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On the Liapunov convexity theorem
with applications to sign-embeddings
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It is proved (Theorem 1) that for a Banach space X the following statements are equialent:
i) the range of every X-valued o-additive non-atomic measure of finite variation has convex
closure; ii) L; does not sign-embed in X.
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Hoseneno (Teopema 1), mo i Ganaxoporo npocropy X eksiBajenTHi Taki TBepLxenns: i) muo-
JHHA 3HaveHb Oyab-AKkoi X-smaunoi o-aputHBHOI Ge3aromuoi MipH 3 ckiHuemHolo Bapiauieio
Mae onyK/e 3amHKanud; ii) npocrip L, ne moxua 3HaKko-BkaactH B X,

1.Introduction. Throughout this paper by «X-valued measure» we
mean a c-additive X-valued measure p defined on a o-field £ of subsets of a
set €. The variation of u is the scalar measure | u | defined as

[n1(4) = sup Y [lw (A

i=1
where the supremum is taken over all collections of disjoint subsets A, £Z,

U A; = A. The Lebesgue measure on Borel o-field B on (0, 1) we denote

i=1

by A. By £(X,Y) we denote the space of all continuons linear operators
from X (Ointo Vi % (A) is the characteristic function of a set AcX;
Ly, =Ly (0, 1).

" The clasgical theorem of A. A. Liapunov [1] states that the range (==the
set of values) of an arbitrary X-valued non-atomic measure is convex if X is
finite-dimensional. The converse is also valid [2, p. 265]: if the range of every
X-valued measure is convex then X is finite-dimensional (a simple proof: sup-
pose that X is infinite-dimensional; let T € & (L,, X) be an operator with
zero kernel; then p (A) = TX (A) is an X-valued measure of finite variation
with non-convex range. Indeed, putting x = p ((0, 1)) we obtain that x/2 does
not belong to the range of p because x/2 = p (A) implies p (0, N\ A) —
= n ((0, 1)) — p (A) = x/2, hence T (X (A) — % ((0, 1) \A)) = x/2 — x/2 =
= Q. It is impossible since 7" has zero kernel).

The question whether the range of every X-valued measure has convex
closure is substantial in the infinite-dimensional case. If we consider measures
of bounded variation, the answer is yes for spaces X having the Radon-Niko-
dym property [2, p. 266]. Theorem 1 stated in Abstract characterizes those
Banach spaces.

It was an interesting problem of H. P. Rosenthal [3] whether Condition
ii) is equivalent to the statement that L, does not isomorphically embed in X.
This problemn was solved in negative by M. Talagrand [4]. In fact, he has con-
structed an example of a subspace X of L; such that L; does not embed both
in X and in L,/X. If we suppose that L, does not sign-embed in L,/X then every
operator from L, into L,/X is narrow (the definition is given below) and hence
so is the quotient-map 7: L, — L,/X. This easily implies that X contains a
subspace isomorphic to L; (spanned by a sequence equivalent to the Haar sy-
stem on which 7' has sufficiently small norin). Thus, since L, in fact does not
embed in X we have that L, sign-embeds in L,;/X while L, does not isomorphi-
cally embed in L,/X.

Then in Section 2 we prove a non-separable generalization of the Liapunov
theorem (Theorem 2) and give a quantitative version of it in the setting of me-
asures admitting atoms (Theorem 3) estimating the degree of non-convexity
of the range of an X-valued measure by norms of atoms.

Section 3 is devoted to a study of narrow operators which in some sense
generalize compact operators and some other kinds of operators.

Definition 1. An operator T €% (L,(Q, 2, pn), X), 1<"p<<oco, is
said to be narrow if for each A€X and e=0 there exists x€L,(Q, =, p)
such that

=y 2 (xdp=0; 3) [ Tx]l<e.
Q

Note that Condition 2) in the above definition is superfluous:
Proposition 1 [5]. Suppose T €% (Ly(Q, 2, n), X). If for each AcZ
and =0 there is x€L,(Q, 2, p) with (1) and (3) then T is narrow.
In 16) non-narrow operator from L, were called norm-sign-preserving.
We describe some properties of narrow operators and also talk about the
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relations between narrow operators and another kinds of operators; then we
review the known sufficient conditions on operators in order to be narrow.

In the next section we study the classes M,, 1<Cp << oo, of those se-
parable Banach spaces X for which every operator 7€ % (Lp, X) is narrow.
In particular, if X ¢ M, then L, does not sign-embed in X. For p =1 the
converse also holds.

Definition 2. An operator T € & (L,, X) is called a sign-embe-
dding if there is 8 = 0 such that forevery «sign» x, i. e. for every x € Ly taking va-
lues in the set {—1, 0, 1} we have that || Tx|| = §||x||.

For example, ¢, M, for each p, 1<Up<Coo. Theorem 1 asserts that
if 1<<p<<?2 and p<<q then L eM,. But if p==2 then for each q the
statement is false.

We are gratefull to M. 1. Ostrovskii for the idea to consider the nontion of
infratype as applied to narrow operators that has simplified the proof of Theo-
rem 1 and also has allowed to prove it for all values of p and ¢, 1 << p << 2,
P =< 9.

2. 0n the rahges of vector measures. First we need
some lemmas.

Lemma 1. Let X be a Banach space, n : £ — X be an X-valued measu-
re of bounded variation and let A, € 2 satisfies

int | () — 1 (4) :Bexu.]:» 0.
Then there is a set A€Z|4,, n(A)5£0, and a number a>0 such that for
every B A and C< B, B,C€Z; |u|(B)##0 we have

1
[ ©—5u®|>alnim. (1)
Proof. Choose a0 so that for every B— A,, BEX

B (B) — 5 1 (49| > a [l (4)). @

We shall call in the sequel a set B € = to be narrow if there is a subset C € X|s
for whch the converse to (1) inequality holds. Our lemma states the existence
of a set A without non-trivial narrow subsets. For each A € £ we define the
value

g(A) =sup{|n|(B) : B A, B is narrow}.

To prove the lemma we should construct two sequences of measurable sets:
Ay> A, >A,> ... and B,, By, B,, ..., where B, are disjoint narrow sets,
B, < A,, |nl(By)=1/2e(A,), Any1 = A\ B,. This construction can be
realized easily by induction: the existence of B, = A,, || (By) = 1/2e(A,)
follows from the definition of &(A,); then we put A, = A,\ B, there is
B, = A, with |u|(B;)=1/26(A,) and we set A, = 4,\ B, and so on. Now

we define B = U B,. B is a narrow set (as a union of disjoint narrow
n=0

sets) and since A, is a non-narrow set by (2), rhe set A = A,\ B~ has

non-zero measure, Since A< A, for each n, then e(A)<<inf, e(4,)<<

< 2inf, | n| (B,). But B, are disjoint and hence inf, |pn|(B,) =0. We have

got e(A) =0, i. e. A has no non-trivial narrow subsets.

Remarks. 1.As aconsequence of Lemma 1 we obtain Lemma 3 from
[5]: f T € = %(L,, X) is a non-narrow operator then L, sign-embeds in X.

2. One can use Lemma 3 from [3] in the proof of Theorem 1 instead of our
I smima 1.

Lemma 2. Let pbe an X-valued measure. I[ for each AeZande >0
there is B€ 2, B — A, such that ||p (B) —1/2 p (A)|| << &, then the range p ()
0" it has convex closure.

For the convenience of the proof of Theorem 3 we shall prove the following
niore general lemma.
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For a subset F of a Banach space X we define a number C (£) as a degree
of non-convexity: .

C(F) = sup ldist (F, ""2‘3 ): x, yEF].

Obviously, C (F) - 0if and only if F has convex closure.
Lemma 2a. Let p be an X-valued measure and r be a number such that
for every e > 0 and every A € 2 there is a X-measurable subset Ay = A with

|p(AB)—%p(A)“gr+s.

Then C(p (X)) << 2r.
Proof of Lemma 2a. Suppose x, ycp(2), i. e. x=pn(A) and y =

=n(B) where 4, BEX. Put A =AN\(A ) B) and B= B\(A ) B) and
choose A, — A and B, — B for a fixed >0 so that e (Ae) — l!Qp(?fl)I]g;_
<r+e and ||u(Be) —12p(B)|<<r+e Then for z—=p(Ae U Be U
U (A N B)) we obtain

dist (p(E), 2ty )g

2 —

52| -

=[+e0 + e @) — g @A+ uB)| <2040

This proves the lemma by arbitrariness of e.

Corollary 1. Let an X-valued measure p of bounded variation has
non-convex range closure. Then there are e > 0 and A € 2, pn (A) 5= 0 such that
for each disjoint A;, A,€Z|a

I (Ay) —p (A =elp|(A, U Ay). (3)

Proof. By Lemma 2 there is a set A, € £ for whieh the conditions of
Lemma 1 hold. Hence there are: a set A and a number a > 0, u (4) 5 0, such
that for every C = B — A, p (B) 55 0 the inequality (1) holds. Then (3) fo-
llows from (1) if wesete = 2a, B = A, | 4,,C = A{:

1840 — 1 (4 =2 |8 (© — 0 (B)| > 201015

Theorem 1. For a Banach space X the following statements are equiva-
lent:

i) the range of every X-valued non-atomic measure p of bounded variation
has convex closure;

ii) L, does not sign-embed in X;

iii) each bounded operator from L, into X is narrow.

Note that the equivalence of ii) and iii) can be obtained from Lemma 3 ot

[3].

Proof. i) —iii). Let T € £ (L,, X). Then the Borel X-valued measure
pon (0, 1) defined as p (A) = TX (A) is non-atomic and of bounded variation.
Fix a Borel subset A — 0, 1) and consider the restriction of u to subsets of A.
Then by i) the element 1/2 T (A) = 1/2 (n (4) +p (&)) can be approximated
by values of p: for every e > 0 there is 4. — A with

1

- Tx(A)—Tx(4) || <e.

By arbitrariness of e, the equality

ITx(ANA) = Tx (4 = 2|5 Tx(A) = Tx(4) [|

implies that T is narrow. '
iii) —- ii) is evident. A
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ii) = i). Let u: 2 — X be a non-atomic measure of bounded variation
such that p (2) has non-convex closure. Let A be as in Corollary 1. Then (A,
2 |a, |p[) is a non-atomic measure space. Define an operator 7: L, (A, Z|a,
|u|)— X so that Ty (B) = u(B) for each BEX|s. If B, are disjoint then

|Y arx B, = | X an B, < ¥lallplB)=| Y ax B,

for each scalars (g;) and hence T can be extended by linearity and continuity to
a bounded operator defined on L, (4, 2|4, |u|). By (3) it is a sign-embedding.
Since |p| is non-atomic, we obtain evidently the existence of a sign-embedding
of L, in X which contradicts iii).

Now we shall prove a non-separable generalization of the Liapunov theo-
rem. Let (€, 2, u,) be a measure space with a nonatomic positive scalar mea-

sure ,. Put
¥q = min{dim L, (A): A€Z, p,(A4)=>0}.

Here dim X denotes the least cardinality of subsets of X with dense linear span.
Denote by dim alg X the cardinality of Hamel basis of a linear space X.

Theorem 2 (The case of real scalars field). Let X be a Banach space
with

dim alg X < &%

and let p de an X-valued o-additive measure on T of [inite variation, absolutely
continuous with respect to p,. Then the range of w is convex.

Proof. By Hahn Decomposition Theorem decompose Q into disjoint
Z-measurable subsets Q, of Q, n > 1, so that if A = Q,, then

(n— 1) p (A) <[ p [ (A) < np, (A). (4)
Define an operator T, €4 (L,(p,), X) for each n=> 1. For asimple function

X = E ayy, (Ay) where A, €2, A; N A;j=@ for i~ j; {J Ax=Q, we put

k=1 k=1

T,x = i au (A, N Q) = ( xdp.

k=1 2,
By (4) T, can be extended on L,(p,) by linearity and continuity. Note
that T,x(A) = u(A N Q,) for each A€Z. Put V = N ker T,,. Show that if

n=1
Bo(A)=0 then Y (| Lo (A)54={0}. Let m be such that p,(4 N Q,)>=>0.
Note the following simple fact: if S is a linear operator acting between
linear spaces E, and [, then

dimalg (£ /ker S) <<dimalg E,
where by E /ker S we denote the quotient space. Hence
dimalg(L, (A N Qu)/ker Ty, |,(ane,y) < dimalg X.
On the other hand
dimalg Le (A | Q,,) = dimalg L, (A ] Q,,) = %o,

Now use the following elementary fact: if £, and E, are subspaces of a lineag
space E with

dimalg (E/E,) <<diamalg E,
then E, N E; s~ {0}. Thus, by the theorem assumptions there exsists
xEker Tml_r_,‘{,ynnm) ﬂ LW (A ﬂ Qm)

and x 5= 0. By the definition of operators T, it is clear that since supp x =Q_,,
we have T,x = Oforalln > 1. Thus, x € Y < L., (A).
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List the formulation of a part of Theorem 1, § 10 from [5] we need. Tet E
be a symmetric Banach space on {Q, Z, p) over the reals and let X be a (clo-
sed) subspace of E. The following statements are equivalent:

£):X N L (A):;-‘:{O} whenever p(4)>0,

iii) for each A € £ and each number 0 << h <C oo there exists x € X such
that x = vy (A’ )-——x(A “Ywhere A” ) A" =A,A' N A" = gandp(4d’) =
==)p. (A)/(v 4+ 1). This theorem gives us for subspace Y and measure p, that
iii) holds.

Let A, BE Z; 0 << {<C 1. In order to prove the convexity of the range of
p we shall construct a set C € 3 so that

1 (C) = tn(A) + (1 — 1) n(B).
Put

Choose by iii) x, and x, from Y so that

X = v%(C)) — X(C;')-
where C; U C;=AN\B, C; C]= @ and

Xy = v, (C) — % (G,
where C, U C;= B\A4, C, N C;= . Since x;, x,€Y, we have T, x, =
=T,x,=0 for all n, i. e.

0 = { xdp =vp(C)—p(C), i=1,2
Qn

Hence p(C)) = v;u(C;). Taking into account that p(AN\B)= n(C)) +
+ 1 (C)) and p(B\A) = p(C)) + p(C;), we conclude

W(C) = .J‘\%_\_I_BL — 10 (A\B),

, B\ A
1(C) = “‘ff\l’ = (1— 1) p (B\A).
Finally put C=C; U C, U (A N B). Then

1(C) =t (ANB) + (1 — ) p (B\A) + n (4 n B).

Remark. When ¥, = #&,, we obtain the Liapunov convexity theorem.

Now consider a measure space {Q, 2, p) with an X-valued o-additive mea-
sure p containing atoms. Recall that a set A € ¥ is called an atom for p f
#(A)s=0and B< A, BE X imply that either p (B) = 0or p (") = pn (A4).

Definition 3. Thedegree of atomlessness of p is the number

at (p) = sup {||n(A)|: A is an atom for p}.
It is not hard to - ec that ifa > af (n) then every A € 2 can be decomposed
n

into a finite union of disjoint Z-measurable subsets: A= [J 4, such that
i=1
max, [|p (A)l| < a.
heorem 3. Lef dim X << oo, Then there exists a contant K > 0 such
that for each X-valued measure

C (n (2)< Kat (n).

Proof. Let A€Z and £€>0. Choose disjoint subsets 4,¢ 2, [ ] A,=
=l
=A, such that max || p(4,)||<<at (p) + &. For eachQ={l1, 2, ..., n} denote
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by Ae the set [J A;. Then
i€Q

5 min|n(4a— 4 b ()] = min| ¥ 84—+ S u(a)] =
i€Q i=l1

=i | S )= 3w = min | 3 a4
i€Q I€Q =

Using the Steinitz estimation [7, p. 27], Lemma 2.1.2 with A, =-—;—-

;:Liril; " 2 &%y “ <dim X max (EA

we obtain the conditions of Lemma 2a with r = 172 dim X at (n). This imply
Theorem 3 with K = dim X.
3. Narrow operators. It is evident that every compact operator

is narrow (considering a Rademacher type system {r, (A)}n=1 in L,(A), A€
€9, we obtain that |77, (4)| tends to 0 and r2(A) = x(A)). On the other
hand, if T€%(L,, X) is narrow then there exists a subspace E < L, isometric
to L, and such that the restriction T |g is compact (of a suitable small norm).
Such a subspace could by generated a system which is isometrically equiva-
lent to the Haar system on which T has sufficiently small norm (cf. [5]).
But an analogy with compact operators does not past too far. If p=>1
then the sum of two narrow operators in %(L,)= % (L, Ly) need not be
narrow. Moreover, every operator in £(L,) is a sum of two narrow opera-
tors [5]. But in &(L,;) the sum of two narrow operators is always narrow
[5]. Recall that an operator T €% (X, Y) is said to be a Dunford-Pettis cpe-
rator provided the image under 7 of a weakly compact set has compact
closure. An operator T €% (X, Y) is called absolutely summing if for every

sequence {x,}ao—; in X such that Z x, converges unconditionally, the series

E Tx, converges absolutely (i. e. Z | Tx, ||<oo) "
" Proposition 2. a). Every 5rz:rzford-Pett£s operaior TE€Y (Lp, X) is
narrow. b). Every absolutely summing operator T €% (Ly, X) is narrow.
Proof. Let A€® and let {r,}n—, be a Rademacher type system on A.
a). Since {r,, n€N} is a weakly compact set in L,, we have that {77, }n—,
is relatively compact in X. Suppose that {Tr,}i=, converges. But since
w— lim,r, =0, we have ©— lim,Trn, =0, hence lim,||Trs,||=0. b).

Since {r,}n=1 is equwa!ent to an orthonormal basis of a Hl]ben space

|8, p. 66], the series E (1/n) r, converges unconditionally. Thus, ) (1/n)
n—]
Tr, converges, hence llITI inf,, || Tr,|l=0.

Problem 1 [5]. Is every strictly singular operator T€Z(L,, X)
narrow (p==1, 2)?

Recall that an operator T€4%(X, Y) fixes a copy of a Banach space Z
it there is a subspace E — X isomorphic to Z for which the restriction 7 |g
is an isomorphism. A deep result annonced in [9, p. 54] and obtained part-
ially in [10] and [11] asserts that if 1<Cp<<2 and T €% (L,) fixes 1o copy
of L, then T is narrow (the same is false when p=2). It is shown in
112) that if 7€ % (L,, X) fixes no copy of I, then T is narrow. For 2 large
class of spaces X it is proved in [6] that 1f) Te¥%(L,, X) flixes no copy of
L, then T is narrow (but not every separable Banach spaces posses the
above property [4]).
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Note that all above given sufficient conditions on operator in order to be
narrow are not necessary ones. An example of a narrow operator 7' € & (L)
with 1 <C p << co which fixes a copy of L, one can obtain considering the ope-
rator of conditional expectation with respect to an arbitrary non-atomic sub-
o-field of ¥ which has infimte codimension in B (cf. [5]. Example | from
§ 8]2. Convenient necessary and suliicient conditions of narrowness of ope-
rators from & (L,) are obtained in [13|: an operator T €% (L,) is narrow if
and only if for every A€W the restriction 7'|r,a) is not an isomorphism.
According to [3, 6] an operator T €% (L,. X) is narrow if and only if for
each A€®B and &> 0 there exists x¢ L, which takes alues-in {— 1,0, 1} on
A and 0 off A and such that || Tx||<<e| x|l

Proble m2 [5]. Let T € & (L,, X) fixes no copy of I, 1 < p < o0,
p % 2. Is it obligatory that T is narrow?

Proble m3I5l. Let 1 << p << 2 and suppose that an infinite-dimensio-
nal Banach space Z embeds in L, and contains no subspace isomorphic to L.
Let T € & (L,, X) fixes no copy of Z. Is T obligatory a narrow operator?

4. Banach spaces X for which every operator
Te& (L, X)is narrow. The class of all infinite-dimensional separable
Banach space X for which every operator T € & (Lp, X) is narrow, we denote
by 9,. The most studied class among them is 9M,. So M, contains all spaces
whicli do not contain subspaces isomorphic to /; [12]. For a large class of sepa-
rable Banach spaces X (which in particular contains all separable duals) it is
proved that it L, does not embed in X then X €9, [6]. One can see that
J%, contains all spaces with the Radon-Nikodym property. Indeed, let X be
a Banach space with the RNP. Then every operator T€%(L,, X} is repre-
sentable [2, p. 63] and hence each operator is Dunford-Pettis [2, p. T4} This
yields by Proposition 2. a) X¢€M,. It is clear that if X €9, then L, does
not embed in X. But the converse is false as it has been observed ahove
in Section 1 (cf. [4]).

It ‘s not hard to see that for each 1<Cr<<2 and 1<Cp<<ool. €¢I, |5

Recall that a Banach space X is said to be of infratype ¢=>1 if there

is a constant C such that for each {X,}i—; = X

: c W a\l/q
91:1__21 ” kgl 0px, " <C (k_z___l Il xx 1] ) .
Theorem 4. Suppose that X is of infratype q > 1. Then for ea'h p,
1< p<<q, we have X €M,
Proof. Suppose TEZ£(Lp, X), A€®B and let n>1 be an inleger.
Partition A into n equimeasurable subsets of equal measures A,,..., 4,.
hen

efﬁil ” k};] 0,T% (Ay) " <C (kgl | T% (Ay) "Q‘JUq <

<CHTI(Y Nx@lE,)" = CIT N (3 (2 )oe)e

k=1 k=1
=C|| T ||(A(AY"? (n'=7")"? 50 as n— 0.

This means that for every & > 0 there is an integer n and a collection 0, ...,
..., 0, of signs such that for

x= Y 0, (4

k=1

we have ||Tx]| < e. It is enough to conclude by Proposition 1 that T is narrow.
Theorem 5. L€y for 1< p<<2 and p<<q.
This follows from Teheorem 4 and the fact that L, is of infratype min
(g, 2) [14].
% Remark that if p = 2 then Lg ¢ 9, for every g. Indeed, denote by /, the
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identity map from L, into L, and by S an arbitrary isomorphic embedding
from L, into L,. Then T = S-I, is a non-narrow operator from L, into L,.
The next lemma was proved in [12] for p = 1 but in a long way.
Lemma 3. Let 1<<p<<oo and TEX(Ly, ¢,). Then for every ¢>0
there is x€ Ly such that |x(t)|=1, S xd & =0 and ||Tx||<e.

Proof. Let T€4%(L;, ¢;) and e >0. Put
K={x(—jL.,: Nxle, <1, |ITx|<e, Sde::O}.

Note that K is a convex and a weakly compact subset of L,. By the Krein-
Milman theorem there is an extremal point x, € K. Let us prove that x, ()] =
= 1. Supposing the contrary, choose § > 0 and B € B with A (B) > 0 so that
| % [() << 1— & for all {€ B. Now we show that | Tx,g = e. Indeed, if we
suppose that ||Txe|| << e then putting x = h (x (B;) — 7, (B,)) where A is some
positive number satisfying & << § and
RN T (% (By) — % (By)) | <<e— || Tx,|l

and B, | B,=B; A (By) = MB,)=MB)/2, we would obtain that (x,+x) € K and
(x, — x) € K, that is impossible since x, is an extremal point of K. Thus,

1 Tx, || =e. Set Tx, = E 2pe, where {e,}n= is the unit vector basis of c,.
n=l1
Choose n, so that |z, |<Ce/2 for any n>n, The subspace
E =T (Lin {en, 11, €ni2 ) N {xEL,,: 5 xd M :0}

has finite codimension in L,, hence L. (B)() E 5{0}. Choose x€ E (] L (B),
x50 so that ||x|. <6 and || Tx||<<e/2. Thus, (x, + x) €K and (x,— x)€
€ K. This contradiction proves the lemma.

In the case of reals where |x|(f) = 1 means x? (f) = 1 Lemma 3 implies the next
theorem,

Theorem 6. ¢,€IM, whenever 1< p << oo.
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