BDC 515.12+512.58

On lifting of functors to the Eilenberg-Moore category of the triple generated by the functor $C_{\rho}C_{\rho}$

Про підняття функторів на категорію Ейленберга — Мура монади, породженої функтором C_pC_p

The second iteration of contravariant functor of the space of continuous functions with topology of pointwise convergence is functorial part of a triple on the category of Tychonoff spaces. The problem of lifting of functors to the Eilenberg-Moore category of this triple is investigated.

Друга ітерація контраваріантного функтора просторів неперервних функцій в топології поточкової збіжності є функторіальною частиною монади (трійки) на категорії тихоновських просторів. Досліджується задача підняття функторів на категорію Ейленберга — Мура цієї монади.

1. Triple generated by the functor C_pC_p . A triple $T = (T, \eta, \mu)$ on category C consists of an endofunctor $T: C \to C$ and natural transformations $\eta: 1_C \to T$ and $\mu: TT \to T$ satisfying the following conditions: $\mu \circ \eta T = 0$

Denote by Tych the category of Tychonoff topological spaces and continuous maps. The contravariant functor $C_p: \operatorname{Tych} \to \operatorname{Tych}$ is defined as follows. The space C_pX of all continuous real-valued functions on X is equipped with topology of pointwise convergence [2]; for mapping $f: X \to Y$ (both X and Y are Tychonoff spaces) we define $C_pf: C_pY \to C_pX$ by the formula: $C_pf(\phi) = \phi \circ f$, $\phi \in C_pY$. For every $x \in X$ denote by $ev_x: C_pX \to \mathbb{R}$ a map defined by the formula $ev_x(\phi) = \phi(x)$, $\phi \in C_pX$. It is well known that the map $\eta X: X \to C_pC_pX$, $\eta X(x) = ev_x$, $x \in X$, is continuous [2]. It is

O. B. PIKHURKO. M. M. ZARICHNYI, 1992

easy to see that $\eta = (\eta X)$ is natural transformation from 1_{Tych} into $C_p C_p$. We construct the natural transformation $\mu: C_p C_p C_p C_p C_p \to C_p C_p$ using the following equality $\mu X(\Phi)(\phi) = \Phi(ev_{\phi}), \quad \Phi \in C_p C_p C_p C_p X, \quad \phi \in C_p X$. The map $\mu X(\Phi): C_p X \to \mathbb{R}$ is continuous as the composition of $ev: C_p X \to C_p C_p C_p X$ and $\Phi: C_p C_p C_p X \to \mathbb{R}$, so μX is correctly defined. In order to see that μX is continuous we need to verify a simple inclusion $\mu X(\Phi)$, $ev_{\phi}, \varepsilon = (\mu X(\Phi), \phi, \varepsilon)$ and to use the fact that the sets $(\Gamma, \psi, \varepsilon) = \{E \in C_p C_p X \mid |E(\psi) - \Gamma(\psi)| < \varepsilon\}$ form a subbase in $C_p C_p X$ (for $\Gamma \in C_p C_p X$, $\psi \in C_p X$, $\varepsilon \in \mathbb{R}$).

Proposition 1. $\mathbb{C}_p^2 = (C_p C_p, \eta, \mu)$ is a triple on the category Tych. Proof. Since

$$\mu X \circ C_p C_p X(\varphi)(\psi) = C_p C_p \eta X(\varphi)(ev_{\psi}) = \varphi(C_p(\eta X(ev_{\psi}))) = \varphi(\psi)$$

and $\mu X \circ \eta C_p C_p X$ (ϕ) $(\psi) = \mu X$ (ev_{ϕ}) $(\psi) = ev_{\phi}$ $(e\psi_{\psi}) = \phi$ (ψ) for arbitrary $\phi \in C_p C_p X$, $\psi \in C_p X$, we obtain $\mu \circ C_p C_p \eta = \mu \circ \eta C_p C_p = 1$. For every $\psi \in C_p C_p C_p C_p X$, $\phi \in C_p X$ we have: $C_p \mu X$ (ev_{ϕ}) $(\psi) = ev_{\phi} \circ \mu X$ $(\psi) = \mu X$ $(\psi) \times (\phi) = \psi$ (ev_{ϕ}) , and therefore $C_p \mu X$ $(ev_{\phi}) = ev$. Putting this equalities together we can obtain

$$\mu X \circ C_p C_p X(\Phi) (\varphi) = C_p C_p \mu X(\Phi) (ev_{\varphi}) = \Phi \circ C_p \mu X (ev_{\varphi}) = \Phi (ev_{\varphi}) =$$

$$= \mu C_p C_p X(\Phi) (ev_{\varphi}) = (\mu X \circ \mu C_p C_p X(\Phi)) (\varphi) \text{ (i. e. } \mu \circ C_p C_p \mu = \mu \circ \mu C_p C_p).$$

The proposition is proved.

Remark that the space C_pC_pX has obvious algebra structure with respect to pointwise addition and multiplication of functions and multiplication on scalars. Let L_pX be the linear subspace of C_pX generated by the image of X under the mapping ηX and A_pX be the least subalgebra of C_pX including the set ηX (X). It is clear that both L_p and A_p are subfunctors of C_pX .

of C_p . The condition $\mu X \circ \eta C_p C_p X = 1_x$ implies that $\mu X (L_p L_p X) \subseteq L_p X$ and $\mu X (A_p A_p X) \subseteq A_p X$. Therefore, we obtain two new triples $\mathbf{L}_p = (L_p, \eta, \eta)$

 $\mu \mid L_p L_p$), $A_p = (A_p, \eta, \mu \mid A_p A_p)$ on the category Tych.

2. Normal functors on the category Tych. Functor $F: \operatorname{Tych} \to \operatorname{Tych}$ is called normal if it is continuous, preserves weight, monomorphisms, intersections, inverse images, empty space, one point space and transforms k-covering maps into surjective (see [3]). (Note that a map $f: X \to Y$ is k-covering iff for arbitrary compact subspace $K \subseteq Y$ there exists a compact subspace $L \subseteq X$ such that f(L) = K.

space $L \subseteq X$ such that f(L) = K.

A normal functor $F : \operatorname{Tych} \to \operatorname{Tych}$ is said to be of degree $\leqslant n$ (briefly deg $(F) \leqslant n$) if for every $a \in FX$ there exists $b \in Fn$ and mapping $f : n \to X$ such that a = Ff(b). A normal functor is called finite if it preserves the class of finite spaces and is called multiplicative if it preserves products.

Proposition 2. Normal multiplicative functor F is isomorphic

to power functor $(-)^i$ for sowe $i < \infty$, if either

a) deg (F) = n (and then i = n); or

b) F is finite

Proof. See [4, 5].

Theorem 1. Let F be a normal multiplicative functor $F: Tych \rightarrow$

 \rightarrow Tych such that F (Comp) \subseteq Comp. Then F is a subfunctor of $(-)^{\omega}$.

Proof. Without loss of generality we can assume that $\deg(F) = \infty$. One can find in [6] the following result: there exists a functor isomorphism $h:F|\operatorname{Comp} \to (-)^{\omega}|\operatorname{Comp}$. First we prove that for every Tychonoff space X and its compactification $i_x:X\to bX$ the following inclusions hold: $hbX\circ F|i_x$ $(FX)\subseteq X^{\omega}\subseteq (bX)^{\omega}$. Assuming the contrary, without loss of generality we can consider X to be the discrete countable space and bX to be αX (the one point compactification of X). Let $a\in h$ $\alpha X\circ Fi_x$ $(FX)\setminus X^{\omega}$. Then there exists a sequence $(b_i)_{i=1,2,\ldots}$ in $F\alpha X$ converging to a and such that the supports of b_i are finite and lie in X.

Suppose that $a=(x_i)_{i=1,2,\ldots}\in(\alpha X)^{\omega}$. Without loss of generality we can assume that $x_0\in\alpha X\setminus X$. Suppose that $h\alpha X\circ Fi_x(b_i)=(y_{ij})_{j=1,2,\ldots}$. There exists a mapping $f:X\to Y$ such that the sequence $(f(y_{i0})_{i=1,2,\ldots})$ is not

convergent in αX . Therefore the sequence $(Fi_x \circ Ff(b_i))_{i=1,2,...}$ is not convergent in $F(\alpha X)$, and we get a contradiction.

Now we define the natural transformation $j: F \to (-)^{\omega}$ by the formula: $iX = h\beta X \circ Fi_r$ (where $i_r: X \to \beta X$ is the canonical embedding X into Stone-

Cech compactification βX of space X). Theorem is proved.

3. Lifting normal functors to the Eilenberg-Moore category. A couple (X, ξ) , where $\xi: TX \to X$ is C-morphism, is called T-algebra iff $\xi \circ \mu X =$ $=1_x$ and $\xi \circ \mu X \xi \circ T \xi$. A morphism $f: X \to Y$ is called morphism of T-algebra (X,ξ) into T-algebra (Y,ζ) if $f\circ\xi=\zeta\circ Tf$. T-algebras and their morphisms form a category which is usually denoted by C^{T} (Eilenberg-Moore category). We can define the forgetful functor $U^T: C^T \to C$ by $U^T(X, \xi) = X$, $U^T(f) = f$. (For details see [1].)

A lifting of functor $F: C \to C$ on the category C^T is a functor $G: C^{\mathsf{T}} \to C^{\mathsf{T}}$ such that $U^{\mathsf{T}} \circ G = F \circ U^{\mathsf{T}}$. The following proposition gives a criterion of existing of a lifting: it is dual to a result of J. Vinárek

(see also [8]).

Proposition 3 (see [9]). There exists a bijective correspondence between the liftings of functor F to CT and the such natural transformations $\delta: TF \to FT$ that $\delta \circ \eta F = F\eta$ and $\delta \circ \mu F = F\mu \circ \delta T \circ T\delta$.

Let T denote one of the triples $(\mathbb{C}_p^2, A_p, L_p)$. We use below the method used in [5] for describing functors which admit a lifting to the category of compact groups.

Theorem 2. If a normal functor F can be lifted to the category Tych^T,

then F is multiplicative.

Proof. Let T be one of the functors C_pC_p , L_p , A_p . We consider the free T-algebra (TQ, μQ) denoting TQ by X (Q is the Hilbert cube). Supposing that F admit a lifting to Tych^T we obtain that the mapping $f = (Fpr_1, Fpr_2) : F(X \times X) \to FX \times FX$ is bijective. Indeed, from the conditions of preserving inverse images and intersections by F we obtain ker (f) = 0(here we use fact that f is linear mapping of topological linear spaces). Besides, since the set ker $(Fpr_1) = F$ (ker (pr_1)) is homeomorphically mapped onto FX by the mapping Fpr_2 we obtain that f is surjective (see [5]).

Since Q can be topologically embedded into X, we obtain that F is mul-

tiplicative (see [4]).

Corollary. If F is a normal functor admitting a lifting to the category Tych^T and F is either finite or deg (F) $< \infty$, then F is isomorphic to a power functor.

- 1. Barr M., Wells Ch. Toposes, triples and theories. New York etc.: Springer, 1985. 345 p.
- 2. Архангельский А. В. Топологические пространства функций. М.: Изд-во Моск. ун-та, 1989.— 224 c.
- 3. Чигогидзе А. Ч. О продолжении нормальных функторов//Вестн. Моск. ун-та. Сер. мат.— 1984.— N 6.— C. 23—26.
- 4. Щепин Е. В. Функторы и несчетные степени компактов // Успехи мат. наук. 1981. —

36, вып. 3.— С. 3.—62. 5. Заричный М. М. Мультипликативный нормальный функтор — степенной // Мат. заметки.— 1987.— 41, № 1.— С. 93—100. 6. Заричный М. М. Профинитная мультипликативность функторов и характеризация

проективных монад в категории компактов // Укр. мат. журн. — 1990. — 42, № 9. — C. 1271—1275.

Vinárek J. Projective monad and extentions of functors // Math. Centr. Afd.— 1983.— N 195.— P. 1—12.

- 8. Arbib M., Manes E. Fuzzy machines in a category // Bull. Austral. Math. Soc. 1975. 13, N 1.— P. 169—120.
- 9. Zarichnyi M. M. On covariant topological functors, I // Q. and A. in Gen. Top. 1990. -8, N 2,— P. 317—369.

Received 06.03.92