mathbb{Z}/2$. Поле \mathbb{F}_2 можна розглядати як $\mathbb{Z}/2$ -градуйовану алгебру, всі елементи якої сконцентровані в вимірі О. Аналогічно алгебра H^* (BZ/4, F_2) перетворюється в Z/2-градуйовану алгебру $H^{(*)}$ (BZ/4, F_2), якщо степінь однорідного елемента $x \in H^1(B\mathbf{Z}/4, \mathbf{F}_2)$ розглядати за модулем 2. Існує очевидний гомоморфізм $l:H^*(B\mathbf{Z}/4, \mathbf{F}_2) \to \mathbf{F}_2$ $\mathbf{Z}/2$ -градуйованих алгебр, який відображає твірну t кільця поліномів $\mathbf{F}_2[t] \cong H^{2^*}(B\mathbf{Z}/4,$ F_2) в $1 \in F_2$, а s посилає в 0. Нехай S — мультиплікативна множина мономів $\{\tilde{1},\,\tilde{t},\,t^2,\dots,\}$ кільця поліномів $\mathbf{F}_2[t]$. Гомоморфізм t, очевидно, продовжується до гомоморфізму $\eta: S^{-1}H^*(B\mathbf{Z}/4, \mathbf{F}_2) \cong \mathbf{F}_2[t, t^{-1}] \otimes \Lambda(s) \to$ ightarrow \mathbf{F}_2 , оскільки l(t)=1. Отже, \mathbf{F}_2 можна розглядати як $\mathbf{Z}/2$ -градуйований модуль над $S^{-1}H^{(*)}$ (BZ/4, F_2). Із теореми про локалізацію одержимо ізоморфізм $\mathbb{Z}/2$ -градуйованих алгебр $[1]: S^{-1}i: S^{-1}H_{\mathbb{Z}/4}^*(X, x, \mathbb{F}_2) \to S^{-1}H_{\mathbb{Z}/4}^*$ $(X^{\mathbf{Z}/2}, x, \mathbf{F}_2)$, який індукується включенням $i: X^{\mathbf{Z}/2} \to X$. Зауважимо, що

Далі розглянемо спектральну послідовність Лере — Серра для розшарування $(X_{\mathbf{Z}/4}, x_{\mathbf{Z}/4}) \rightarrow B\mathbf{Z}/4$ з коефіцієнтами в \mathbf{F}_2 , де $x \in X^{\mathbf{Z}/4}$. Маємо $H^p(B\mathbf{Z}/4, H^q(X, x, \mathbf{F}_2)) \to H^{p+q}(X_{\mathbf{Z}/4}, x_{\mathbf{Z}/4}; \mathbf{F}_2)$. Оскільки група $\mathbf{Z}/4$ діє на

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7.

 x, F_2) $\otimes_{H^{\bullet}(BG,F)} {}_{l}F_2$, $\partial_{l} Z/2 - ni\partial_{l} pyna epyna indekca 2, <math>x \in X^{\mathbb{Z}/4}$.

 $X^{{\bf Z}/2}$ — множина сингулярних точок дії групи ${\bf Z}/4$ на X.

ного G-інваріантного підпростору $A \subseteq X$.

тивний.

992

віальною групою.

Нехай $p:EG\to BG$ — універсальне головне розшарування, де G — скінченна група. Якщо X — G-простір, A — G-інваріантний підпростір, то

когомологіях $H^*(X, \mathbf{F}_2)$ тривіально, то з теореми про універсальні коефіцієнти [1] випливає $E_2^{i,nl} \cong E_2^{i,0} \otimes E_2^{0,nl} \cong \bigoplus_{k=0}^{l} \mathbf{F}_2$ для $1 \leqslant l \leqslant k, \ i \geqslant 0$ і

 $E_2^{i,j}=0$ для всіх інших пар (i,j). З мультиплікативних властивостей спектральної послідовності випливає, що всі диференціали $d_{n+1}:E_2^{p,q}=E_{n+1}^{p,q}\to E_h^{p+n+1,q-n}=E_2^{p+n+1,q-n}$ нульові. Оскільки дана спектральна послідовність вироджується і група $\mathbb{Z}/4$ діє на $H^*(X,\mathbb{F}_2)$ тривіально, а $H^*(X,\mathbb{F}_2)$ — вільний, скінченнопороджений \mathbb{F}_2 -модуль, то пара (X,x) цілком \mathbb{F}_2 -негомологічна нулю в $(X_{\mathbb{Z}/4},x_{\mathbb{Z}/4})$ і множина елементів $(x_v/v\in J)$, $x_v\in H^*_{\mathbb{Z}/4}(X,x,\mathbb{F}_2)$, таких, що $(j^*x_v/v\in J)$ утворює \mathbb{F}_2 -базу в $H^*(X,x,\mathbb{F}_2)$, сама є базою $H^*(B\mathbb{Z}/4,\mathbb{F}_2)$ -модуля $H^*_{\mathbb{Z}/4}(X,x,\mathbb{F}_2)$. Маємо наступний ланцюжок ізоморфізмів $\mathbb{Z}/2$ -градуйованих алгебр

$$H_{\mathbf{Z}/4}^{(*)}(X, x, \mathbf{F}_{2}) \oplus_{H^{*}(B\mathbf{Z}/4, \mathbf{F}_{2})} {}_{1}\mathbf{F}_{2} \cong S^{-1}H_{\mathbf{Z}/4}^{(*)}(X, x, \mathbf{F}_{2} \otimes \otimes_{S^{-1}H^{*}(B\mathbf{Z}/4, \mathbf{F}_{2})} {}_{1}\mathbf{F}_{2} \cong S^{-1}H_{\mathbf{Z}/4}^{*}(X^{\mathbf{Z}/2}, x, \mathbf{F}_{2}) \otimes_{S^{-1}H^{*}(B\mathbf{Z}/4, \mathbf{F}_{2})} {}_{1}\mathbf{F}_{2} \cong H_{\mathbf{Z}/4}^{(*)}(X^{\mathbf{Z}/2}, x, \mathbf{F}_{2}) \otimes_{H^{*}(B\mathbf{Z}/4, \mathbf{F}_{2})} {}_{1}\mathbf{F}_{2}.$$

$$(1)$$

Оскільки $H_{\mathbf{Z}/4}^{(*)}(X^{\mathbf{Z}/2}, x, \mathbf{F}_2)$ є вільним H^* ($B\mathbf{Z}/4, \mathbf{F}_2$)-модулем, одержимо ізоморфізм $\mathbf{Z}/2$ -градуйованих модулів

$$H_{\mathbf{Z}/4}^{(*)}(X, x, \mathbf{F}_2) \otimes_{H^*(B\mathbf{Z}/4, \mathbf{F}_2)} {}_{l}\mathbf{F}_2 \cong H^{(*)}(X, x, \mathbf{F}_2).$$
 (2)

3 (1) і (2) випливає справедливість даного твердження. Зауважимо, що ізоморфізм (2) не обов'язково є ізоморфізмом Z/2-градуйованих алгебр.

Наслідок. Нехай $X \sim_2(S^n)^k$ — клітковий $\mathbb{Z}/4$ -простір, $X^{\mathbb{Z}/4} \neq \emptyset$ і група $\mathbb{Z}/4$ діє на когомологіях $H^*(X, \mathbb{F}_2)$, $H^*(X^{\mathbb{Z}/2}, \mathbb{F}_2)$ тривіально. Тоді $\mathbb{Z}/2$ -градуйовані модулі $H^*(X, x, \mathbb{F}_2)$, $H^{(*)}(X^{\mathbb{Z}/2}, x, \mathbb{F}_2)$ ізоморфні, де $x \in X^{\mathbb{Z}/4}$.

Доведення. Оскільки пара (X,x) цілком F_2 -негомологічна нулю в $(X_{\mathbb{Z}/2},x_{\mathbb{Z}/2})$, то $\operatorname{rk} H^*(X,x,\mathbf{F}_2)=\operatorname{rk} H^*(X^{\mathbb{Z}/2},x,\mathbf{F}_2)$ [2]. Розглянемо спектральну послідовність Лере — Серра з коефіцієнтами в \mathbf{F}_2 для розшарування $(X_{\mathbb{Z}/4}^{\mathbb{Z}/2},x_{\mathbb{Z}/4})\to B\mathbb{Z}/4$. З теореми про універсальні коефіцієнти [1] випливає $E_2^{2i+1,t}\cong E_2^{2i+1,0}\otimes E_2^{0,t},t>0$, і $E_2^{2j,t}\cong E_2^{2j,0}\otimes E_2^{0,t},t>0$. Крім того, $E_2^{2i+1,t}\cong\operatorname{st}^i\cdot E_2^{0,t}$ і $E_2^{2j,t}\cong\operatorname{t}^i\cdot E_2^{0,t},t>0$. З останніх співвідношень отримуємо рівність $\operatorname{rk}_{\mathbf{F}_2}(E_2^{*i})^*\otimes H^*(B\mathbb{Z}/4,\mathbf{F}_2)\mathbf{F}_2)=\operatorname{rk}_{\mathbf{F}_2}H^*(X^{\mathbb{Z}/2},x,\mathbf{F}_2)$. Далі, з твердження 1 випливає наступна рівність: $\operatorname{rk}_{\mathbf{F}_2}(H_{\mathbb{Z}/4}^{(*)}(X^{\mathbb{Z}/2},x,\mathbf{F}_2))$. Отже, дана спектральна послідовність вироджується і тому пара $(X^{\mathbb{Z}/2},x)$ цілком \mathbf{F}_2 -негомологічна нулю в $(X_{\mathbb{Z}/4}^{\mathbb{Z}/2},x_{\mathbb{Z}/4})$. З останнього факту випливає ізоморфізм $\mathbb{Z}/2$ -градуйованих модулів:

$$H_{\mathbf{Z}/4}^{(\bullet)}(X^{\mathbf{Z}/2}, x, \mathbf{F}_2) \otimes_{H^{(\bullet)}(B\mathbf{Z}/4, \mathbf{F}_2)} {}_{l}\mathbf{F}_2 \cong H^{(\bullet)}(X^{\mathbf{Z}/2}, x, \mathbf{F}_2).$$

Таким чином, $\mathbb{Z}/2$ -градуйовані модулі $H^{(*)}(X, x, \mathbb{F}_2)$, $H^{(*)}(X^{\mathbb{Z}/2}, x, \mathbb{F}_2)$ ізоморфні.

Нехай M — скінченний **Z**-модуль. Позначимо через $\exp M$ найменше

число $n \in \mathbb{Z}$, для якого nx = 0 при всіх $x \in M$.

Зауважимо, що у випадку парного n і тривіальної дії групи $\mathbb{Z}/4$ на гомологіях $H_*(X, \mathbb{Z})$ кліткового простору X, де $X \sim (S^n)^k$, множина сингулярних точок $X^{\mathbb{Z}/2}$ не є порожньою. Дійсно, припустимо протилежне. Тоді група $\mathbb{Z}/4$ діє на X вільно. Простий підрахунок показує, що $\prod_{j\geqslant 1} \exp H^{j+1}(B\mathbb{Z}/4, H_j(X, \mathbb{Z})) = 1$. Остання рівність суперечить теоремі 1.1 В. Браудера [3], з якої випливає, що порядок групи $\mathbb{Z}/4$ повинен ділити число \prod ехр $H^{j+1}(B\mathbb{Z}/4, H_j(X, \mathbb{Z}))$.

Розглянемо тепер дії групи $\mathbb{Z}/4$ на просторі $X \sim {}_{\circ}S^m \times S^n$, де $m \geqslant n$. Нагадаємо, що $H^*(B\mathbf{Z}/2, \mathbf{F}_2) \cong \mathbf{F}_2[s]$, де deg s = 1.

Твердження 2. Нехай $X \sim {}_2S^m \times S^n$ — клітковий ${\bf Z}/4$ -комплекс, $X^{\mathbf{Z}/4} \neq \emptyset$ і група $\mathbf{Z}/4$ діє на когомологіях $H^*(X, \mathbf{F}_2), H^*(X^{\mathbf{Z}/2}, \mathbf{F}_2)$ тривіально, а $x \in X^{\mathbb{Z}/4}$. Тоді або $\mathbb{Z}/2$ -градуйовані модулі когомологій $H^{(*)}(X,$ x, \mathbf{F}_2), $H^{(*)}(X^{\mathbf{Z}/2}, x, \mathbf{F}_2)$ ізоморфні, або $X^{\mathbf{Z}/2} \sim_2 S^q$ для деякого числа q. Доведення. Розглянемо дві спектральні послідовності E, E' Ле-

ре — Серра для розшарування $(X_{\mathbf{Z}/4}, x_{\mathbf{Z}/4}) \xrightarrow{r} B\mathbf{Z}/4$ з коефіцієнтами відповідно в \mathbf{F}_o і в \mathbf{Z}_o а також спектральну послідовність Лере — Серра Uдля розшарування $(X_{\mathbb{Z}/2}, x_{\mathbb{Z}/2}) \to B\mathbb{Z}/2$ з коефіцієнтами в \mathbb{F}_2 . Припустимо, що спектральна послідовність E не вироджується, тобто в ній є ненульові диференціали. З мультиплікативних властивостей спектральної послідовності E випливає, що перший такий диференціал є $d=d_{m-n+1}:E^{0,m}_{m-n+1}\to E^{m-n+1,n}_{m-n+1}$. Враховуючи ізоморфізм $E^{\bullet,*}_2$ $\simeq E^{\bullet,*}_{m-n+1}$, можна зробити висновок, що диференціал d має вигляд

 $d: H^{0}(B\mathbf{Z}/4, \mathbf{F}_{2}) \otimes H^{n}(X, x, \mathbf{F}_{2}) \to H^{m-n+1}(B\mathbf{Z}/4, \mathbf{F}_{2}) \otimes H^{n}(X, x, \mathbf{F}_{2}).$

Нехай d (1 \otimes b) = $A \otimes a$, де a, $b \neq 0$ і $A \in H^{m+n-1}(B\mathbf{Z}/4, \mathbf{F}_2)$, $A \neq 0$. Диференціал d індукується диференціалом d' цілочисельної спектральної послідовності E'. Оскільки H^i (BZ/4, $H^n(X, x, Z)$) = 0 при непарних i, то (m-n) — непарне число і $d(1 \otimes b) = \mathbf{t}^r \otimes a$, де r = (m-n+1)/2. Далі, диференціал $d_1:U^{0,m}_{m-n+1}\to U^{m-n+1,n}_{m-n+1}$ спектральної послідовності U з коефіцієнтами в \mathbf{F}_2 пропускається через диференціал $d: E_{m-n+1}^{0,m} \to E_{m-n+1}^{m-n+1,n}$, тобто $d_1 = \varphi^* d$, де φ^* — гомоморфізм, $\varphi^*: E_{m-n+1}^{m-n+1,n} \to U_{m-n+1}^{m-n+1,n}$, що індукується канонічним відображенням $\varphi: B\mathbf{Z}/2 \to B\mathbf{Z}/4$. Оскільки група $\mathbf{Z}/2$ діє тривіально на когомологіях $H^*(X, x, F_2)$, то з теореми про універсальні коефіцієнти [1] отримуємо співвідношення $U_2^{i,j} \cong H^i(B\mathbf{Z}/2, \mathbf{F}_2) \otimes H^i(X, \mathbf{F}_2)$ x, $\mathbf{F_2}$), i, $j \geqslant 0$. Очевидно, що $\phi^*(\mathbf{t}^r \otimes a) = s^{2r} \otimes a$, $s^{2r} \otimes a \in H^{2r}(B\mathbf{Z}/2, \mathbf{F_2}) \otimes a$ $\otimes H^n(X, x, \mathbf{F}_2)$, де s— твірна кільця поліномів $\mathbf{F}_2[s] \cong H^*(B\mathbf{Z}/2, \mathbf{F}_2)$. Отже, спектральна послідовність $U^{*,*}$ не вироджується і перший ненульовий диференціал d_1 в ній має вигляд $d_1: H^0(B\mathbb{Z}/2, \mathbb{F}_2) \otimes H^m(X, x, \mathbb{F}_2) \rightarrow$ $\rightarrow H^{m-n+1}(B\mathbf{Z}/2, \mathbf{F}_{\mathfrak{d}}) \otimes H^{n}(X, x; \mathbf{F}_{\mathfrak{d}}), d_{\mathfrak{d}}(1 \otimes b) = s^{2r} \otimes a.$ Далі отримаємо $d_{\mathbf{t}}(s^{i}\otimes b)=s^{2r+i}\otimes a.$ Таким чином, два рядки спектральної послідовності $U^{*,*}$ анулюються, а рядок $U_2^{*,n+m}$ доживає до $U_{\infty}^{*,n+m}$. Звідси випливає що $\operatorname{rk}_{\mathbf{F}_2}H^*(X^{\mathbf{Z}/2}, x, \mathbf{F}_2) = 1$, і тому $X^{\mathbf{Z}/2} \sim_2 S^q$ для деякого числа q.

Розглянемо тепер випадок, коли спектральна послідовність E для розшарування $(X_{\mathbf{Z}/4}, x_{\mathbf{Z}/4}) \rightarrow B\mathbf{Z}/4$ з коефіцієнтами в \mathbf{F}_2 вироджується. З доведення твердження 1 випливає наступний ізоморфізм $\mathbf{Z}/2$ -градуйованих

модулів:

 $H^{(*)}(X, x, \mathbf{F}_2) \cong H_{\mathbf{Z}/4}^{(*)}(X^{\mathbf{Z}/2}, x, \mathbf{F}_2) \otimes_{H^{(*)}(B\mathbf{Z}/4, \mathbf{F}_2)} {}_{l}\mathbf{F}_2.$

Далі, з доведення наслідку твердження 1 легко отримати ізоморфізм $\mathbb{Z}/2$ -градуйованих модулів $H_{\mathbb{Z}/4}^{(*)}(X^{\mathbb{Z}/2},x,\mathbb{F}_2)\otimes_{H^{(*)}(B\mathbb{Z}/4,\mathbb{F}_2)}{}_l\mathbb{F}_2\cong H^{(*)}(X^{\mathbb{Z}/2},x,\mathbb{F}_2)$. З останніх двох співвідношень одержимо ізоморфізм $\mathbb{Z}/2$ -градуйова-

них модулів $H^{(*)}(X,x,\mathbf{F}_2)\cong H^{(*)}(X^{\mathbf{Z}/2},x,\mathbf{F}_2)$. Нехай p і q — взаємно прості непарні числа, q/p-1, а $(\mathbf{Z}/p)^*$ — мультиплікативна група одиниць кільця \mathbb{Z}/p . Ін'єктивний гомоморфізм $\varphi: \mathbb{Z}/q \rightarrow$ \to Aut $({\bf Z}/p)\cong ({\bf Z}/p)^*$ задає напівпрямий добуток групи ${\bf Z}/p$ на групу ${\bf Z}/q$, який позначається ${\bf Z}/p \curlywedge {\bf Z}/q$. Група ${\bf Z}/p \curlywedge {\bf Z}/q = G$ містить нормальну підгрупу \mathbf{Z}/p індексу q. Відомо, що кільце поліномів $\mathbf{F}_p[u]$ ізоморфне кільцю когомологій $H^*(B\mathbf{Z}/p \wedge \mathbf{Z}/q, \mathbf{F}_p)$, де $u \in H^{2q}(BG, \mathbf{F}_p)$. Для групи G = $= {\bf Z}/p \wedge {\bf Z}/q$ має місце аналог твердження 2. Ми подамо тільки формулювання аналогічного твердження, оскільки його доведення аналогічне доведенню твердження 2.

Твердження 3. Нехай $X \sim {}_p S^m \times S^n$ — клітковий G-комплекс, $X^G \neq \emptyset$, і група G діє на когомологіях $H^*(X, \mathbf{F}_p)$, $H^*(X^{\mathbf{Z}/p}, \mathbf{F}_p)$ тривіально, а $x \in X^G$. Тоді або $\mathbb{Z}/2$ д-градуйовані модулі $H^{(*)}(X, x, \mathbb{F}_p)$ і $H^{(*)}(X^{\mathbb{Z}/p}, x, \mathbb{F}_p)$ над \mathbb{F}_p ізоморфні, або $X^{\mathbb{Z}/p} \sim {}_p S^r$ для деякого числа r.

- 1. Tammo tom Dieck. Transformation groups. New York: Gruyter, 1987. 312 p.
- 2. Бредон Г. Введение в теорию компактных групп преобразований. М.: Наука, 1980. —
- 3, Browder W. Cohomology and group actions // Invent. math. 1983. 71. P. 599-607.

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 7

Одержано 23.03,92