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CERTAIN SUBCLASSES OF MEROMORPHICALLY g-STARLIKE FUNCTIONS
ASSOCIATED WITH THE ¢-DERIVATIVE OPERATORS *

JESKI IIIKJIACH MEPOMOP®HUX ¢-3IPKOBUX ®YHKIIIN,
IHOB’A3AHI 3 g-ITIOXITHUMH OIIEPATOPAMMU

The purpose of the present paper is to establish several general results concerning the partial sums of meromorphically
starlike functions defined here by means of a certain class of g-derivative (or g-difference) operators. The familiar concept of
neighborhood for meromorphic functions are also considered. Moreover, by using a Ruscheweyh-type g-derivative operator,
we define and study another new class of functions emerging from the class of normalized meromorphic functions.

MeToro 1€l cTaTTi € OTPUMaHHs KUIBKOX 3arajlbHUX pe3ysbTaTiB, IO MOB’s3aHi 3 YaCTKOBUMH CyMaMH MepoMOp(HHX
3ipKOBHUX (PYHKIiH, sIKi BU3HAYAIOTHCS 3a TOIMOMOTOIO JESIKOTO Kiacy ¢-HOXigHuX (200 g-pi3HHIEBHX) omneparopiB. Takox
PO3IIIIHYTO BiJJOME MOHATTS OKOJIY Juisi MepoMoppHuX ¢yHKLiHA. KpiM Toro, 3a 10MOMOro ¢-moxiJHOro orneparopa TUIY
PymieBast BU3HAUa€eThCsl Ta BUBYAETHCS HOBHH Ki1ac (DYHKIIH, KU BUBOIUTHCS 3 KIAacy HOPMalli30BaHUX MEPOMOP(HUX

(yHKIIHA.
1. Introduction and definition. Let the class of functions f which are analytic in the open unit disk
U={z:2€C and |2| <1}

be denoted by H(U). Also, by A we denote the subclass of the analytic functions f in H(U)
satisfying the following normalization condition:

F(0) = f/(0) ~ 1 =0,

Equivalently, the function f € A has the Taylor — Maclaurin series expansion given by
oo
f(z):z—l—Zanz” Vz e U. (1.1)
n=2

Let S be the subclass of analytic function class A, consisting of all univalent functions in U.
A function f € A is said to be starlike in U, if it satisfies the following inequality:

R <Z}CES>> >0 Vzel,

where, for example, R(z) denotes the real part of z € C.We denote by S* all such starlike functions

in the open unit disk U.

* This paper was partially supported by UKM Grant GUP-2017-064.
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For any two functions f and g, which are analytic in U, we say that the function f is subordinate
to g, written as follows:

F<g o f(z)<g(2),
if there is a Schwarz function w, which is analytic in U with
w(0) =0 and lw(z)| <1,
such that

f(z) = g(w(2)).

Furthermore, for the function g, which is univalent in U, it follows that
f(z) <g(z) (z€U) < [f(0)=g(0) and  f(U)Cg(U).

Next, for a function f € A given by (1.1) and another function g € A given by
g(z) =z + ibnzn Vz e U,
n=2
the convolution (or the Hadamard product) of the functions f and ¢ is defined by
(f*9)(z) =2+ ianbnzn = (g% f)(z) Vzel.
n=2
Let P denote the class of analytic functions p normalized by

oo
p(z) =1+ Z cnz"
n=1

such that
R{p(z)} >0 Vzel.

We now recall some essential definitions and concept details of the ¢-calculus, which are used in
this paper. We suppose throughout this paper that 0 < ¢ < 1 and that

N={1,2,3,...} =N\ {0}, No=1{0,1,2,...}.

Definition 1. Let g € (0,1) and define the q-number [\, by

1— A
- 7 AeC,
[)‘]q: 9
S = 14q+ 4.+, A=neN
k:(]q = q q q 5 =N .

Definition 2. Let g € (0,1) and define the q-factorial [n),! by
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Definition 3. Let g € (0,1) and define q-Pochhammer symbol [t],,, t € C, n € Ny, by

RO n=0,

Han ==y = [tlglt + Uglt +2)g-..[t+n— 1y neN.

Moreover, the g-gamma-function I';(z) may be defined here by the following recurrence relation:
Fy(z+1) =[z]I'y(2) and Ty (1) =1.

Definition 4 [20, 21]. The g-derivative (or the q-difference) (D, f) of a function f is defined,
in a given subset of C, by

f(z) — f(g2)
—_ - 7 0
Do) =] -z @ 7" 12
1(0), z=0,
provided that f'(0) exists.
We note from Definition 4 that
) s f(z)—f(qz)_ /
ql_lgl_(qu)(Z) = Jm BT F(z)

for a differentiable function f in a given subset of C. It is readily seen from (1.1) and (1.2) that
(Dgf)(2) = 1+ ) [n]ganz""".
n=2

A number of subclasses of the normalized analytic function class A in Geometric Function
Theory have been studied already from different viewpoints (see, for example, [7, 8, 11, 12, 15]).
The above-defined g-calculus provides an important tool in order to investigate several subclasses of
the class A. The g-derivative (or the g-difference) operator D, was first used in Geometrc Function
Theory by Ismail et al. [19] in order to study the g-analogue of the class S* of starlike functions in
U (see Definition 5 below). However, initial usages of the g-calculus in the context of Geometric
Function Theory were presented systematically, and the basic (or ¢-) hypergeometric functions were
first used in Geometric Function Theory, in a book chapter by Srivastava (see, for details, [31, p. 347]
and also [1, 2, 13, 14, 18, 24, 26, 33, 34, 36-38]).

Definition 5 [19]. A function f € A is said to belong to the class S; of q-starlike functions if

and

z(qu)(z)_ 1 < 1
f(z) l—q| =~ 1-q
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It is readily observed that, as ¢ — 1—, the closed disk given by

1 1

—— | <
‘w 1—(1’_1—(1

becomes the right-half plane and the class S of g-starlike functions reduces to the familiar class S*
of starlike functions in U.

We next let M denote the class of functions f of the form
f(z)zl—l—ia 2" (1.3)
2 = o '
which are analytic in the punctured open unit disk

U'={z:2€C and 0< |z] <1} =T\ {0}.

A function f € M is said to be in the class MS(«) of meromorphically starlike functions of order
« if it satisfies the following inequality:

!/
—%(Zf(z)> >a VzelU, 0<a<l.
f(z)

Next, analogous to Definition 4, we extend the notion of the g-derivative (or the g-difference)
operator D, to a function f given by (1.3) from the above-defined class M and also introduce the
class MSy(e). Indeed, for f € M given by (1.3), the g-derivative (or the g-difference) D, f is
given by

f(z) — f(az) IR

(Dgf)(2) = W = T2 + Z[n]qanznfl Vz € U*.

n=0

Definition 6. A function f € M is said to be in the class MS,(a) 0 < a < 1 if'it satisfies the
following condition:

L CI

f(2)
11—« T 1-g Slfq' (1:4)

Throughout this paper, we use the notation MS,(«) for the class of meromorphically g-starlike
functions of order «.

Remark 1. 1t is easily seen that

lim MS,(a) =: MS(a) and lim MS,(0) =: MS,

q—1— qg—1—

where M is the function class which was introduced and studied by Clunie (see [10]).
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Since the work in the meromorphically univalent case has parallel to that of the analytically
univalent case, one is tempted to search for results analogous to those of Silverman [30] for mero-
morphically univalent functions in U*. Thus, in this paper, we are motivated essentially by the works
[4, 9, 16, 29, 30] (see also [23, 25, 27, 35]). We propose to investigate the ratio of a function of the
form (1.3) to its sequence of partial sums given by

k
1
==+ @z keN, 1.5
fr(2) Z+n,0az € (1.5)

when the coefficients are sufficiently small. We will determine sharp lower bounds for

"rm) (5e) MW) and MW)

Furthermore, in this paper, we introduce the (,q)-neighborhood of a function f € M of the

form (1.3) by means of the following definition.
Definition 7. For £ > 0, 0 < a < 1 and f € M given by (1.3), we define the (§,q)-
neighborhood of the function f by

1 o o0
Neo(f) = {g: gEM, g(z) =+ buz" and Y L(n,q,0)ax —by| < 5}, (1.6)

where

(2[”]11 + (1 + q)a)q

A0 = o T (1 - ag)’

n € No. (1.7)

2. Main results and their demonstration. First of all, we give a sufficient condition for a
function f € M of the form (1.3) to be in the class MS ().
Theorem 1. Let

1
- —a>0.
q

Suppose also that the function f € M is given by (1.3). If

o)

> (Inlg +a)lan| < ; - a, 2.1)

n=0
then f € MSy(a).
Proof. Let f € M. Then, from (1.4) we have

Z(qu)(z> 1—-agq
fz) T 1-g
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l—aq 1 o0 1—aq
- -+ njg + a
i NN (O T
< = .
1 a

1
This last expression in (2.2) is bounded above by ]

Theorem 1 is proved.
Our next result is based upon Definition 7.

Theorem 2. Let £ > 0 and f € M given by (1.3) satisfy the following condition:

f(z) + ezt

5z € MSy(a)

for any complex number € such that |e| < . Then
Nig,q)(f) T MSEy(a).

Proof. By noting that the condition (1.4) can be written as follows:

2(Dq)f(2)
f(z)
2(Dqf)(2)

W‘F(l‘FQ)a—l

it is easy to see from the condition (2.5) that g(z) € MS,(«) if and only if

2(Dqg)(2) + g(2)
2(Dqgg)(2) + (1 + @) — 1) g(2)

which is equivalent to

+1

<1,

#0 VzelU, o€C, |o=1,

(g% h)(2)

po #0 Vzel.

The function h(z), which is involved in (2.6), is given by
1 oo
h(z) =~ + Z} 2"
-

and
([n]q +1-— ([n]q +(1+qa-— 1)0‘)(]'

T, =
¢—1+1+q1—-ag)o

It follows from (2.7) that

[n]g+1— (([n]q + (1 +q)a— 1)0) q
g—1+1+q¢)(1—-ag)o

’Tn‘ =

(P14 (g + (1 +ga—1ol) g _
- q—1+4(1+q)(1—aq)|o|
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_ @+ (A +9)a)g
q—1+(1+¢q)(1—aq)

=: L(n,q,a), lo| =1, n € Np.

Now, if f € M given by (1.3) satisfies the condition (2.3), we deduce from (2.6) that

WG Lo R<e £>0 25)

or, equivalently, the condition in (2.8) can be written as follows:

gxh)(z
Next, if we suppose that
I, .
q(2) =~ + > dn2" € Ng oy (),
n=0

it follows from (1.6) that

‘((q - ‘?_f G| ISy - a2 <
n=0
> 2[n]g+ (14 q)a
< |z|;q_1+q(1+q) (0 —ag)dn—al <& (2.10)
Upon combining (2.9) and (2.10), we easily see that
‘<q*h><z> i([f+(q—f]*h))(2)
z—1 - 21 -
2’<f*f?(z) —'((q_f)_fh)(z) > 0. (2.11)
z z
The inequality in (2.11) now implies that
h
‘<q G o

Consequently, we have

q(2) € MS,(a),

which completes the proof of Theorem 2.

We now derive the partial sums for the function class MS,(«).

Theorem 3. Let f € M given by (1.3) and define the partial sum fi(z) of the function f
by (1.5), where an empty sum is interpreted (as usual) to be nil. If

> L(n,q,0)|an| <1, (2.12)
n=0
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then
f(z) € MS,(a),
f(2) 1
*(RE) 2 aga ey hen
and

fk(z) ‘C(k+17q7a>
§R<f(z)> > TS Lkt 1,q,0) Vze U, keN,

where L(n,q,«), n € Ny, is defined by (1.7). The bound in (2.14) and (2.15) are sharp.

Proof. First of all, we set

fi(z) =~

z

and we know that

filz) ezt 1
B e MSy(a).

Also, from (2.12), we can easily see that

oo
Y L(n,q,a)|a, = 0| <1,
n=0

1267

(2.13)

(2.14)

(2.15)

(2.16)

where L(n,q,a), n € Ny, is given by (1.7). Inequality in (2.16) now implies that f € N(Lq)(z_l).

From Theorem 2, we conclude that
f(2) € N gy(z7) € MSy(a).

We deduce that the assertion (2.13) holds true.
Next, it is easy to verify that

L(k+1,q,a)>L(k,q a) > 1.

Thus, we find

Z!an!+£k+1 g, Zlan\< Z L(n+1,q.0)|a,| <1,

n=0 n=k+1

If we set

hi(z) = L(k+1,q,0) {ﬁ(é)) - <1 - £(1<:+11qa)>}

00
E(k +1,q, a) ank—i—l anzn+1

k
1 + Z anzn—l-l
n=0

It follows from (2.17) and (2.18) that

ISSN 1027-3190. Vkp. mam. scypn., 2021, m. 73, Ne 9
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|an|

‘hl(z) -1 LEFLEDD <1 Vzel. (2.19)

h1(2)+1‘ 2—22 lan| — £ k+17q’0‘)zn:k+1|a"|

Clearly, the inequality in (2.19) now shows that

R(hi(z)) >0 Vzel. (2.20)

Thus, by combining (2.17) and (2.20), we deduce that the assertion (2.14) holds true.
Next, by taking

1 Zn+l
=== 2.21
f(Z) z E(k‘“‘l,q,a)’ ( )
we easily observe that
f(z) SN2 1
=1-—=>31—-— 1-
K T Lt Laa) T L+ lga) T

which shows that the bound in (2.14) is best possible for each k£ € N.
Just as above, we set that

ha(z) = (1+ L (k+1,q,0)) {fk(z) _ Llk+1lg0) } _

fz) 14+4L(k+1,q,a)
L+ LE+1,q.0)Y ap!
=1- Z"Z’“H . (2.22)

o
1+ Z anz"
n=0

By the virtue of (2.17) and (2.22), we conclude that

h?(z)_l‘ Skt Zn:k—i—l‘an’ <1 VzeU
ha(z) +1 2—22 lan| + 1—£(k+1,q,a))zoo_k+l |an
which shows that
R(ha(z)) >0 VzeU. (2.23)

Finally, upon combining (2.22) and (2.23), we readily get the assertion (2.15) of Theorem 3. The
bound in (2.15) is sharp with the extremal function f(z) given by (2.21).

Theorem 3 is proved.

In its special case when ¢ — 1—, Theorem 3 yields the following known result proved by Cho
and Owa ([9], see also Remark 1).

Corollary 1 [9]. If the function f of the form (1.3) satisfies the following condition:

o0

Z(n—i—a)\an\ <1-a,

n=0

then
f e MS(a),
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f(z) k+2a
%<fk(z)) Zk—i—l—i—a Vze U, keN,

and

fr(2) E+1+«
§R<f(z)>> ) VzeU, kel

The proof of Theorem 4 below is similar to that of Theorem 3, so we have chosen to omit the
analogous details.

Theorem 4. Let f € M given by (1.3) and define the partial sum fi.(z) of f by (1.5). If the
condition (2.12) holds true, then

" ((quk)(z)> =1 L(k+1,q ) (2.24)
and
(Dyfr)(2) Lk +1,q,0)
§R((qu)(Z)) = k+1,+L(k+1,q,0) (2.25)

where L(n,q, ), n € Ny, is given in (1.7) and the bounds in (2.24) and (2.25) are sharp with the
extremal function given by (2.21).
As an application of Theorem 4 (with a = 0), we immediately deduce Corollary 2 below.
Corollary?2. Ifthe function f € M given by (1.3) satisfies the condition (2.12) with o = 0, then

(Dgf)(2) . [k +1]q
§R((l)g,]fk;)(»z)) T LT L.g.0)

and

%((quk)(z)> > ﬁ(k"i_l’%())

(Dgf)(z) )~ [k + 1]+ L(k+1,4,0)’

where L(n,q,a), n € Ny, is given by (1.7).
In the limit case when ¢ — 1—, Theorem 4 yields the following known result.
Corollary3 [9]. If the function f of the form (1.3) satisfies the following condition:

o0

Z(n+a)\an|§1—a,
n=0
then , &+ 1)1
%(f,(z))z1—w(_a) VzeU, keN,
f1.(2) E+1+a
and

f1.(2) E+1+«
éR(f’(z)) > 2+ 1) —ka VzelU, keN.

3. Ruscheweyh-type g-derivative operator for meromorphic functions. In this section,
by using a Ruscheweyh-type g¢-derivative operator, we define and study a new class of functions
emerging from the class M of normalized meromorphic functions. We also investigate the results
analogous to those that have been proved in the preceding section.

Analogues of the Ruscheweyh derivative for analytic functions (see, for details, [28]), Al-
Amiri [3] studied what he called the m-order Ruscheweyh-type derivative. Subsequently, Ganigi
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and Uralegaddi [17] introduced the meromorphic analogue of this derivative. More recently, Kanas
and Raducanu [22] introduced the Ruscheweyh derivative operator for analytic functions by using
the g-derivative operator. We propose to define a g-extension of the meromorphic analogue of the
Ruscheweyh derivative by using the g-derivative operator.

Definition 8. For f € M, the meromorphic analogue of the Ruscheweyh-type q-derivative
operator is defined by

MRIf(2) = f(2) % d(q,6 + L;2) = % + gwn(a)anzn, ze U, 6>-—1, (3.1)
where N
6+ 1:2) = + 3 n(0)2"
and
Yn(6) = m neN. (3.2)

It is easily seen from (3.1) that
MRGf(2) = [(2),  MRyf(2) = [2gMRy[f(az) = 2Dy f(2)

and
2 Dy (2" M f(2))

[m]q!

MR f(2) = , meN.

‘We also note that )

ql_l)l}"l_ #(g, 6+ 1;2) = S0 =2yt

and

lim MREF(2) = f(2) % ——

q—1— k. Z(l — Z)6+1’
which is the familiar Ruscheweyh derivative operator for meromorphic functions introduced and
studied in [5, 6].
Definition 9. A function f € M is said to be in the class Msg(oz), 0 < «a < 1, if it satisfies
the following condition:

6
MRy )
11—« 1—q| " 1—¢q

(_ 2Dy (MRS f(2)) > .
1 1
<

Remark?2. First of all, we see that
MSg(a) = MSy(a),
where MS,(«) is the function class in Definition 6. Secondly, we have

lim MS)(0) = MS,

q—1—

where M is the function class, which was introduced and studied by Clunie (see [10]).
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The following results can be proved by using the arguments similar to those that were already
use in Section 2, so we choose to omit the details of our proof of Theorems 5 -8 below.
Theorem 5. Let

1
- —a>0.
q

Suppose also that the function f € M is given by (1.3). If
= 1
Z ([nlg + a)vnlan| < = — @,
n=0 q
then f € MSg(oa).
Remark 3. Upon letting § = 0 in Theorem 5, we are led to Theorem 1 of the preceding section.
Theorem 6. For & > 0, and let the function f € M given by (1.3) satisfy the following

condition:
f(z)+ez!

1+¢
for any complex number € such that |e| < . Then
Nie.o(f) € MSS(a).

Theorem 7. Let the function f € M be given by (1.3) and define the partial sum fi(z) of the
Sunction f by (1.5), where an empty sum is interpreted (as usual) to be nil. If

€ MSg(oa)

> kn(@)]an| <1, (3.3)
n=0

where
@l (4 g)a)ain(d)
kin () =
¢—1+(1+q1-aq)
in terms of L(n,q,a) and 1, (0) given by (1.7) and (3.2), respectively, then

f(2) € MSy(a),

= L(n,q,0)qPn(d), neN, (3.4)

f(=) > 1
R <fk(2') >1 (@)’ zelU, keN, (3.5)
nd fi(2) (0)
E\Z Rg+1(&
§R<f(z)>21+mk+1(a)’ zelU, kel (3.6)

The bounds in (3.5) and (3.6) are sharp.
Theorem 8. Let the function f € M be given by (1.3) and define the partial sum fi(z) of the
function f by (1.5). If the condition (3.3) holds true, then

Dy f(2) e+ 1]
R (Dq fk(z)> 2l (3.7)
and
(Dqfr)(2) ke (a)
" ( (Du)(2) ) 2 T 1y + (@)’ (3.8)

where kn(a), n € Ny, is given in (3.4). The bounds in (3.7) and (3.8) are sharp with the extremal
function given by (2.21).
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In its special case when o« = 0, Theorem 8 yields the following corollary.
Corollary 4. Let the function f € M, given by (1.3), satisfy the condition (3.3) with o« = 0.
Suppose also that the partial sum fi(2) of the function f is defined by (1.5). Then

(Dqf)(2) o1
3Ce((llsz)(Z))_ q¥r11(9)

T <(quk)(z)) o _4n1(9)
(Dgf)(2) ) = 14 qhp11(0)
where 1, (0) is given by (3.2).

4. Conclusion. For the triviality and inconsequential nature of the so-called (p, q)-variations
of our g-results, with an obviously redundant (or superfluous) parameter p, the reader is referred
to a recent survey-cum-expository review article by Srivastava [32, p. 340]. In this paper, we have
established several general results involving the partial sums of meromorphically g¢-starlike functions
defined here by means of a certain class of g-derivative (or g-difference) operators. We have also
investigated the familiar concept of neighborhood for meromorphic functions. Moreover, by using
a Ruscheweyh-type ¢-derivative operator, we have introduced and studied another new class of
functions emerging from the class of normalized meromorphic functions.
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