О РЕІЕНИЯХ ЗАДАЧИ ДИРИХЛЕ ДЛЯ ЭЛЛИПТИЧЕСКИХ СИСТЕМ В КРУГЕ

Изучаются эллиптические системы 2×2 второго порядка, которые можно записать в виде одного уравнения с комплексными коэффициентами. В произвольной ограниченной области с гладкой границей получены необходимые и достаточные условия связи следов решения, которые применяются в случае круга. Для не собственно эллиптического уравнения доказаны теоремы существования и единственности решения из соболевского пространства. Показано, в частности, что свойства задачи определяет угол между бихарактеристиками. Если он π-рационален, то нет единственности, если же он π-иррационален, то өт степени его приближения π-рациональными числами зависит гладкость решения задачи Дирихле; если же он невеществен, то свойства задачи обычны для эллиптического случая.
Вивчаються еліптичні системи 2×2 другого порядку, які можна записати у вигляді одного рівняння $з$ комплексними коефіцієнтами. У довільній обмеженій області з гладкою межею одержані необхідні' та достатні умови зв'язку слідів розв'язку, які застосовуються у випадку кола. Для не власно еліптичного рівняння доведені теореми існування та єдиності розв'язку з соболєвського простору. Показано, зокрема, що властивості задачі визначає кут між біхарактеристиками. Якщо він π-раціональний, то єдиності немає, а якщо він π-ірраціональний, то від порядку його наближення π-раціональними числами залежить гладкість розв’язку задачі Діріхле; якщо ж він комплексний, то властивості задачі такі ж, як у власно еліптичному випадку.

В настоящей работе изучаются эллиптические системы 2×2 второго порядка, которые можно записать в виде одного уравнения с комплексными коэффициентами. Рассмотрен случай простых (комплексных) характеристик, имеющих угол наклона. Это соответствует тому, что корни λ_{1}, λ_{2} характеристического уравнения различны и не равны $\pm i$. Провести исследования задачи Дирихле в круге в других случаях, а также второй и третьей краевых задач не позволяет недостаток места; это можно сделать с помощью доказанных ниже теорем 1,2 и методики, изложенной в работе [1]. Сопоставление результатов работы [1] и настоящей дает основание полагать, что эллиптическая система с вещественным углом между бихарактеристиками порождающего ее одного уравнения по отношению к граничным задачам имеет все свойства гиперболического уравнения, за исключением разве что на $1 / 2$ увеличенной гладкости решения. При этом системы с невещественным углом имеют привычные свойства эллиптической граничной задачи даже если уравнение не собственно эллиптично.

1. Теоремы о следах решения. Пусть Ω - ограниченная область в \mathbb{R}^{2} с гладкой границей $\partial \Omega$. Рассматривается задача

$$
\begin{gather*}
L u=a u_{x^{1} x^{1}}^{\prime \prime}+b u_{x^{1} x^{2}}^{\prime \prime}+c u_{x^{2} x^{2}}^{\prime \prime}=0 \tag{1}\\
\left.u\right|_{\partial \Omega}=\psi,\left.u_{v}^{\prime}\right|_{\partial \Omega}=\chi \tag{2}
\end{gather*}
$$

в соболевском пространстве $H^{m}(\Omega), m \geq 2, \psi \in H^{m-1 / 2}(\partial \Omega), \chi \in H^{m-3 / 2}(\partial \Omega)$, коэффициенты $a, b, c \in \mathbb{C}$ постоянны, v - единичный вектор внешней нормали.

К уравнению (1) сводятся системы вида

$$
\left(\begin{array}{cc}
L_{1} & -L_{2} \tag{3}\\
L_{2} & L_{1}
\end{array}\right)\binom{u_{1}}{u_{2}}=0
$$

где L_{1}, L_{2} - однородные дифференциальные операторы второго порядка с постоянными вещественными коэффициентами. Нетрудно видеть, что и наоборот, уравнение (1) влечет равенство (3) для $L_{1}=\operatorname{Re} L, L_{2}=\operatorname{Im} L, u_{1}=\operatorname{Re} u, u_{2}=\operatorname{Im} u$, так что уравнение (1) можно записать также в виде

$$
\left.\left\langle\nabla, a^{1}\right\rangle \nabla, a^{2}\right\rangle u=0,
$$

где $a^{j}=\left(a_{1}^{j}, a_{2}^{j}\right), j=1,2$, единичные комплексные векторы. (Напомним, что в $\left.\mathbb{C}^{2}\langle a, b\rangle=a \cdot \bar{b}=a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}.\right)$

Будем считать уравнение (1) эллиптическим, т.е. $l(\xi)=a \xi_{1}^{2}+b \xi_{1} \xi_{2}+c \xi_{2}^{2} \neq 0$ при $\xi \in \mathbb{R}^{2} \backslash\{0\}$. Это, в частности, означает, что для каждого $j=1,2$ векторы $\operatorname{Re} a^{j}$ и $\operatorname{Im} a^{j}$ линейно независимы. Следующие теоремы задают условие связи следов (2) решения уравнения (1).

Теорема 1. Для того чтобы задача (1), (2) имела решение в пространстве $H^{m}(\Omega)$, необходимо, чтобы

$$
\begin{gather*}
P=-l(v(x)) \psi(x) \in H^{m-1 / 2}(\partial \Omega), \\
C=l(v) \chi(x)=\left[b\left(v_{1}^{2}-v_{2}^{2}\right)-2(a-c) v_{1} v_{2}\right] \psi_{s}^{\prime}+ \tag{4}\\
+k\left[(a-c)\left(v_{1}^{2}-v_{2}^{2}\right)+2 b v_{1} v_{2}\right] \psi \in H^{m-3 / 2}(\partial \Omega)
\end{gather*}
$$

и, кроме того,

$$
\begin{equation*}
\forall \xi \in \Lambda \int_{\partial \Omega}[P(x(s))(-i(v, \bar{\xi}\rangle)+C(x(s))] \exp (-i\langle x, \bar{\xi}\rangle) d s=0 \tag{5}
\end{equation*}
$$

где s - натуральный параметр, возрастающий в направлении вектора $\tau=$ $=\left(-v_{2}, v_{1}\right), \Lambda=\left\{\xi \in \mathbb{C}^{2} \mid l(\xi)=0\right\}, k-$ кривизна кривой $\partial \Omega$.

Доказательство. Запишем для оператора L формулу Грина для $u, v \in$ $\in H^{2}(\Omega)$

$$
\begin{equation*}
\int_{\Omega} L u \cdot \bar{v} d x-\int_{\Omega} u \cdot \overline{L^{+} v} d x=\int_{\partial \Omega}\left[L_{(0)} u \cdot \bar{v}_{v}^{\prime}-L_{(1)} u \cdot \bar{v}\right] d s_{x} \tag{6}
\end{equation*}
$$

где $L^{+} v=\bar{a} v_{x^{1} x^{1}}^{\prime \prime}+b v_{x^{1} x^{2}}^{\prime \prime}+c v_{x^{2} x^{2}}^{\prime \prime}=\left\langle a^{1}, \nabla\right\rangle\left\langle a^{2}, \nabla\right\rangle v$, и подсчитаем выражения для $L_{(0)} u, L_{(1)} u$:

$$
\int_{\Omega} L u \cdot \bar{v} d x=\int_{\Omega}\left\langle\nabla, a^{1}\right\rangle\left\langle\nabla, a^{2}\right\rangle u \cdot \bar{v} d x=\int_{\partial \Omega}\left\langle v, a^{1}\right\rangle\left\langle\nabla, a^{2}\right\rangle u \cdot \bar{v} d s_{x}-
$$

$-\int_{\Omega}\left\langle\nabla, a^{2}\right\rangle u \cdot \overline{\left\langle a^{1}, \nabla\right\rangle} \bar{v} d x=\int_{\partial \Omega}\left[\left\langle v, a^{1}\right\rangle\left\langle\nabla, a^{2}\right\rangle u \cdot \bar{v}-\left\langle v, a^{2}\right\rangle u \cdot \overline{\left\langle a^{1}, \nabla\right\rangle v}\right] d s_{x}+\int_{\Omega} u \overline{L^{+} v} d x$ $=$

$$
=\int_{\partial \Omega}\left[l(v) u \bar{v}_{v}^{\prime}+l(v) u_{v}^{\prime} \bar{v}+\left\langle v, a^{1}\right\rangle\left\langle\tau, a^{2}\right\rangle u_{s}^{\prime} \bar{v}-\left\langle v, a^{2}\right\rangle\left\langle\tau, a^{1}\right\rangle u \bar{v}_{s}^{\prime}\right] d s+\int_{\Omega} u \overline{L^{+} v} d x .
$$

Мы воспользовались тем, что $\nabla \varphi=\nu \varphi_{v}^{\prime}=\tau \varphi_{s}^{\prime}$, поэтому

$$
\begin{aligned}
& \left\langle v, a^{1}\right\rangle\left\langle\nabla, a^{2}\right\rangle u=\left\langle v, a^{1}\right\rangle\left[\left\langle v, a^{2}\right\rangle u_{v}^{\prime}+\left\langle\tau, a^{2}\right\rangle u_{s}^{\prime}\right]=l(v) u_{v}^{\prime}+\left\langle v, a^{1}\right\rangle\left\langle\tau, a^{2}\right\rangle \cdot u_{s}^{\prime}, \\
& \left\langle v, a^{2}\right\rangle \overline{\left\langle a^{1}, \nabla\right\rangle v}=\left\langle v, a^{2}\right\rangle\left[\left\langle v, a^{1}\right\rangle v_{v}^{\prime}+\left\langle\tau, a^{1}\right\rangle \bar{v}_{s}^{\prime}\right]=l(v) v_{v}^{\prime}+\left\langle v, a^{2}\right\rangle\left\langle\tau, a^{1}\right\rangle \bar{v}_{s}^{\prime} .
\end{aligned}
$$

Воспользовавшись тем, что $\int_{\partial \Omega} w_{s}^{\prime} d s=0$, а также тем, что по формулам Френе $\tau_{s}^{\prime}=k v, v_{s}^{\prime}==-k \tau, k=\left|\tau_{s}^{\prime}\right|=\left|v_{s}^{\prime}\right|-$ кривизна $\partial \Omega$, получим

$$
\begin{aligned}
& \left.L_{(0)} u=-l(v) u, L_{1}\right) u=l(v) u_{v}^{\prime}+\left[\left\langle v, a^{1}\right\rangle\left\langle\tau, a^{2}\right\rangle+\left\langle v, a^{2}\right\rangle\left\langle\tau, a^{1}\right\rangle\right] u_{s}^{\prime}+k[l(v)-l(\tau)] u= \\
& =l(v) u_{v}^{\prime}+\left[b\left(v_{1}^{2}-v_{2}^{2}\right)-2(a-c) v_{1} v_{2}\right] u_{s}^{\prime}+k\left[(a-c)\left(v_{1}^{2}-v_{2}^{2}\right)+2 b v_{1} v_{2}\right] u .
\end{aligned}
$$

Подставляя теперь в формулу (6) вместо u решение задачи (1), (2), вместо v функцию $v=\exp (i\langle x, \xi\rangle)$, являющуюся решением уравнения $L^{+} v=0$ при $\xi \in$
$\in \Lambda$, а вместо $L_{(0)} u$ и $L_{(1)} u$ их выражения с учетом замены $\left.u_{v}^{\prime}\right|_{\partial \Omega}=\chi,\left.u\right|_{\partial \Omega}=\psi$, получаем соотношение (5). Принадлежность $P \in H^{m-1 / 2}(\partial \Omega), C \in H^{m-3 / 2}(\partial \Omega)$ очевидна.

Теорема 2. Пусть функции $P \in H^{m-1 / 2}(\partial \Omega)$ и $C \in H^{m-3 / 2}(\partial \Omega) \quad(m \geq 2)$ удовлетворяют соотношению (5). Тогда существует единственное решение и € $H^{m}(\Omega)$ задачи (1), (2), граничные данные ψ, χ которого связаны с функциями P и С равенствами (4).

Доказательство. 1. Поскольку $l(v) \neq 0$, то из равенств (4) однозначно находим сначала функцию $\psi \in H^{m-1 / 2}(\partial \Omega)$, а затем функцию $\chi \in H^{m-3 / 2}(\partial \Omega)$. Далее по этим функциям построим функцию $w(x) \in H^{m}(\Omega)$ с граничными данными ψ и $\chi:\left.w\right|_{\partial \Omega}=\psi,\left.w_{v}^{\prime}\right|_{\partial \Omega}=\chi$. Это можно сделать стандартным образом (см., например, [2]).

Будем теперь искать решение $U \in H^{m}(\Omega)$ задачи

$$
\begin{equation*}
L U=-L w,\left.U\right|_{\partial \Omega}=0,\left.U_{v}^{\prime}\right|_{\partial \Omega}=0 . \tag{7}
\end{equation*}
$$

2. Сначала решим уравнение

$$
\begin{equation*}
L_{0} U_{0}=f(=-L w) \tag{8}
\end{equation*}
$$

с минимальным оператором L_{0} в $L_{2}(\Omega)$, порожденным операцией L. Напомним, что минимальным оператором L_{0} с областью определения $\mathscr{D}\left(L_{0}\right)$ называется замыкание оператора L, первоначально определенного на $C_{0}^{\infty}(\Omega)$, в норме графика $\|u\|_{L}^{2}=\|u\|_{L_{2}(\Omega)}^{2}+\|L u\|_{L_{2}(\Omega)}^{2}$; при этом уравнение (8) разрешимо для тex $f \in L_{2}(\Omega)$, для которых

$$
\begin{equation*}
\int_{\Omega} f(x) \bar{v}(x) d x=0 \quad \forall v \in L_{2}(\Omega), L^{+} v=0 . \tag{9}
\end{equation*}
$$

Это следует из того, что в силу оценки $\|u\|_{L_{2}(\Omega)}+C\|L u\|_{L_{2}(\Omega)} \forall u \in C_{0}^{\infty}(\Omega)$ (см. [3]) область значений $\operatorname{Im} L_{0}$ оператора L_{0} замкнута, кроме того, как известно, она ортогональна в $L_{2}(\Omega)$ ядру сопряженного оператора, которым по определению является максимальный оператор \tilde{L}^{+}, так что условие (9) необходимо и достаточно для разрешимости уравнения (8). При этом, очевидно, peшение уравнения (8) единственно.
3. Для проверки выполнения условия (9) подставим в равенство (6) вместо функции u функцию w, а вместо v функцию $\exp (i\langle x, \xi\rangle), \xi \in \Lambda$, принадлежащую ядру $\operatorname{ker} \tilde{L}^{+}$. При этом функции $P=L_{(0)} w \in H^{m-1 / 2}(\partial \Omega), C=L_{(1)}^{w} \in$ $\in H^{m-3 / 2}(\partial \Omega)$ в силу условия (5) таковы, что правая часть в равенстве (6) обращается в ноль. Остается равенство

$$
\begin{equation*}
\int_{\Omega} L w e^{-i\langle x, \overline{\mathrm{E}}\rangle} d x=0 . \tag{10}
\end{equation*}
$$

4, В силу эллиптичности оператора L^{+}область Ω является L^{+}-выпуклой для носителей ([4], следствие 10.8.2), что (в силу следствий 10.6.10 и 10.5.3) влечет плотность линейных комбинаций экспоненциальных решений $\exp (i\langle x, \xi\rangle), \xi \in \Lambda$ в $\operatorname{ker} \tilde{L}^{+}$с нормой пространства $L_{2}(\Omega)$. Переходя к пределу в равенстве (10), получаем условие (9), которое означает разрешимость уравнения (8).
5. В силу эллиптичности оператора L имеем неравенство $\exists C_{0}>0 \quad \forall \xi \in \mathbb{R}^{2}$
$C_{0}|\xi|^{2} \leq|l(\xi)| \leq C_{0}^{-1}|\xi|^{2}$, откуда следует эквивалентность нормы графика $\|u\|_{L}$ и нормы $\|u\|_{H^{2}(\Omega)}, u \in C_{0}^{\infty}(\Omega)$. С учетом того, что область определения $\mathscr{D}\left(L_{0}\right)$ оператора L_{0} есть замыкание пространства $C_{0}^{\infty}(\Omega)$ в норме графика, получаем $\mathcal{D}\left(L_{0}\right)=H^{0} H^{2}(\Omega)$. Поэтому найденное решение U уравнения (8) является решением задачи (7), но пока что $U_{0} \in \stackrel{0}{H}^{2}(\Omega)$.
6. Теперь следует повысить гладкость функции U_{0}. Проиллюстрируем наш способ доказательства простым примером. Если бы, скажем, $L=\Delta$, то рассматривая, например, задачу Дирихле $\Delta u=f, u_{\partial \Omega}=0$ при $f \in H^{m-2}(\Omega)$, мы бы получили $u \in H^{m}(\Omega)$, и в силу единственности решения $u=U_{0}$ все доказано. Те же соображения с задачей Дирихле годятся, если L - собственно эллиптичен [5]. Но в общем случае задача Дирихле не накрывает оператор L. Однако, как следует из общей теории [3], для уравнений с постоянными коэффициентами имеется корректная граничная задача, порождающая разрешимое расширение $L_{B}: \mathscr{D}\left(L_{B}\right) \rightarrow L_{2}(\Omega)$, имеющее двусторонний обратный $E=L_{B}^{-1}: L_{2}(\Omega) \rightarrow \mathbb{D}\left(L_{B}\right)$. Если предположить, что $D^{\alpha} E=E D^{\alpha}$, то функция $u=E(f)$ удовлетворяет задаче $L u=f, u \in \mathbb{D}\left(L_{B}\right)$, которая имеет единственное решение. В силу того, что $\mathscr{D}\left(L_{0}\right) \subset \mathbb{D}\left(L_{B}\right)$, и уравнения (8) имеем $u=U_{0}$. При этом $D^{\alpha} u=D^{\alpha} E(f)=E\left(D^{\alpha} f\right) \in$ $\in \mathscr{D}\left(L_{B}\right) \subset \mathscr{D}\left(L_{0}\right)$, а так как $u=U_{0} \in \mathscr{D}\left(L_{0}\right)={ }^{H^{2}}(\Omega)$, то $U_{0} \in H^{m}(\Omega) \cap \stackrel{0}{H}^{2}(\Omega)$, что и требовалось.

Осталось найти разрешимое расширение L_{B} с обратным $E: L_{2}(\Omega) \rightarrow \mathcal{D}\left(L_{B}\right)$, коммутирующим с $D_{j}, j=1,2, \ldots, n$. В качестве такого расширения подходит $L_{E\left(L_{2}(\Omega)\right)}$, где E - ограниченный оператор в $L_{2}(\Omega)$, порожденный регулярным фундаментальным решением ([4], теорема 10.3.7) и имеющий свойства $L E=$ $=1_{L_{2}(\Omega)}, E L=1_{C_{0}^{\circ}(\Omega)}$, которые влекут $E L_{0}=1_{\mathcal{D}\left(L_{0}\right)}$. При этом $D_{j} E$ - ограниченный оператор в $L_{2}(\Omega)$. Тогда на $C^{\infty}(\bar{\Omega})$ имеем $E D_{j} L u=D_{j} E L u$, а так как в силу L^{+}-выпуклости для носителей области Ω уравнение $L u=f$ разрешимо для любой функции $f \in C^{\infty}(\bar{\Omega})$, то $E D_{j}=D_{j} E$ на $C^{\infty}(\bar{\Omega})$, откуда следует, что $E\left(H^{m}(\Omega)\right) \subset H^{m}(\Omega)$ и $D^{\alpha} E=E D^{\alpha},|\alpha| \leq m$ на $H^{m}(\Omega)$. Теорема доказана.
2. Условия разрешимости задачи Коии. Представим полученные в предыдущем пункте условия (5) в удобном виде. Введем векторы $\tilde{a}^{1}=\left(-\bar{a}_{2}^{1}, \bar{a}_{1}^{1}\right), \tilde{a}^{2}=$ $\left(-\bar{a}_{2}^{2}, a_{1}^{2}\right)$ - направляющие векторы бихарактеристик $\Lambda^{j}=\left\{\lambda \tilde{a}^{j} \mid \lambda \in \mathbb{C}\right\}, j==1$, $2,\left\langle\tilde{a}^{j}, a^{j}\right\rangle=0, \Lambda=\Lambda^{1} \cup \Lambda^{2}$. Разложим в равенстве (5) функцию $\exp (-i x \cdot \xi)$ при $\xi=\lambda \tilde{a}^{j}$ в ряд по λ. Коэффициенты ряда будут удовлетворять условиям

$$
\forall n \in \mathbb{Z}^{+} \int_{\partial \Omega}\left[N \cdot P(x(s)) \cdot\left(v(s) \cdot \tilde{a}^{j}\right)\left(x \cdot \tilde{a}^{j}\right)^{N-1}+C(x)\left(x \cdot \tilde{a}^{j}\right)^{N}\right] d s=0, j=1,2,
$$

складывая которые, получаем

$$
\begin{equation*}
\forall Q \in \mathbb{C}[z], j=1,2, \int_{\partial \Omega}\left[P(x)\left(v \cdot \tilde{a}^{j}\right) Q^{\prime}\left(x \cdot \tilde{a}^{j}\right)+C(x) Q\left(x \cdot \tilde{a}^{j}\right)\right] d s_{x}=0 \tag{11}
\end{equation*}
$$

Это же услловие можно было получить из формулы (6) подстановкой $v=$ $=Q\left(x \cdot \tilde{a}^{j}\right)$. Доказано следующее утверждение.

Предложение 1. Условие (11) эквивалентно условию (5), т.е. необходимо и достаточно для разрешимости задачи (1), (2).

Пусть λ_{1}, λ_{2} - корни уравнения $l(1, \lambda)=0$. Углом наклона бихарактеристики, отвечающей корню λ_{1}, назовем любое решение φ_{1} уравнения $\operatorname{tg} \varphi_{1}=\lambda_{1} \neq \pm i$. Аналогично определяем угол φ_{2} через корень $\lambda_{2}, \varphi_{0}:=\varphi_{1}-\varphi_{2}$. Нетрудно показать, что $\sin \varphi_{0}=\operatorname{det}\left(a^{1} a^{2}\right)$, где a^{1}, a^{2} - столбцы, $\operatorname{tg}^{2} \varphi_{0}=\left(b^{2}-4 a c\right) /(a+c)^{2}$.

Рассмотрим случай круга $\Omega=K=\left\{x \in \mathrm{R}^{2} \mid x^{2}<1\right\}$. В этом случае $\mathrm{v}(x)=x$, $x \cdot a^{j}=-\cos \left(\tau+\varphi_{j}\right), x=(\cos \tau, \sin \tau), \tau=s-$ угловая координата. Обозначим через $\tilde{T}_{n}, Q_{\mathrm{n}}$ полиномы Чебышева: $\tilde{T}_{n}(\cos \alpha)=\cos n \alpha, Q_{n-1}(\cos \alpha)=\sin n \alpha / \sin \alpha$ и введем функции $T_{n}(\tau)=\tilde{T}_{n}\left(\cos \left(\tau+\varphi_{j}\right)\right)=\tilde{T}_{n}\left(-x \cdot \tilde{a}^{j}\right), U_{n}=-\left(x \cdot \tilde{a}^{j}\right)_{\tau}^{\prime} \cdot Q_{n-1}\left(-x \cdot \tilde{a}^{j}\right)$. Нетрудно видеть, что система функций $\left\{T_{n}, U_{n}\right\}_{n=0}^{\infty}$ ортогональна и полна в каждом пространстве $H^{l}(K)$, поскольку таковой является система $\{\cos n \tau$, $\sin n \tau\}$, кроме того $f=\sum_{n=0}^{\infty} f_{n} T_{n}+g_{n} U_{n} \in H^{l}(\partial K)$ тогда и только тогда, когда $\sum_{n}\left(1+n^{2}\right)^{l}\left(\left|f_{n}\right|^{2}+\left|g_{n}\right|^{2}\right)<\infty$ (см. [6]).

Подставим в условие (11) разложение функции $P(\tau)=P(x(\tau))$

$$
P(\tau)=\frac{1}{2} P_{0}^{T}+\sum_{n=1}^{\infty}\left[P_{n}^{T} T_{n}(\tau)+P_{n}^{U} U_{n}(\tau)\right]
$$

и аналогичное разложение функции $C(\tau)$, а в качестве полинома возьмем полином Чебышева \tilde{T}_{n}. Тогда условия (11) запишутся в виде

$$
\begin{gather*}
-C_{l}^{T}=l\left\{\alpha(l) P_{0}^{T}+\sum_{n=1}^{l} P_{n}^{T}\left[-\delta_{l n}+2 \alpha(l-n)\right],\right. \tag{12}\\
-\left[\cos l \varphi_{0} C_{l}^{T}+\sin l \varphi_{0} C_{l}^{U}\right]=l\left\{\alpha(l) P_{0}^{T}+\sum_{n=1}^{l} P_{n}^{T}\left[-\delta_{l n}+2 \alpha(l-n)\right] \times\right. \\
\left.\times\left[\cos n \varphi_{0} P_{n}^{T}+\sin n \varphi_{0} P_{n}^{U}\right]\right\}, l=0,1,2, \ldots
\end{gather*}
$$

Здесь $\delta_{l n}$ - символ Кронекера, $\alpha(2 l)=1, \alpha(2 l+1)=0$.
3. Рассмотрим задачу Дирихле в круге

$$
\begin{equation*}
L u=0 \text { в } K,\left.u\right|_{\partial K}=\psi . \tag{14}
\end{equation*}
$$

Пусть $\psi=0$, тогда $P=0$. Из условий (12), (13) получаем $C_{l}^{T}=0$, $\sin l \varphi_{0} C_{l}^{U}=0$. Поэтому $C(\tau) \equiv 0$ при $\varphi_{0} / \pi \notin \mathbb{Q}$, и решение однородной задачи (14) имеет вид $u \equiv 0$. Если же $\varphi_{0} / \pi \in \mathbb{Q}$, то пара $P=0, C=\sum_{k} d_{k} \sin k q\left(\tau+\varphi_{1}\right)$, $\sum_{k} k^{2 m+1}\left|d_{k}\right|^{2}<\infty$ порождает по теореме 2 решение однородной задачи (14) $u \in$ $\in H^{m}(K)$. Доказана следующая теорема.

Теорема 3. $П р и ~ \lambda_{j} \neq \pm i, j=1,2, \lambda_{1} \neq \lambda_{2}$ задача (14) имеет не более одного решения в любом пространстве $H^{m}(K), m \geq 2$, тогда и только тогда, когда число φ_{0} / π иррационально. При выполнении условия $\varphi_{0} / \pi \in \mathbb{Q}$ в каждом про-

странстве $H^{m}(K), m \geq 2$, однородная задача (14) имеет бесконечное число линейно независимых решений.

Сформулируем теперь следующее очевидное утверждение.
Предложение 2. Пусть $k>0$. Неравенство для числа $\rho \in \mathbb{R}$

$$
\exists C_{0}>0, \forall l \in \mathbb{N},|\sin \pi l \rho|>C_{0} l^{-k+1}
$$

эквивалентно неравенству

$$
\begin{equation*}
\exists C_{1}>0, \forall p / q \in \mathbb{Q},|\rho-p / q|>C_{1} q^{-k} . \tag{15}
\end{equation*}
$$

Из теоремы Хинчина ([7], теорема 32) следует утверждение.
Предложение 3. Для любого $k>2$ множество тех $\rho \in \mathbb{R}$, для которых не выполнено свойство (15), имеет лебегову меру ноль.

Оба эти предложения, равно как и следующие, понадобятся для доказательства теорем существования решения задачи (14).

Предложение 4. Пусть $z(\tau) \in H^{1 / 2}(\partial K)$ - нечетная функция и $y(\tau)=$ $=\sin \tau \cdot z(\tau)$, a оператор B^{+}действует по правилу

$$
\sum_{n=0}^{\infty} y_{n} \cos n \tau \xrightarrow{B^{+}} \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} y_{k}\right) \cos n \tau .
$$

Тогда $\forall m \geq 1 / 2$ принадлежность $z \in H^{m}(\partial К)$ влечет включение $B^{+} y \in H^{m}(\partial К)$.
Доказательство. Напомним, что преобразованием Абеля ряда называется формула

$$
\sum_{n=0}^{l} \alpha_{n} \beta_{n}=\alpha_{l} \tilde{\beta}_{l}-\sum_{n=0}^{l-1}\left(\alpha_{n+1}-\alpha_{n}\right) \tilde{\beta}_{n}, \tilde{\beta}_{l}=\sum_{n=0}^{l} \beta_{n}
$$

Применим это преобразование к разложению функции $y(\tau)$, где $\alpha_{n}=\cos n \tau$,

$$
\begin{aligned}
y(\tau)=\sum_{n=0}^{\infty} y_{n} \cos n \tau & =\lim _{l \rightarrow \infty}\left(\cos / \tau \sum_{n=0}^{l} y_{n}\right)- \\
-\sum_{n=0}^{\infty} Y_{n}[\cos (n+1) \tau-\cos n \tau] & =2 \sum_{n=0}^{\infty} Y_{n} \sin \left(n+\frac{1}{2}\right) \tau \cdot \sin \frac{\tau}{2} .
\end{aligned}
$$

Здесь $Y_{n}=\sum_{k=0}^{n} y_{k}, \lim _{l \rightarrow \infty} \sum_{n=0}^{l} y_{n}=y(0)=0$, так как y непрерывна. Тогда $\cos \tau \cdot z(2 \tau)=\sum_{n=0}^{\infty} Y_{n} \sin (2 n+1) \tau$, откуда в силу принадлежности $z \in H^{m}(\partial K)$ получим $\sum_{n=1}^{\infty} n^{2 m}\left|Y_{n}\right|^{2}<\infty$. Поэтому $B^{+} y \in H^{m}(\partial K)$. Наоборот, $\sum_{n=1}^{\infty} n^{2 m}\left|y_{n}\right|^{2}=$ $=\sum_{n=1}^{\infty} n^{2 m}\left|Y_{n}-Y_{n-1}\right|^{2} \leq C \sum_{n=0}^{\infty}\left(1+n^{2}\right)^{m}\left|Y_{n}\right|^{2}=\|Y\|_{H^{m}(\partial K)}^{2}<\infty$. Легко видеть, что операторы B и $\left(B^{+}\right)^{-1}$ ограничены. Доказательство завершено.

Применим теперь предложение $6[6]$ к функции $y^{0}(\tau)=y(\tau+\pi)$. Очевидно, что $y^{0}(\tau)=-\sin \tau \cdot z(\tau+\pi)$ с нечетной функцией z. Получим то же утверждение для оператора B^{-}, действующего по формуле

$$
y(\tau) \rightarrow y(\tau+\pi)=\sum_{n=0}^{\infty}(-1)^{n} y_{n} \cos n \tau \rightarrow \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}(-1)^{k} y_{n}\right) \cos n \tau=Y^{-}(\tau) .
$$

Отсюда

$$
B^{+} y+B^{-} y=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{[n / 2]} 2 y_{2 k}\right) \cos n \tau \in H^{m}(\partial K),
$$

$$
B^{+} y-B^{-} y=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{[n / 2]} 2 y_{2 k+1}\right) \cos n \tau \in H^{m}(\partial K)
$$

Поэтому функция $\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n / 2} 2 y_{n-2 k}\right) \cos n \tau$ также принадлежит пространству $H^{m}(\partial K)$. Вычитая отсюда $y(\tau)$, получаем следующее утверждение.

Предложение 5. Пусть $z \in H^{m}(\partial К), m \geq 1 / 2$, - нечетная функция, $y(\tau)=$ $=\sin \tau \cdot z(\tau)$ и $\quad y=\sum_{n=0}^{\infty} y_{n} \cos n \tau$-разложение в ряд Фурье. Пусть оператор В действует по формуле

$$
y \xrightarrow{B} \sum_{n=0}^{\infty}\left[\alpha_{n} y_{0}+\sum_{k=1}^{n} y_{n}\left(-\delta_{n k}+2 \alpha(n-k)\right)\right] \cos n \tau .
$$

Тогда $B y \in H^{m}(\partial K)$, и оператор В ограничен на четной части $H^{m}(\partial К)$.
Замечание. В предложениях 4 и 5 можно заменить $\cos n \tau$ на $T_{n}(\tau)$.
Поскольку $P(\tau)=-l(v) \psi, l(v)=\sin \left(\tau+\varphi_{1}\right) \sin \left(\tau+\varphi_{2}\right)$, то из предложения 5 и условия (12) получаем $C^{T}(\tau)=\sum_{k=0}^{\infty} C_{k}^{T} \cdot T_{k}(\tau) \in H^{m-3 / 2}(\partial K)$, если $\psi \in$ [$H^{m-1 / 2}(\partial K)$. Поэтому из условия (13) следует

$$
\begin{equation*}
\forall l \in \mathbb{N}, \sin l \varphi_{0} C_{l}^{U}=g_{l}, \sum_{l=1}^{\infty} l^{2 m-3}\left|g_{l}\right|^{2}<\infty \tag{16}
\end{equation*}
$$

Применяя предложение 2, устанавливаем следующую теорему.
Теорема 4. Пусть число $\rho=\varphi_{0} / \pi$ вещественно и таково, что.для некоторого $k \geq 2$ выполнено неравенство (15), и пусть $\psi \in H^{m-1 / 2}(\partial К), m \geq k+2$. Тогда решение задачи (14) существует, единственно и принадлежит пространству $H^{m-k}(К)$. Если число ρ не вещественно, то решение задачи (14) существует, единственно и принадлежит пространству $H^{m}(К)$.

Выберем теперь последовательность $\varepsilon_{n} \rightarrow+0$. Множество чисел ρ, удовлетворяющих неравенству (15) с $k=2+\varepsilon_{n}$ обозначим M_{n}. Пусть $M=\bigcap_{n} M_{n}$. В силу предложения 3 это множество полной меры в \mathbb{R}. Из равенств (16) следует, что справедлива следующая теорема.

Теорема.5. Для почти всех углов φ_{0} для каждой функции $\psi \in H^{5 / 2+\varepsilon}(\partial К)$ существует единственное решение $и \in H^{2}(К)$ задачи (14).

1. Бурский В.П. Краевые задачи для гиперболического уравнения второго порядка в круге // Изв. вузов. Математика. -1987 .- ${ }^{\circ}$ 2.-С.22-29.
2. Никольский С.М. Приближения функций многих переменных и теоремы вложения.- М.: Наука, 1979.- 456 с.
3. Хермандер Л. К теории общих дифференциальных операторов в частных производных. М.: Изд-во иностр. лит., 1959.-132 с.
4. Хермандер Л. Анализ линейных дифференциальных операторов: В 4-х т.-М.: Мир, 1986. -T.2.- 456 c .
5. Лионс Ж.-Л., Мандженес Э. Неоднородные граничные задачи и их приложения.- М.: Мир, 1971.- 372 c.
6. Берс Л., Джон Ф., Шехтер М. Уравнения с частными производными.-М.: Мир, 1966.- 352 с.
7. Хинчин А.Я. Цепные дроби.-М.: Наука, 1961.- 112 с.

Получено 01.04. 92

