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Hamiltonian analysis of exact solvability
of the quantum 3-level supperradiance Dicke model
I'aminpronoBuii anaxis

TOYHOI iHTErpoBHOCTI TPHPIBHEBOI KBAHTOBOL
mMoneni Haasunpominwsanaa [|ikke

It is proved, that the quantum 3-level supperradiance Dicke model is exactly solvable. The
Lax representation of the evolutionary equations system is derived basing on the theory of
current Lie algebras. The quantum inverse scattering problem method is used to obtain quan-
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tum analogues of the action-angle variables. The spectra of the energy operator and the other
guantum integrals of motion is constructed as well as the exact one- and multiparticles ex-
citation eigenstates of the model. It is shown, that model possesses the states of constrained
quasiparticles (quantum solitons), which involve the supperradianse pulses.

Hosenena ToOuHA IHTErpoOBHICTH TPHpPiBHEBOI KBanTOBOI Mofeni HaaBHnpoMiHwobBanus Jlik-
ke, Ha ocnoei rteopii aareGp Jli crpymis moGynosano 3oGpaxkenHs Jlakca oneparophol
CHCTEMH €BOJIONIAHHX piBHAHBL. Metoaom obGepHeHol KBaHTOBoI 3ajadi posciloBanHs 3uaii-
JleHo KBAaHTOBHH aHajor sMiHHuX ais-kyr. [loOGynoBaHo CHEKTpH iHTEerpajiB pyxy Ta Tou-
Ai oano- i OaratouacTHRKoBi 30yjxeHi cranu moneai. [Tokasawo, mo Moneni npuramanii
CTaHH 3B'H3aHHX KBA3iYacTHHOK (KBAHTOBI COJNTOHH), W0 COPHYHHAIOTL IMOYJALCH Hai-
BHIIPOMIHIOBAHHA.

I.Introduction. The supperradiance Dicke model play an ess-
ential role in quantum optics as well as in the general theories of multiparti-
cles systems with interaction between the Fermi- and Bose- subsystems. This
model was investigated by many authors (see review article [1], and [2]), wich
applied to the problem different approximate methods. The aim of this work is
to show, that 3-level Dicke model is exactly solvable using the inverse scatte-
ring problem method.

2. Description of the model and the basic ope-
rator evolutionary equations. We shall consider the one-
dimension system of the 3-level atoms interacting with the electromagnetic
field. The Hamiltonian of the system can be expressed as follows (we shall
use the second quantisation representation)

—o0 3
H=—i{ dx¥ ef(x)de(x)—
Fo =1
—00 3
— [ de ¥ Vouslef (1) p () + & (%) pf (x)) (1
oo j=I

where we note: »; — the interaction constant, the field operators of the electric
field obey the Bose-commutation relations )

lej(x), &F ()] = 856 (x —y). (2)

The transition operators pj;(x), the occupation operators n;(x) of the vo-
lume unit, the transition operators ps and the occupation operators n; of

the k-number atom are related with the following expressions
N . N
pi@) =Y pEs(x—x),  m@) =¥ nkd(x—x,). 3)
k=1 s

It is easy to show, they satisfy the next commutation relations
[p1 (x), pF(Y)] = (5 (x) — ny (%)) 8(x —y),
(P2 (x), pF (y)] = (ny(x) — ny(x)) 6 (x — y),
[ps (x), pF ()] = (n (x) —ny(x)) 8 (x —y),

[p1 (%), po(9)] = ps(x) 6 (x—y), [pf(x), ps(y)]l = p,(x)S(x—y), (4)
[P3(x), P2 (Y = p1 ()8 (x—y), [p1(x), 1y (¥)] = py (%) 8 (x —y),
[y (x), pF (9] = pF(x)8(x —y), [p2(x), Ny ()] = po (%) S (x —y),
[nf (x), pF ()] = pF (x)6(x —y), [n,(x), Pa(y)] = pa(x)6(x —y),
[P3(x), 7y ()] = ps(x)8(x—y),

[p1(x), pF ()] = [ny (%), p3(y)] = [na(x), py(y)] =
=[n,(x), ny(9)] =[p; (x), p3(¥)] = [ps(x), ps(y)] =0.
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We want to emphasize here that application of the one-dimension model is
in agreement with the experimental data, that the supperradiance phenomena is
observable in long narrow needle-shaped mediums. Next approximation na-
med «the rotation wave approximation» refers to the cancellation of the
terms 3;L (x) p;r (x) 4+ e;(x) pj (x), =1, 3, describing the effects of the simul-
taneous creation (ammihilation) of the photons and excitations of the atoms.

The particles number operator of the model can be expressed as follows

N = jjfm dx [i ef (x) &5 (x) + i n; (x)] . ()
00 i=1 =1

Using (1), (2), (4) it is easy to derive the evolutionary equations for the
operators &;(x), p;(x), n;(x):

i(de;+ dees) = —Vup;,
i(def + dyel) =V,
idp, =— V;ls, (nyg— ny)— Ve ps + Voc_sazp?',
idyp, =Vael ps — Ve, (ny — ny) — Viseapl,
idps = Vrep,— Vrge,py — Voats (n, — ny),
tdny =V (e py — pifes) — Vi (e py— piea)s (6
idpn, = Vo, (&5 py— pieg) — Vg (63 ps — pies),
idpd =—Vueltpd + Vaed pl + Vi (ng— ny),
idpt = —Vwxept + Vred(n,—n,) + Ve py,
idpt = Vel (ng—ny) + Vge,p3 — Vinged p,.

Notise, that after cancelations &, (x) = & (x), &, (x) =&, (x) =0, py (x) =
= p (x), ps (x) = ps (x) = 0, ny (x) = n (x), n, (x) = 0 equations system (6)
will take the form of the Maxwell-Bloch equations often used in the theories of
interaction of the radiation with 2-level atoms medium. As it is proved [3] in
the classical case and [4] for the quantum model, the Maxwell-Bloch system of
equations is exactly solvable. The aim of the present work is to show the
exactly solvability of the more general system (6), to give its Lax representation
and to describe the excitation eigenstates of the quantum 3-level model using
the quantum inverse scatering problem method.

3. Lax operator for the classical system of the
evolutionary equation. In this chapter we shall construct the
Lax operator for the classical analogues of the equations (6) using the ideas
formulated in [5].

Let g be a Lie algebra and Cj the structure constants of g with res-
pect to the basis X, (a, b,e=1, ..., n),

[Xa' Xb] = C:bxc- ) (7)

We shall introduce the co-ordinates in the linear space g* conjugated to

spase g as follows: if & =&"X_cg, then u(g) = (u, &) = u,t”. We shall de-
fine bracket {.,.} in the algebra .4 of smooth functions f(u) on g*

(he I} =— gt 2, ®

which gives a poissonian structure on g*. The Lie-Poisson bracket for the co-
ordinates can be expressed as follows

{ta up} = — Co,. )
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We shall consider the current algebra C (g) associated with Lie aigebra g

o0
EM = Y A, EM. am = Y N (& ), (10)
k> —o0 k>—oo i+j=k

where &;, m;Eg, §(A), 1(L)EC(g), and symbol %> — oo means that the

row is finite on powers of the A™'. Generators of the current algebra C(g)
can be defined:

Xox= XN Ko Xoul =CoasXosss (11)
a b e=1,..,n I, k= —oo, .., oo,
The Lie-Poisson bracket for the coordinates in the conjugated spase is gi-
ven by expressions
{ta,k, s} = — Caplic ki1, (12)

We shall introduce the generating function u, (A) for the co-ordinates of the
element u € C* (g) in the formal Laurant series form

k<+oo
4y (V) = Y uash™, (13)

k=—o00

u(€) = (u,8) = ¥ uasfi = Resu, (M)E*(1).
k

We can decompose C(g) in the linear sum of two subalgebras

k=—1
C(g)=C1(g) +C—(g), where Ci(g) =Y gh', C_(g)= ¥ e". (14)

k=0 —c

Analogical decomposition will take place for the conjugated spase C* (g). We
shall introduce in C* (g) the new poissonian structure. According to the decom-
position (14) we shall introduse the new Lie algebra structure in the vector
spase C (g) with commutator [.,.], as follows

s Nelo = £ [Eey el Bz, n=l, =0, (15)

where § =81 + 5, n =14 -1 €C (9).
Accordant Lie-Poisson bracket in the pace C* (g) in terms of the genera-
ting functions can be expressed by the formulae:

(e o), (o = Can "= g ), =0, (16)

Expression (16) ean be united into one. If we admit the existence of the nonge-
nerative Kiling form of the Lie algebra g, and introduce quantities

Koy = (K*)™ =(X, Xp) = Tr(X,X,), A* = K¥X,, (17)
r(\) = A"'K%X, ® X,, .
U(\) = u, (L) A7, (18)

where we denote tensor product with the symbol ®, we can ascertain that the
Lie-Poisson bracket (16) in terms of this quantities will take the form of the
Yang-Baxter equation:

WA UWlh=IA—p), UM1+10U () (19)

We can easily introduce in (19) the quantity dependence from the spase
coordinate x, which took place in the Yang-Baxter equation using the current
algebra & (g) of the Laurant series & (x, A) with coefficient, which depend from
x and satisfy certainly boundary conditions. It is evident, that

[Xa,k(x), Xb,1 (9)] = CapXe,p418 (x — y). (20)
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The Yang-Baxter equation contains the concrete matrix U (x, ) in the auxi-
liary space; this matrix is a rational function of the spectral parametre 2, but
in the (19) the formal Laurant series with coeffisient in the given Lie algebra g
is present. The agreement of this problem is following: fundamental Poisson
bracket for the concrete model are the realisation of the (19) for the concrete
matrix representation of the given Lie aigebra g restricted on the orbit of the
respective algebra &,(g) in the phase spase (5 (g).

In order to describe the finite-dimension orbits of the Lie algebra C, (g)

we can introduce the finite-dimension Poisson submanifolds in C; (g), puting
invariant relatively the Poisson action of the Lie algebra C, (g) restriction on
the coordinates u. . (or on its generation functions u, (A), U (x, A). Alter
the respective restrictions the matrix U (x, &) will be the rational function of
variable A and will define the Lax operator L (L (x, A) =d, — U (x, })).

Let g be Lie algebra SU (3); we can express its generators X,, a = 1, ...,
..., 8 as follows:

0 —i 0 00 —i 0 0 0
Xy=|—i¢ 00), X,=( 00 O0), X;=(0 0—’5)»
0 00 —i0 0 0—i¢ O

0—10 00 —1 00 0
X.=[1 00), =(00 0], X=[00-—1}, (@1
(0 00) (10 o) (01 0)
—i00 i 00
X;=| oo00), x,=[0—20]}.
(oos) (0 oa)

Let us concretize the expression (18), taking the Lax operator in the following
form

L(x,%)=d,— (x.f,, () A% + Q, () A® + »lk— M, (x) A") . (22)

We shall define the orbits on the phase space by the conditions:
Ji(x)= ... =) =ds(x) =0, J;(x)=2,
Q, (x) = &y (x) 4 9; (x), Qq(x) = i(s; (%) — &, (X)),
Qx (x) = (%) + 85 (x), Qs (x) = i(ey(x) —e; (x)),
Qs (%) = 5(x) 25 (x), Qg(x) = i(e5(x) — &5 (x)),
Q; (x) = Qs(x) =0, (23)
My (x) = py (x) + P; (%), My(x) =i(p](x) —p,(x)),

M, (x) = py (x) + p3(x), Mg (x) = i(py(x) — pj (x)),
Mg (x) = ps(x) + P; (x), Mg(x)=i(ps(x)— P; (x)),

M, (x) = ny (x) —ny (x), Mg (x) = —3(n,(x) + n,(x)),

where ¢g; (x), p; (x), n; (x) — field functions of the classical model with respect
o the operator equations system of the quantum field model. 1t is possible to
draw this conclusion using the following argumentation. The orbits defined

by equations (25) are the Poisson submanifold relatively to the Lie-Poisson
brackets:

Vo), Jo@)}e ={a(x), Qp(9)}o =112 (x)y My (1)} =1{Qq(x), M(y)}, =0,
{Qo (x)’ Qb (y)}o = C;b‘rc (x) 6 (x— ) (24)
{Ma (x), M, (y)}a e Cszc (x) 6 (x— o).
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If we express using (23) the Poisson bracket (24) in terms of the field functions
g; (x), p; (x), n; (x) and realize the transition to the commutators of the quan-

tumfield operators in agreement with the formula {., .} - h [.,.], we shall re-

ceive the complete set of the commutator relations (2), (4).
So, expressions (21)—(23) give a possibility to construct the Lax operator
L (x, A) for the classical analogy of the operator equations system

Aoog(x) (%)
L{x,M)=d,—i| &(x) 0 g5(x) | —
g, (x) & (x) —A

[ m) P} ) P2 (%)
—| P = ) P . (25)
ps (%) Py (x) ny (x)

4. The auxiliary quantum eigenvalue problem.

Let us take to consideration the three-component operator field y; (x), j = 0,2,
obeying the Bose-commutation relations and the completety condition

2
(b5 (%), YN =88(x—y), Y ¥ )P0 =L (26)

We shall express the atom operators of the me(;el in terms of the components
of this field as follows
p1(¥) = PF () %1 (%), pa(¥) =B (x) ha (), pa(x) = P (x) P, (x),
P () =P () v (), pF () =9F () $i(x),  pF(x) = 9F (x) by (), (27)
n®) =9 D)), =072

so, each of the levels of the atoms medium we shall represent by the own osci-
llators. As it is easy to show, operator products (27) satisfy the commutation
relations (4), so the dynamical properties of the model will not be changed by
using the ossillator representation (26), (27). We shall construct quantum form
of the Lax operator using quantum operators in the oscillator representation
instead of the classical field functions and puting the interaction constants

A -V?' e " (x) Vﬂag(x)

Lx,)=d,—i| Vi, e (x) 0 Viges (x) |—
"Va«c_g e (x) Vg ey (x) —A
V@R m bR () b () b ()
— | @R E WO R — T %W ) () | (29)
2y W () by (0) %5 ¥ (2) by (%) b () b, (4)

We shall consider the auxiliary quantum eigenvalue problem on the infi-
nite interval —oo << x << -}-o0:

d,D(x, M) = :U(x, ) D (x, A, (29)

where we note: @ (x, A)-matrix of the decision of (31) that can be represented in
the form (symbol T means transponisation):

@ (x, &) = (@1 (x, A), @2 (x, A), @g(x, A))* (30)
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and we denote by : : the normal order of the operators. We shall define the
transition matrix 7 (A) on the infinite interval. Let decision matrix @ (x, &)
of the equation (29) satisfy the boundary condition:

@ (%, Mjrm—oo = (1, 0, 1)~. (31)

Then the transition matrix will be defined by the value of the decision matrix
in the point x = ‘o0

T(})=(A(A), B(}), CA)* = D (x, Mmie. (32)
We can construct the following form of the operators A (&), B (4), C (A) using
the expressions (28)—(32):

4:00
A =i | dxexp(i k) bF (9 g (6 ) 9 () +

oo _ "
+ i drexp (i km[vm el (1) g, (%, 1) + =+ W () g2 (x, A) o (x)] o
e - %
0] dx exp (i k)| Vi a0 (5 1)+ 222 0 (9 g0 W) 100
~|:on
BON =1+ dx exp(i kx) Wit (¥) g2 (6, 1) (1) +
B 2t - _m— %
-+t “ dx exp (i k,x) [v’ﬁ ey (x) gy (x, A) + ‘Il" Vi (%) g1 (x, &) 9, (X)] +
N _ _ ,
+ ¢ 5 dx exp (i kyx) [V”:s g5 (x) g5 (x; A) + T'; "-|Jf,~|7 (x) gg(x, A) P, (x):l , (33)

-|:oc
CON=1 | dxexp (i k) b (x) g (3 4) s (x) -+
+i{ deexp(i fezx)[va?; e (08 (%, )+ = ¥ () 22 (%, 1) ¥, (x)]+
+o0
4+ i s' dx exp (i kyx) [V;g & (x) g1 (%, A) +

—o0

b/

2 () €1 (5 2) by (x)] ;

where we denote:
g ) =9y (x, Nyexp (i kyx), hky=—A—(xsA), j=T,3. (34)

The aim of the application of the auxiliary quantum eigenvalue problem
is to transit from the description of the model in terms of the local operator

fields €; (x), P, (x), j =1, 3, k =0, 2 to it description in the terms of the
operators A (A), B (A), C (A) which are the quantum analogues of the action-
angle variables, and, as we shall see later, they create the one-particle excita-
tion state of the 3-level supperradiance Dicke model.

5. Exactly excitation eigenstate of the 3-le-
vel supperradiance Dicke model. Let us define a vacuum
state of the model as the state in which all of the 3-level atoms are in the ground
states and there are no photons in the system. This state (we shall denote it by
[0)) possesses the following properties

& (x)|0) =0, ef(x)[0)+0, 1,(x)|0)%0, ¥i(x)]0)=0,
8, (x)|0) =0, ef(x)[0) =0, ¥ (x)]0)=0, ¥ (x)[0)=+0, (35)
3 (x)]0) =0, &f(x)|0)5%0, ¥, (x)[0) =0, ¥ (x)]0)=0.
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Evidently, the vacuum state is the eigenstate of the operator B(A); action
of the operators A (A), C(A) on the vacuum state will create the following
states

I
AM[0) =¥, (M) =iV, | dxexp (i k) [ef () + (%/A1 b (X) o (2)]]0),

(36)
oo

CWI0) = W) =i Vit | drxexp (i kyx) [ef (5) + (oa/) W () %o (011 0),

where
ky = —h—(%,/N), ky=—p— (%/p). (38)

We can specify the expressions:

NIW, () = [V, 00), H|Y, () = — AW, (b)), (39)
NI, (w) =¥, (), HIV, (W) = —2[ ¥, (). (40)

It is evident that the states |¥, (A)=> and |V, (n)= are oneparticle eigenstates
of the medel; they describe the systems which contains one excitation atom (its
electron is on the first or the second excitation level respectively) and one pho-
ton of respective energy; spectral parameters represent the energy of this exci-
tations (with inverse sign).

Multiparticles states of the system can be constructed by expressions

[® Ay ey Ay gy ee s Bm)) = Ay o A(Ry) Cly) ... C(py) [0),  (41)
A'rlm(ljv LA AN ] R'ﬂi pl! i A “'nl)) = (ﬂ _l' fﬂ}|q) {;“1' B 3 z'il’l* .U‘I' LA P'm»’ (42)

hllm(;\’lv PR A’]'1’ Pyp aee s Fm)) = _{}“] + sen -}- A‘i'l + By + sos + l"'m) X
X DAy, ey Ay Py eee s W) (43)

If all A;, p, in (41)—(43) are real, then state (41) describe (n - m) free quasi-
particles of the model with energies Q, and Q,, relationships between the qua-
siparticles energy Q; = —A; and its impulses are defined by the formula (38).
As well as in the nonlinear Schrodinger model [6] and in the two-level su-
pperradiance model [3, 5] the quasiparticles of the model can create the constra-
ined states with a complex A;, p,. One can find the expressions:
A—Ay—in/2
B ®(hyy ooy My s e Bl = g g

A—A, —in /2 h— g — ing/2 A—py,—ing/2
A=A, +in/2 A—py+ing/2 7 A— gy +i%/2

- bﬂ+m (1'! l1! iy 3’I’H p’l! ey p‘m)lmtkla wee ¥ lnv ‘.l.l, wes gy P’m)) (44)

According to the quantum inverse scattering problem method [6, 7] we can
findithe spectra of the constraind states of the model by analytical continuation
of the eigenvalues of the operator B (A).

This operation is defined by two conditions:

1) bnym (...) is analytical on A if ImA >0 and has one zero in the top
half of the co-ordinate Flane;

2) |bpgm (...)] =1 if ImA =0.
Conditions 1), 2) are satistied if Aj;, p, obey the next relationships:

ks . n-1 i . m 1
hy= o+ ml( 5 —1), M =% + txs(T+ hk). (45)
where j=1, ...,n, k=1, ..., m and the constrained state energy is:
Q=—h— ... —A,—p;— . — . (46)

As well as in the classical theory of the Maxwell-Bloch equations system [3]
and in the theory of the quantum 2-level supperradiance Dicke model [4], we
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<an interprete the transitions from this quasiparticle states as the quantum so-
litons describing the supperradianse pulses. From the other side, the transition
from the multiparticle states of the free quasiparticles describe the spontaneous
atoms radiation. We would like to emphasize here, that existence of the many
different sets of the constrained quasiparticles as eigenstates of the model com-
pletely explain the experimentally observed oscillator-type of the supperradi-
ance phenomena.
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