Б. В. Базалий, д-р физ.-мат. наук, А. Ф. Тедеев, канд. физ.-мат. наук (Ин-т прикл. математики и механики АН Украины, Донецк)

ОБ ОЦЕНКАХ СКОРОСТИ СТАБИЛИЗАЦИИ НЕКОТОРЫХ ЗАДАЧ СО СВОБОДНОЙ ГРАНИЦЕЙ

С помощью энергетических оценок изучено поведение решений задачи Дирихле и задачи СтеФана при неограниченном возрастании времени для полулинейного уравнения $u_{\Gamma}-u_{x x}+u^{\beta}=0, \beta$ € $(0,1)$, в случае одной геометрической переменной.

За допомогою енергетичних оцінок вивчено поведінку розв язків задачі Діріхле та задачі Стефана при нескінченному зростанні часу для напівлінійного рівняння $u_{\boldsymbol{f}}-u_{x x}+u^{\beta}=0, \beta \in(0,1)$, у випадку однієї геометричної змінної.

В работе изучается поведение решений нілинейных граничных задач для параболического уравнения при неограниченном возрастании времени. Нелинейность задач связана как с нелинейностью уравнения, так и с наличием свободных (неизвестных) границ. В первой части работы устанавливаются оценки сверху и снизу стремления к стационарному решению задачи Дирихле дляя полулинейного уравнения вида $u_{t}-u_{x x}+u^{\beta}=0, x \in R^{1}$, с неоднородным граничным условием на фиксированной границе интервала, где рассматривается решение. Во второй части устанавливается экспоненциальное стремление к стационарному решению задачи Стефана для аналогичного уравнения в случае одной геометрической переменной. Интерес к исследованиюо первой задачи связан с тем, что в случае $\beta \in(0,1)$ решение задачи Коши для указанного уравнения с финитным начальным условием локализовано в пространстве и за конечное время стабилизируется к тривиальному решенио [1]. Мы показываем что для задач Дирихле с неоднородным постоянным граничным условием на фиксированной части границы и финитным начальным условием разность между решением начально-краевой задачи и стационарным решением имеет сверху и снизу экспоненциальную оценку. В случае задачи Стефана экспоненциальное стремление начально-краевой задачи к стационарному решению в фиксированной области было изучено ранее в [2] методом, в основном опиравшимся на теорему сравнения. Здесь, как нам кажется, предлагается более простой энергетический метод получения соответствующих оценок.

1. Задача Дирихле для полулинейного параболического уравнения. Для уравнения с одной геометрической переменной

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}+u^{\beta}=0, \quad x \in R_{+}^{1}, \quad t>0 \tag{1}
\end{equation*}
$$

где $\beta \in(0,1)$, рассмотрим начально-краевую задачу

$$
\begin{gather*}
u(0, t)=m=\text { const }>0, \tag{2}\\
u(x, 0)=u_{0}(x) \tag{3}
\end{gather*}
$$

с финитной функцией $u_{0}(x)$, так что $u_{0}(x)=0$ при $x \geq l_{0}$. Отметим, что нас интересуют неотрицательние решения $u(x, t)$ и что задача (1) - (3) - это задача со свободной границей $x=l(t), \quad l(t)=\sup \{x: u(x, t)>0\}, l(0)=l_{0}$. Стационарное решение задачи (1), (2) имеет вид

$$
w(x)=\left\{\begin{array}{cc}
c_{\beta}(l-x)^{2 /(1-\beta)}, & x \in[0, l], \tag{4}\\
0, & x>l,
\end{array}\right.
$$

$$
c_{\beta}=[(1-\beta) / \sqrt{2(1+\beta)}]^{2 /(1-\beta)}, l=\left(m c_{\beta}^{-1}\right)^{(1-\beta) / 2}
$$

Если в определении функции $w(x)$ положить $l=\bar{l}$ столь большим, чтобы $w(x) \geq u_{0}(x)$ при $x \geq 0$, то теорема сравнения показывает, что носитель решения задачи (1) - (3) для всех $t>0$ лежит в интервале $[0, \bar{l}]$. Будем предполагать, что решение задачи (1) - (3) существует для всех $t>0$, причем

$$
\begin{equation*}
\int_{0}^{t} \int_{0}^{\bar{l}} u_{t}^{2} d x d t+\int_{0}^{\bar{l}} u_{x}^{2} d x \leq \text { const } \tag{5}
\end{equation*}
$$

Рассмотрим функцию $v(x, t)=u(x, t)-w(x)$, которая является решением следующей краевой задачи:

$$
\begin{gather*}
\frac{\partial v}{\partial t}-\frac{\partial^{2} v}{\partial x^{2}}+\left[(v+w)^{\beta}-w^{\beta}\right]=0, \quad x>0, \quad t>0 \\
v(0, t)=0, \quad v(x, 0)=v_{0}(x) \tag{6}
\end{gather*}
$$

Достаточно просто получить оценку сверху убывания функции $v(x, t)$ при $t \rightarrow \infty$. Для этого умножим уравнение в (6) на $v(x, t)$ и проинтегрируем по интервалу $(0, \bar{l})$ с учетом граничных условий. Получим

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{0}^{\bar{l}} v^{2} d x+\int_{0}^{l} v_{x}^{2} d x+\int_{0}^{\bar{l}}\left[(v+w)^{\beta}-w^{\beta}\right] v d x=0 \tag{7}
\end{equation*}
$$

Из неравенства $\left(a^{\beta}-b^{\beta}\right)(a-b) \geq c(\beta)(a+b)^{-1+\beta}(a-b)^{2}$ для неотрицательных a и b следует оценка

$$
\left[(v+w)^{\beta}-w^{\beta}\right] v \geq c(\beta) v^{2}(v+2 w)^{-1+\beta}
$$

Для функции $u(x, t)=v+w$ имеем оценку сверху $|u(x, t)| \leq M=$ $=\max \left(m, \max \dot{u}_{0}(x)\right)$, так что $(v+2 w)^{1-\beta} \leq(2 M)^{1-\beta}$ и, следовательно,

$$
\left[(v+w)^{\beta}-w^{\beta}\right] v \geq c_{1}(\beta) v^{2}
$$

Теперь из (7), используя только лишь знак $\int_{0}^{i} v_{x}^{2} d x$, получаем

$$
\begin{equation*}
\frac{d E}{d t} \leq-c_{2}(\beta) E, \quad E(t)=\int_{0}^{l} v^{2}(x, t) d x, \quad c_{2}(\beta)>0 \tag{8}
\end{equation*}
$$

Из решения дифференциального неравенства (8) находим

$$
\begin{equation*}
E(t) \leq E(0) \exp \left(-c_{2}(\beta) t\right) \tag{9}
\end{equation*}
$$

Замечание 1 . Если уравнение (6) умножить на $|v|^{p-1} v$ и провести выкладки, аналогичные приведенным выше, то получим неравенство

$$
\|v\|_{L_{p+1}} \leq\left\|v_{0}\right\|_{L_{p+1}} e^{-\gamma t}, \quad \gamma=\text { const }>0
$$

Переходя в этом неравенстве к пределу по $p \rightarrow \infty$ с учетом непрерывности функции $v(x, t)$, находим

$$
\sup _{x}|v(x, t)| \rightarrow 0 \text { при } t \rightarrow \infty .
$$

Пусть $v(x, 0) \leq 0$, тогда из принципа максимума получаем $v(x, t) \leq 0$. В этом

случае покажем, что наряду с оценкой (9) для $E(t)$ имеется оценка снизу такого же типа.

Теорема 1. Пусть $v(x, t) \leq 0$ и не обращается в нуль тождественно. Существуют положительные постоянные N, k такие, что

$$
\begin{equation*}
E(t) \geq N e^{-k t} \tag{10}
\end{equation*}
$$

Доказательство. Умножим уравнение в (6) на $v_{t}(x, t)$ и проинтегрируем по промежутку ($0, \bar{l}$). После интегрирования по частям получаем

$$
\begin{equation*}
\int_{0}^{\bar{l}} v_{t}^{2} d x+\frac{1}{2} \frac{d}{d t} \int_{0}^{l} v_{x}^{2} d x+\frac{d}{d t} \int_{0}^{l}\left[\frac{(v+w)^{\beta+1}}{\beta+1}-w^{\beta} v\right] d x=0 \tag{11}
\end{equation*}
$$

Введем обозначения

$$
\begin{gathered}
I(t)=\int_{0}^{\bar{l}}\left\{v_{x}^{2}+\left[(v+w)^{\beta} v-w^{\beta} v\right]\right\} d x=\int_{0}^{l} v_{x}^{2} d x+\int_{0}^{l} \varphi(v) d x \\
F(t)=\int_{0}^{\bar{l}}\left[\left\{\frac{1}{2} v_{x}^{2}+\left[\frac{(v+w)^{\beta+1}}{\beta+1}-w^{\beta} v-\frac{w^{\beta+1}}{\beta+1}\right]\right\} d x=\frac{1}{2} \int_{0}^{l} v_{x}^{2} d x+\int_{0}^{l} \psi(v) d x .\right.
\end{gathered}
$$

Тогда соотношения (6), (11) можно записать в виде

$$
\begin{equation*}
\frac{1}{2} \frac{d E}{d t}=-I(t), \quad \frac{d F}{d t}=-\int_{0}^{\bar{l}} v_{t}^{2} d x \tag{12}
\end{equation*}
$$

По неравенству Гельдера

$$
-\frac{1}{2} \frac{d E}{d t}=-\int_{0}^{\bar{l}} v v_{t} d x \leq\left(\int_{0}^{\bar{l}} v^{2} d x\right)^{1 / 2}\left(\int_{0}^{\bar{l}} v_{t}^{2} d x\right)^{1 / 2}
$$

что можно записать, используя первое соотношение в (12), в виде

$$
\int_{0}^{l} v_{t}^{2} d x \geq E^{-1}\left(\frac{1}{2} \frac{d E}{d t}\right)^{2}=E^{-1}\left(-\frac{1}{2} \frac{d E}{d t}\right) I(t) .
$$

Теперь из второго соотношения в (12) имеем

$$
\begin{equation*}
E \frac{d F}{d t} \leq \frac{1}{2} \frac{d E}{d t} I(t) \tag{13}
\end{equation*}
$$

Покажем теперь, что при сделанных предположениях $I(t) \geq 2 F(t)$. Действительно, пусть

$$
\Phi(v)=2 \psi(v)-\varphi(v)=\frac{2(v+w)^{\beta+1}}{\beta+1}-w^{\beta} v-2 \frac{w^{\beta+1}}{\beta+1}-(v+w)^{\beta} v
$$

Непосредственные вычисления показывают, что $\Phi(0)=\Phi^{\prime}(0)=0$. Заметим, что величина $v+w=u(x, t)$ неотрицательна. Следовательно, при отрицательных $v(x, t)$ имеем $\Phi(v) \leq 0$ и, таким образом, выполняется неравенство $I(t) \geq 2 F(t)$. Но тогда, учитывая отрицательность $d E / d t$, неравенство (13) можно продолжить и получить неравенство

$$
E \frac{d F}{d t} \leq F \frac{d E}{d t}
$$

откуда после интегрирования имеем $F(t) \leq c E(t)$. Оценка $I(t) \leq c_{1} F(t)$ очевидна, но тогда из первого соотношения в (12) получим

$$
\frac{d E}{d t} \geq-c_{2} F(t) \geq-c_{3} E(t)
$$

Интегрируя это неравенство, находим $E(t) \geq c_{4} e^{-c_{3} t}$, что и требовалось доказать.

Замечание 2. При $v(x, 0) \geq 0$ оценка вида (10), как показывает следующее рассуждение, неверна. Пусть $v(x, 0)=0$ при $x \in(0, r)$, где r намного больше $l, v(x, 0)>0$ при $x>r$ и финитна, причем $\max v(x, 0)$ достаточно мало. При этих предположениях с помощью теоремы сравнения можно показать, что $v(x, t) \equiv 0$ при $x \in(0, l)$ и совпадает с решением задачи Коши на (l, ∞), причем носитель этого решения принадлежит, например, $(l+1, \infty)$ при достаточно большом r. Известно, что решение указанной задачи Коши стабилизируется к нулю за конечное время, что и оправдывает наше замечание.
2. Задача Стефана для полулинейного параболического уравнения. В области $G=\{(x, t): x>0, t>0\}$ требуется отыскать кривые $\gamma_{1}: x=r(t), \gamma_{2}: x=s(t)$, выделяющие из G подобласти $G_{i}, i=1,2,3$, и функцию $u(x, t)$, определенную в G, по условиям:

$$
\begin{gather*}
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}+u^{\beta}=0 \quad \text { в } \quad G_{1} \cup G_{2} \cup G_{3} \\
u(x, 0)=u_{0}(x), u(0, t)=m=\text { const }>1 \tag{14}\\
u(r(t), t)=1, \quad \lambda \frac{d r}{d t}=\left(\frac{\partial u}{\partial x}\right)_{-}-\left(\frac{\partial u}{\partial x}\right)_{+} \text {на } x=r(t), \lambda=\text { const }>0
\end{gather*}
$$

$$
G_{1}=\{(x, t): 0<x<r(t), t>0\}, G_{2}=\{(x, t): r(t)<x<s(t), t>0\}, G_{3}=G /\left(G_{1} \cup G_{2}\right),
$$

где $u_{0}(x)$ - финитная функция, $(\partial u / \partial x)_{+},(\partial u / \partial x)_{-}$- предельные значения производных со стороны больших и меньших значений $u(x, t)$ в $x=r(t), u>1$ в $G_{1}, u<1$ в $G_{2} \cup G_{3}, s(t)=\sup \{x: u(x, t)>0\}, \beta \in(0,1)$. Будем предполагать, что данные задачи (14) таковы, что существует классическое решение в том смысле, что все соотношения в (14) выполняются в обычном смысле. С другой стороны, как известно [3], классическое решение явлается обобщенным решением следующей задачи:

$$
\begin{equation*}
\frac{\partial e(u)}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}+u^{\beta}=0 \quad \text { в } G, \quad u(x, 0) \neq u_{0}(x), \quad u(0, t)=m, \tag{15}
\end{equation*}
$$

где функция $e(u)$ определяется следующим образом:

$$
e(u)=\left\{\begin{array}{lll}
u-1 & \text { при } & u>1, \\
u-1-\lambda & \text { при } & u<1 .
\end{array}\right.
$$

Такая форма записи задачи со свободными границами позволяет в некоторых случаях проводить эвристические рассуждения, приводящие к результатам, полученным в этой работе.

Сначала мы покажем, что решение задачи (14) имеет равномерную по оценку носителя решения. С этой целью используем лемму сравнения следующего вида.

Лемма. Пусть в области G существуют решения задачи Стефана $\left(r_{1}(t), s_{1}(t), u_{1}(x, t)\right) \quad u \quad\left(r_{2}(t), s_{2}(t), u_{2}(x, t)\right)$, удовлетворяющие условиям (14) (за исключением граничного условия для $u_{2}(x, t)$ при $x=0$). Пусть

$$
\begin{array}{lll}
u_{2}(x, 0)>u_{1}(x, 0) & n p u & x \leq r_{1}(t), x \geq r_{2}(t), \\
u_{2}(0, t)>u_{1}(0, t) & n p u \text { вcex } & t,
\end{array}
$$

и существует такое t_{0}, что $r_{1}(t) \leq r_{2}(t)$ при $t \in\left(0, t_{0}\right)$.Тогда $r_{1}(t) \leq r_{2}(t)$ для всех t.

Для доказательства леммы достаточно предположить, что множество $\left\{t: t>t_{0}, r_{1}(t)>r_{2}(t)\right\}$ не пусто, и применить строгий принцип максимума.

На основании этой леммы в качестве функции сравнения возьмем функцию $u_{2}(x, t)$ вида (4) с $l=\left(M c_{\beta}^{-1}\right)^{(2-\beta) / 2}$, где число M настолько велико, что выполнены неравенства

$$
m<M, u_{0}(x)<w(x) .
$$

Указанная функция $w(x)$ является стационарным решением задачи Стефана и, следовательно, $r(t) \leq r_{2}=$ const, где r_{2} находится из условия $w\left(r_{2}\right)=1$. Имея эту оценку, нетрудно получить оценку сверху для $s(t)$, равномерную по t. Отсюда следует, что носитель функции $u(x, t)$ ограничен единой постоянной L при всех் t.

Задача (14) имеет стационарное решение, совпадающее с функцией $w(x)$ из (4), при этом равенство $w(x)=1$ определяет свободную границу $r_{0}=l-c_{\beta}^{(\beta-1) / 2}=$ = const.

Введем функцию $v(x, t)=u(x, t)-w(x)$. Отметим, что функция $w(x)$ на всем промежутке ($0, L$) удовлетворяет уравнению в (14). Относительно функции $v(x, t)$ из (15) получим следующую задачу:

$$
\begin{gather*}
\frac{\partial e(v+w)}{\partial t}-\frac{\partial^{2} v}{\partial x^{2}}+(v+w)^{\beta}-w^{\beta}=0 \quad \text { в } \quad(0, L) \times(0, T), \\
v(x, 0)=v_{0}(x), \quad v(0, t)=0, \quad v(L, t)=0 . \tag{16}
\end{gather*}
$$

Теорема 2. Существуют положительные постоянные c_{1}, c_{2} такие, чтіо

$$
\left|r(t)-r_{0}\right| \leq c_{1} \exp \left(-c_{2} t\right), \int_{0}^{L} v_{x}^{2} d x \leq c_{1} t^{-1} \exp \left(-c_{2} t\right) \quad \forall t>0
$$

Доказательство. Умножим уравнение в (16) на функцию $v(x, t)$ и проинтегрируем по промежутку ($0, L$). Этой же операции соответствует сначала интегрирование по области $(0, r(t)$), а затем по области $(r(t), L)$. В результате получим

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{0}^{r(t)} v^{2} d x-\frac{1}{2} \frac{d r}{d t} v^{2}(r(t), t)-v(r(t), t)\left(v_{x}(r(t), t)\right)_{+}+\int_{0}^{r(t)} v_{x}^{2} d x+\int_{0}^{r(t)} \varphi(v) d x=0 . \\
& \frac{1}{2} \frac{d}{d t} \int_{r(t)}^{L} v^{2} d x+\frac{1}{2} \frac{d r}{d t} v^{2}(r(t), t)+v(r(t), t)\left(v_{x}(r(t), t)\right)_{-}+\int_{r(t)}^{L} v_{x}^{2} d x+\int_{r(t)}^{L} \varphi(v) d x=0 .
\end{aligned}
$$

Складывая эти соотношения с учетом соотношений на свободной границе $x=$ $=r(t)$ для функции $v(x, t)$, получаем первое энергетическое равенство

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{0}^{L} v^{2} d x+\lambda \frac{d r}{d t} v(r(t), t)+\int_{0}^{L} v_{x}^{2} d x+\int_{0}^{L} \varphi(v) d x=0 \tag{17}
\end{equation*}
$$

Введем функцию $R(r(t))$ так, чтобы $\frac{d r}{d t} v(r(t), t)=\frac{d R}{d t}$. Тогда при $r(t)<l$

$$
\begin{equation*}
R(r)=r+\frac{1-\beta}{3-\beta} c_{\beta}(l-r)^{(3-\beta) /(1-\beta)}-r_{0}-\frac{1-\beta}{3-\beta} c_{\beta}\left(l-r_{0}\right)^{(3-\beta) /(1-\beta)} \tag{18}
\end{equation*}
$$

а при $r(t) \geq l$

$$
R(r)=r-r_{0}
$$

при этом мы воспользовались тем, что $v(r(t), t)=1-w(r(t))$. Теперь (17) принимает вид

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{0}^{L} v^{2} d x+\lambda \frac{d R}{d t}+\int_{0}^{L} v_{x}^{2} d x+\int_{0}^{L} \varphi(v) d x=0 \tag{19}
\end{equation*}
$$

Интегрируя это выражение по t, имеем

$$
\frac{1}{2} \int_{0}^{L} v^{2} d x+\int_{0}^{t} \int_{0}^{L} v_{x}^{2} d x d t+\int_{0}^{t} \int_{0}^{L} \varphi(v) d x d t=\frac{1}{2} \int_{0}^{L} v_{0}^{2} d x-\lambda R(r(t)) .
$$

Поскольку $r(t)<L$, то правая часть в этом равенстве ограничена некоторой постоянной, не зависящей от t. Таким образом, каждое из слагаемых справа ограничено этой постоянной c_{3}.

Второе энергетическое равенство получим умножением уравнения в (16) в каждой из фаз ($u>1$ и $u<1$) на функцию $v_{t}(x, t)$, интегрированием по соответствующей области и сложением полученных результатов:

$$
\begin{gather*}
\int_{0}^{L} v_{x}^{2} d x+\frac{1}{2} \frac{d r}{d t}\left[\left(v_{x}^{2}(r(t), t)\right)_{+}-\left(v_{x}^{2}(r(t), t)\right)_{-}\right]+ \\
+\frac{d r}{d t} w_{x}(r(t))\left[\left(v_{x}(r(t), t)\right)_{+}-\left(v_{x}(r(t), t)\right)_{-}\right]+\frac{d}{d t} \int_{0}^{L} \frac{1}{2} v_{x}^{2} d x+\frac{d}{d t} \int_{0}^{L} \psi(v) d x=0 \tag{20}
\end{gather*}
$$

Замечая, что $w_{x} \leq 0$, используя второе условие на свободной границе $x=r(t)$ в (14) и свойства решения $u \geq 1$ в $G_{1}, u \leq 1$ в G_{2}, можно утверждать, что три первых слагаемых слева в (20) неотрицательны и, следовательно,

$$
\begin{equation*}
\frac{d}{d t} \int_{0}^{L} \frac{1}{2} v_{x}^{2} d x+\frac{d}{d t} \int_{0}^{L} \psi(v) d x \leq 0 \tag{21}
\end{equation*}
$$

Таким образом, величина

$$
M(v) \equiv \frac{1}{2} \int_{0}^{L} v_{x}^{2} d x+\int_{0}^{L} \psi(v) d x
$$

не возрастает с ростом времени. Более того, укажем сейчас и порядок убывания величины $M(v)$. Для этого умножим неравенство (21) на t и проинтегрируем результат по t :

$$
\begin{equation*}
t\left\{\frac{1}{2} \int_{0}^{L} v_{x}^{2} d x+\int_{0}^{L} \psi(v) d x\right\} \leq \frac{1}{2} \int_{0}^{L} \int_{0}^{L} v_{x}^{2} d x d t+\int_{0}^{t} \int_{0}^{L} \psi(v) d x d t \tag{22}
\end{equation*}
$$

Ранее мы показали, что $\psi(v) \leq \varphi(v) / 2$ при отрицательных v; при положитель

 ных v, как нетрудно видеть, $\psi(v) \leq \varphi(v)$. Таким образом, $M(v) \leq c_{3} t^{-1}$. Отсюда и из равенства $v(x, t)=\int_{0}^{x} v_{x} d x$ следует, что$$
\begin{equation*}
\sup _{x}|v(x, t)| \rightarrow 0 \quad \text { при } t \rightarrow \infty \tag{23}
\end{equation*}
$$

и, следовательно, $\left|r(t)-r_{0}\right| \rightarrow 0$ при $t \rightarrow \infty$.
Из полученного результата можно заключить, что, начиная с некоторого $t_{0}, r(t)<l-\delta$, где δ - некоторая положительная постоянная, при всех $t \geq t_{0}$. Это позволит теперь получить экспоненциальную оценку скорости стабилизации решения задачи Стефана. В самом деле, функцию $R(r(t)$) из (18) можно представить в виде

$$
R(r(t))=\frac{2}{1-\beta} c_{\beta}[l-\rho(t)]^{\frac{1+\beta}{1-\beta}}\left(r(t)-r_{0}\right)^{2}, \rho(t) \in(0, l-\delta)
$$

так что при $r(t)<l-\delta$

$$
\begin{equation*}
c_{5}\left(r(t)-r_{0}\right)^{2} \leq R(r(t)) \leq c_{4}\left(r(t)-r_{0}\right)^{2} \tag{24}
\end{equation*}
$$

Далее,

$$
1-w(r(t))=v(r(t), t)=\int_{0}^{r(t)} v_{x} d x
$$

Отсюда

$$
|1-w(r(t))| \leq r^{1 / 2}(t)\left(\int_{0}^{L} v_{x}^{2} d x\right)^{1 / 2}
$$

С другой стороны,

$$
1-w(r(t))=w\left(r_{0}\right)-w(r(t))=\frac{2}{1-\beta} c_{\beta}(l-\tilde{\rho}(t))^{\frac{1+\beta}{1-\beta}}\left(r_{0}-r(t)\right), \quad \tilde{\rho} \in(0, l-\delta)
$$

поэтому $\left|r_{0}-r(t)\right| \leq c_{6}|1-w(r(t))|$. Отсюда и из (24) получаем оценку

$$
\begin{equation*}
R(r(t)) \leq c_{7} \int_{0}^{L} v_{x}^{2} d x \tag{25}
\end{equation*}
$$

Из неравенств (17), (25) и неравенства $\varphi(v) \geq c_{8} v^{2}$ получим

$$
\frac{d}{d t}\left[\frac{1}{2} \int_{0}^{L} v^{2} d x+\lambda R\right] \leq-\int_{0}^{L} v_{x}^{2} d x-\lambda R+\lambda c_{7} \int_{0}^{L} v_{x}^{2} d x-c_{8} \int_{0}^{L} v^{2} d x
$$

Будем пока считать число λ столь малым, что $1-\lambda c_{7}=c_{9}>0$. Тогда с учетом неравенства

$$
\int_{0}^{L} v_{x}^{2} d x \geq c_{10} \int_{0}^{L} v^{2} d x
$$

всегда можно найти такую положительную постоянную c_{11}, что

$$
\frac{d}{d t}\left[\frac{1}{2} \int_{0}^{L} v^{2} d x+\lambda R\right] \leq-c_{11}\left[\frac{1}{2} \int_{0}^{L} v^{2} d x+\lambda R\right]
$$

Интегрируя это неравенство, получаем оценку

$$
\begin{equation*}
\int_{0}^{L} v^{2} d x+\lambda R \leq c_{12} \exp \left(-c_{11} t\right) \tag{26}
\end{equation*}
$$

или с учетом первого неравенства в (24)

$$
\begin{equation*}
\left|r(t)-r_{0}\right| \leq c_{13} \exp \left(-c_{11} t\right), \int_{0}^{L} v^{2} d x \leq c_{12} \exp \left(-c_{11} t\right) \tag{27}
\end{equation*}
$$

Для того чтобы избавиться в наших рассуждениях от условия малости числа λ, достаточно в условиях задачи сделать замену переменной $t=\gamma \tau$ с достаточно большим γ.

Для доказательства второго утверждения теоремы проинтегрируем неравенство (17) по t в пределах от t_{1} до t_{2} :

$$
\begin{gathered}
\frac{1}{2} \int_{0}^{L} v^{2}\left(x, t_{2}\right) d x+\lambda R\left(t_{2}\right)+\int_{t_{1}}^{t_{2}} \int_{0}^{L} v_{x}^{2} d x d t+\int_{t_{1}}^{t_{2}} \int_{0}^{L} \varphi(v) d x d t= \\
=\frac{1}{2} \int_{0}^{L} v^{2}\left(x, t_{1}\right) d x+\lambda R\left(t_{1}\right) \equiv f\left(t_{1}\right)
\end{gathered}
$$

Вследствие неотрицательности первых двух слагаемых слева имеем

$$
\int_{t_{1}}^{t_{2}} \int_{0}^{L}\left[v_{x}^{2} d x d t+2 \psi(v)\right] d x d t \leq \int_{t_{1}}^{t_{2}} \int_{0}^{L}[2 \psi(v)-\varphi(v)] d x d t+f\left(t_{1}\right)
$$

Воспользуемся теперь монотонностью $M(v)$ и положим $t_{1}=t, t_{2}=2 t$. Тогда

$$
\begin{equation*}
t \int_{0}^{L}\left[v_{x}^{2}(x, 2 t)+2 \psi(v(x, 2 t))\right] d x \leq \int_{t}^{2 t} \int_{0}^{L}[2 \psi(v)-\varphi(v)] d x d t+f(t) \tag{28}
\end{equation*}
$$

Оценка второго слагаемого справа в (28) дается неравенством (26); что касается оценки первого слагаемого справа, то, например,

$$
\begin{gathered}
\int_{t}^{2 t L} \int_{0}^{2 t L} \psi(v) d x d t=\int_{t}^{2 t} \int_{0}^{2 t}\left[(\tilde{v}+w)^{\beta}-w^{\beta}\right] v d x d t \leq \\
\leq c_{14} \int_{t}^{2 t} \int_{0}^{2}|v| d x d t \leq c_{15} \int_{t}^{2 t}\left(\int_{0}^{L} v^{2} d x\right)^{1 / 2} d t \leq c_{16} \exp \left(-c_{17} t\right)
\end{gathered}
$$

причем мы воспользовались теоремой о среднем, равенством $\psi(0)=0$ и неравенством в (27). Теперь при $t>0$ из (28) легко следует

$$
\int_{0}^{L} v_{x}^{2} d x \leq c_{18} t^{-1} \exp \left(-c_{19} t\right)
$$

что и завершает доказательство теоремы 2.

1. Самарский А. А., Галактионов В. А., Курдюмов С. П., Михайлов А. П. Режимы с обострением в задачах для квазилинейных параболических уравнений.-М.: Наука, 1987.- 477c.
2. Базалий Б. В., Шелепов В. Ю. О стабилизации решения задачи Стефана для одного квазилинейного уравнения // Краевые задачи математической физики.-Киев: Наук. думка, 1979.C. 24-39.
3. Friedman A. The Stefan problem in several space variables //Trans. Amer. Math. Soc.-1968.132. - P.51-87.
