В.В. Горяйнов, д-р физ.-мат. наук (Ин-т прикл. математики и механики АН Украины, Донецк), **И. Ба,** канд. физ.-мат. наук (Донец. ун-т)

ПОЛУГРУППА КОНФОРМНЫХ ОТОБРАЖЕНИЙ ВЕРХНЕЙ ПОЛУПЛОСКОСТИ В СЕБЯ С ГИДРОДИНАМИЧЕСКОЙ НОРМИРОВКОЙ НА БЕСКОНЕЧНОСТИ

Изучаются голоморфные однолистные в верхней полуплоскости функции, которые представляют собой комплексные потенциалы бесконечно глубоких течений над плоским дном с невозмущенным потоком на бесконечности. Выделяется полугруппа таких функций и дается ее инфинитезимальное описание.

Вивчаються голоморфні однолисті у верхній півплощині функції, які є комплексними потенціалами нескінченно глибоких течій над плоским дном з незбуреною течією на нескінченності. Вилучається півгрупа таких функцій і надається її інфінітезимальний опис.

Пусть f — голоморфная однолистная в $U = \{z: \text{Im } z > 0\}$ функция, удовлетворяющая условиям: $f(U) \subseteq U$ и $f(z) - z \to 0$ при $z \to \infty$ внутри каждой полуплоскости $U_{\eta} = \{z: \text{Im } z > \eta\}$, $\eta > 0$. Тогда функцию f^{-1} можно рассматривать как комплексный потенциал бесконечно глубокого течения над плоским дном, обтекающего препятствие $U \setminus f(U)$. Требуемое поведение функции f на бесконечности, называемое гидродинамической нормировкой, означает невозмущенность потока на бесконечности. Каждая линия тока, образ прямой Im z = const, должна мало отличаться в окрестности бесконечно удаленной точки от самой прямой, т.е. от линии тока невозмущенного потока.

Изучению класса однолистных в U функций с гидродинамической нормировкой посвящено большое количество работ (см., например, [1–3] и приведенную там библиографию). Большая часть исследований посвящена случаю, когда $U \setminus f(U)$ является ограниченным множеством. В этом случае функция f имеет разложение в ряд Лорана в окрестности бесконечно удаленной точки и теоретико-функциональный смысл гидродинамической нормировки сводится к виду этого разложения $f(z) = z + \sum_{n=1}^{\infty} c_n z^{-n}$, т.е. гидродинамическая нормировка является внутренним условием. С другой стороны, многие вопросы как теории конформного отображения, так и ее приложений приводят к необходимости изучения общего случая, когда гидродинамическая нормировка является существенно граничным условием.

В настоящей работе исследуется вопрос описания класса однолистных в верхней полуплоскости функций, когда гидродинамическая нормировка является существенно граничным условием. При этом используется интегральное представление функций Пика и развитый в [4] метод инфинитезимального описания полугрупп конформных отображений.

1. Функции Пика с гидродинамической нормировкой. Голоморфная в U функция f называется функцией Пика, если она имеет неотрицательную мнимую часть в U. Функции Пика возникают в различных задачах анализа и им посвящена обширная литература (см., например, [5, 6]). В той литературе, где они рассматриваются в связи с теорией операторов, их также называют \Re функциями.

Класс Пика образует выпуклый конус в пространстве $\mathfrak{C}(U)$ всех голоморфных в U функций. Кроме того, он замкнут относительно операции композиции и, следовательно, образует полугруппу. Как известно, необходимым и достаточным условием принадлежности голоморфной в U функции f классу

Пика является возможность представления ее в виде

$$f(z) = \alpha + \beta z + \int_{\mathbb{R}} \left(\frac{1}{x - z} - \frac{x}{1 + x^2} \right) d\mu(x), \tag{1}$$

где $\alpha \in \mathbb{R}$, $\beta \ge 0$, а μ – борелевская мера на \mathbb{R} , удовлетворяющая условию

$$\int_{\mathbb{R}} \frac{1}{1+x^2} \, d\mu(x) < \infty.$$

Числа α , β и мера μ в формуле (1) однозначно определяются функцией f. Число β является угловой производной функции f в бесконечно удаленной точке (в терминологии Каратеодори [7, с.92]). Легко видеть, что выполнение для f гидродинамической нормировки влечет равенство β = 1. Кроме того, с учетом известного предельного соотношения

$$\lim_{y/\infty} y \, \operatorname{Im} \big[f(iy) - i\beta y \big] = \mu(\mathbb{R})$$

естественно выделение подмножества p функций Пика, допускающих следующее интегральное представление:

$$f(z) = z + \int_{\mathbb{R}} \frac{1}{x - z} d\mu(x),$$
 (2)

где μ — конечная борелевская мера на ρ . Следующий результат показывает, в частности, что функции выделенного класса функций удовлетворяют гидродинамической нормировке.

Лемма 1. Пусть f — функция Пика. Тогда эквивалентны следующие два утверждения:

- a) $f \in \mathcal{P}$;
- б) $f(z)-z\to 0$ при $z\to\infty$ внутри каждой полуплоскости U_η , $\eta>0$, и существует конечный угловой предел

$$\lim_{z\to\infty}z\big[f(z)-z\big]=c\;;$$

в) выполняются соотношения

$$\lim_{y/\infty} [f(iy) - iy] = 0, \sup_{y>0} y[\operatorname{Im} f(iy) - y] < \infty.$$

Доказательство. а) \Rightarrow б). Пусть f имеет представление (2). Поскольку $\mu(E_r) \to 0$ при $r \to \infty$, где $E_r = \mathbb{R} \setminus (-r,r)$, то для любых $\varepsilon > 0$, $\eta > 0$ можно выбрать $r_0 > 0$ так, чтобы выполнялось неравенство $\mu(E_{r_0}) < \varepsilon \eta / 2$. Далее, выберем M так, чтобы выполнялось неравенство $\mu(\mathbb{R}) < \varepsilon (M-r_0)/2$. Но тогда при |z| > M, $z \in U_\eta$ будем иметь

$$\begin{split} \big| f(z) - z \big| & \leq \int_{\mathbb{R}} \frac{d\mu(x)}{|x - z|} = \int_{E_{r_0}} \frac{d\mu(x)}{|x - z|} + \int_{(-r_0, r_0)} \frac{d\mu(x)}{|x - z|} \leq \\ & \leq \frac{1}{\eta} \mu(E_{r_0}) + \frac{1}{M - r_0} \mu(\mathbb{R}) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Таким образом, f удовлетворяет гидродинамической нормировке.

Допустим теперь, что $\varepsilon > 0$ и $\Delta_{\theta} = \{z \in U: |\text{Re }z|/(\text{Im }z) < \text{ctg}\,\theta\}, \ \theta \in (0,\pi/2),$ фиксированы произвольным образом. Выберем $r_1 > 0$ так, чтобы выполнялось неравенство $\mu(E_n) < (\varepsilon\sin\theta)/2$. Тогда для $z \in \Delta_{\theta}$ получаем

$$\left|\mu(\mathbb{R}) + z(f(z) - z)\right| = \left|\mu(\mathbb{R}) + \int_{\mathbb{R}} \frac{z}{x - z} \partial \mu(x)\right| \le \int_{\mathbb{R}} \frac{|x|}{|x - z|} \partial \mu(x) \le \frac{\mu(E_{r_1})}{\sin \theta} + \int_{(-r_1, r_1)} \frac{|x|}{|x - z|} \partial \mu(x).$$

Первое слагаемое в последней части неравенства не превышает $\varepsilon > 2$, а второе слагаемое можно сделать меньше $\varepsilon > 2$, выбирая $z \in \Delta_{\theta}$ достаточно большим по модулю. В результате получаем

$$\lim z[f(z)-z] = -\mu(\mathbb{R})$$
(3)

при $z \to \infty$, $z \in \Delta_{\theta}$.

Импликация б) \Rightarrow в) очевидна, а в) \Rightarrow а) легко устанавливается, если воспользоваться соответствием между функцией Пика и параметрами в ее интегральном представлении (см., например, [5]). Лемма доказана.

Основным объектом наших исследований будет класс **6**, который образует все однолистные функции из **9**. Важную роль в наших исследованиях играет

неотрицательный функционал $l: \mathcal{P} \to \mathbb{R}^+$, определенный по формуле $l(f) = \mu(\mathbb{R})$, где μ – мера из интегрального представления (2). Заметим, что в силу соотношения (3) вычисление функционала l на функции f из \mathcal{P} можно свести к вычислению углового предела. Отметим также, что функционала l не

Действительно, пусть f – произвольная функция из ρ , для которой l(f) > 0. Рассмотрим семейство функций $f_{\alpha}(z) = f(z + \alpha) - \alpha$, $\alpha \in \mathbb{R}$. Из интегрального представления (2) функции f видно, что $f_{\alpha} \in \rho$ и $l(f_{\alpha}) = l(f)$ для всех α . С

является непрерывным в топологии локально равномерной сходимости.

другой стороны, из леммы 1 следует, что $f_{\alpha}(z) \to z$ при $\alpha \to \infty$, локально равномерно в U. Остается заметить, что значение функционала l на тождественном преобразовании обращается в нуль.

Принципиальным моментом в дальнейших исследованиях является то, что р и 6 представляют собой полугруппы относительно операции композиции.

Теорема 1. Класс \wp замкнут относительно операции композиции, а $l: \wp \to \mathbb{R}^+$ — аддитивный функционал на полугруппе \wp , т.е. $l(f \circ g) = l(f) + l(g)$ для любых f, g из \wp .

Доказательство. Пусть f_1, f_2 – две произвольные функции из $\mathfrak P$. Очевидно, что композиция $f=f_1 \circ f_2$ определена и представляет собой функцию Пи-ка. Обозначим $h_1(z)=f_1(z)-z$, $h_2(z)=f_2(z)-z$. Тогда

$$z[f(z) - z] = zh_2(z) + f_2(z)h_1 \circ f_2(z) - h_2(z)h_1 \circ f_2(z). \tag{4}$$

В силу гидродинамической нормировки функции f_2 ее значения $f_2(z)$ остаются в некотором угле $\Delta_{\theta'}$, когда $z \to \infty$ внутри Δ_{θ} , $0 < \theta' < \theta < \pi/2$. Но тогда

по лемме 1 имеем равенство для углового предела

$$\lim_{z\to\infty} f_2(z)h_1\circ f_2(z) = -l(f_1).$$

Замечая также, что $h_2(z)h_1\circ f_2(z)\to 0$ при $z\to\infty$ внутри Δ_{θ} , из (4) получаем

$$\lim z[f(z) - z] = -(l(f_1) + l(f_2))$$

при $z \to \infty$ в Δ_0 . Таким образом, для f выполнены условия б) из леммы 1 и она принадлежит f. Кроме того, доказанное выше соотношение для углового предела эквивалентно равенству $l(f) = l(f_1) + l(f_2)$. Теорема доказана.

- **2.** Однопараметрические полугруппы. Рассматривая \mathbb{R}^+ как аддитивную полугруппу с обычной топологией вещественных чисел, под однопараметрической полугруппой в \mathfrak{p}^- будем понимать непрерывный гомоморфизм $t \to f^t$, действующий из \mathbb{R}^+ в \mathfrak{p}^- . Другими словами, семейство $\left\{f^t\right\}_{t \ge 0}$ должно удовлетворять условиям:
 - a) $f^0(z) \equiv z$;
 - б) $f^{t+s} = f^t \circ f^s$ при $s, t \ge 0$;
 - , в) $f^{t}(z) \rightarrow z$ при $t \rightarrow 0$, локально равномерно в U.

В действительности, однопараметрическая полугруппа $t \to f^t$ в ρ является бесконечно дифференцируемой по t и вполне характеризуется своей инфинитезимальной образующей

$$\frac{\partial}{\partial t} f^t(z)\Big|_{t=0} = v(z).$$

Функция v, которую мы также будем называть инфинитезимальным преобразованием полугруппы ρ , является аналитической в U.

Введем в рассмотрение подмножество \Re функций Пика, которые имеют представление

$$h(z) = \int_{\mathbb{R}} \frac{1}{x-z} d\mu(x),$$

где μ – неотрицательная борелевская мера на \mathbb{R} , удовлетворяющая условию $\mu(\mathbb{R}) \leq 1$.

Теорема 2. Для того чтобы голоморфная в U функция v являлась инфинитезимальным преобразованием полугруппы \mathfrak{P} , необходимо и достаточно, чтобы она допускала представление вида $v(z) = \alpha h(z)$, где $\alpha \geq 0$ и $h \in \mathbb{R}$.

Доказательство. Пусть $t \to f^t$ – однопараметрическая полугруппа в ρ и ν — соответствующая ей инфинитезимальная образующая. Через μ_t обозначим меру, соответствующую (по формуле (2)) функции f^t , $t \ge 0$. В силу аддитивности функционала $l: \rho \to \mathbb{R}^+$ и свойства б) из определения однопараметрической полугруппы имеем $l(f^{t+s}) = l(f^t) + l(f^s)$ для всех $s, t \ge 0$. Отсюда следует (см., например, [8, с. 153]), что $l(f^t) \equiv \alpha t$ при некотором $\alpha \ge 0$. Случай $\alpha = 0$ тривиален, поскольку он отвечает однопараметрической полугруппе $f^t(z) \equiv z$. Поэтому будем считать, что $\alpha > 0$. Но тогда представление (2) для функций f^t можно записать в виде

$$f^{t}(z) = z + \alpha t h_{t}(z),$$

где $h_t \in \mathbb{R}$. Поскольку совокупность мер, выделяющих класс \mathbb{R} , образует компактное относительно слабой сходимости мер множество, то сам класс \mathbb{R} представляет собой компактное подмножество в пространстве $\mathfrak{R}(U)$, наделенном топологией локально равномерной сходимости. Следовательно, найдутся последовательность $t_n \searrow 0$ и функция $h \in \mathbb{R}$ такие, что $h_{t_n}(z) \to h(z)$ при $n \to \infty$, локально равномерно в U. Но тогда

$$v(z) = \lim_{t \to 0} \frac{1}{t} (f'(z) - z) = \alpha \lim_{n \to \infty} h_{t_n}(z) = \alpha h(z),$$

и необходимость доказана.

Докажем теперь достаточность условия теоремы. Пусть $h(z) \not\equiv 0$ — функция класса \Re и $\alpha > 0$. Нам нужно показать, что существует такая однопараметрическая полугруппа $t \to f^t$ в ρ , для которой $v(z) = \alpha h(z)$ является инфинитезимальной образующей.

Определим в U функцию F с помощью условий F(i) = i, F'(z) = 1/v(z). Поскольку v не обращается в нуль в U, то функция F определена корректно. Кроме того, из условия $\operatorname{Im} v(z) > 0$ при $z \in U$ следует однолистность функции F. Для изучения отображения w = F(z) рассмотрим образы прямых z = x + i y, $-\infty < x < \infty$. Поскольку

$$\frac{d}{dx}\operatorname{Im} F(x+iy) = -\frac{\operatorname{Im} v(x+iy)}{\left|v(x+iy)\right|^2} < 0,$$

то кривая $w = F(x+iy), -\infty < x < \infty$, пересекает прямую ${\rm Im}\ w = {\rm const}\ {\rm he}\ {\rm более}$ чем в одной точке. Следовательно, вместе с каждой точкой $w \in F(U)$ области F(U) принадлежат также и все точки $w+t,\ t\geq 0$. Это свойство позволяет определить функции $f^t(z) = F^{-1}(F(z)+t)$ при всех $t\geq 0$. Легко видеть, что для $\left\{f^t\right\}_{t\geq 0}$ выполняются условия a)-b) определения однопараметрической полугруппы. Кроме того, дифференцирование соотношения

$$F(f^{t}(z)) = F(z) + t$$

с учетом равенства F'(z) = 1/v(z) показывает, что v – инфинитезимальная образующая однопараметрической полугруппы $t \to f^t$. Остается показать, что $f^t \in \mathcal{P}$ при всех t > 0. Заметим прежде всего, что f^t является функцией Пика при каждом t > 0. Поэтому принадлежность функций f^t полугруппе \mathcal{P} будет следовать (см. лемму 1) из соотношения

$$\sup_{y>0} y \left| f^{t}(iy) - iy \right| < \infty. \tag{5}$$

Для его доказательства воспользуемся тем, что w = f'(z) является решением уравнения dw/dt = v(w) с начальным условием $w|_{t=0} = z$. Отсюда, в частности, следует

$$y | f^t(iy) - iy | = y \left| \int_0^t v(f^s(iy)) ds \right| \le \alpha \int_0^t y |h(f^s(iy))| ds.$$

Далее, поскольку

$$\frac{d}{dt}\operatorname{Im} f^{t}(z) = \operatorname{Im} v(f^{t}(z)) > 0,$$

имеем $\text{Im } f^t(iy) \ge y$ при всех $t \ge 0$. Используя также очевидное неравенство (Im z) | h(z) | ≤ 1 , которое следует из интегральной формулы класса \Re , получаем

$$y |h(f^s(iy))| \le (\operatorname{Im} f^s(iy)) |h(f^s(iy))| \le 1.$$

Отсюда и из неравенства, приведенного выше, получаем

$$y | f'(iy) - iy | \le \alpha t.$$

Тем самым соотношение (5), а вместе с ним и теорема доказаны.

3. Эволюционные семейства. Следуя работе [4], рассмотрим понятие одно-

Подмножество $\{w_{t,s}: 0 \le s \le t \le T\} \subset \mathfrak{S}$ будем называть эволюционным семейством в \mathfrak{S} , если выполняются следующие три условия:

- a) $w_{t,t}(z) \equiv z$ при $0 \le t \le T$;
- б) $w_{t,s} = w_{t,t} \circ w_{\tau,s}$ при $0 \le s \le \tau \le t \le T$;
- в) $w_{t,s}(z) \to z$ при $s, t \to \tau$, локально равномерно в U.

Отметим, что если $t \to f^t$ – однопараметрическая полугруппа в \mathfrak{P} , то $\{w_{t,s} = f^{t-s}: 0 \le s \le t \le T\}$ — эволюционное семейство в \mathfrak{S} .

С каждым эволюционным семейством в \mathfrak{S} будем связывать функцию $\lambda(t) = l(w_{t,0}), \ 0 \le t \le T$. Из условия \mathfrak{S}) и аддитивности функционала $l \colon \mathfrak{Q} \to \mathbb{R}^+$

следует, что $\lambda(t)$ – неубывающая функция. Кроме того, условие $\lambda(t_1) = \lambda(t_2)$, $t_1 < t_2$, влечет равенство $w_{t,s}(z) = z$ при $t_1 \le s \le t \le t_2$. Оказывается, что $\lambda(t)$. отражает дифференциальные свойства эволюционного семейства.

Теорема 3. Пусть $\{w_{t,s}: 0 \le s \le t \le T\}$ — эволюционное семейство в $\mathfrak S$ такое, что $\lambda(t) = l(w_{t,0})$ — абсолютно непрерывная функция на [0,T]. Тогда при всех $s \in [0,T)$ и $z \in U$ функция $w = w_{t,s}(z), s \le t \le T$, является абсолютно непрерывным решением уравнения

 $\frac{dw}{dt} = \alpha(t)H(w,t) \tag{6}$

dt c начальным условием
$$w|_{t=s}=z$$
, где $\alpha(t)=\lambda'(t)$ для п.в. t , a $H(w,t)-\phi y$ нк-

ция, определенная на $U \times [0,T]$, измеримая по t, голоморфная по w u такая, что $H(\cdot,t) \in \mathbb{R}$ для n.s.t.Доказательство. Заметим вначале, что из аддитивности функционала l u

соотношения $w_{t,0} = w_{t,s} \circ w_{s,0}$ следует равенство $l(w_{t,s}) = \lambda(t) - \lambda(s), \ 0 \le s \le t \le T.$

Фиксируем теперь $z \in U$ и $s \in [0,T)$. Пусть $s \le t' \le t'' \le T$ и $\lambda(t') \ne \lambda(t'')$. Тогда, обозначая через $w_{t''}$, меру, которая соответствует по формуле (2)

функции $w_{t,t'}$, получаем

$$w_{t,s}(z) - w_{t,s}(z) = w_{t,t}(z) - w_{t,s}(z) - w_{t,s}(z) - w_{t,s}(z) = \int_{\mathbb{R}} \frac{1}{x - w_{t,s}(z)} d\mu_{t,t}(x).$$

Из приведенного выше замечания следует

$$\mu_{t,',t'}(\mathbb{R}) = l\left(w_{t,',t'}\right) = \lambda(t'') - \lambda(t').$$

Поэтому функция

$$h_{t'',t'}(z) = \frac{1}{\lambda(t'') - \lambda(t')} \int_{\mathbb{R}} \frac{1}{x - z} d\mu_{t'',t'}(x)$$

принадлежит классу eals. При этом

$$w_{t,s}(z) - w_{t,s}(z) = (\lambda(t'') - \lambda(t'))h_{t,t',t'}(w_{t,s}(z)).$$
 (7)

Очевидно, что (7) выполняется и в предположении $\lambda(t') = \lambda(t'')$.

Далее, из интегральных представлений классов ρ и \Re следуют неравенства

$$\operatorname{Im} w_{t', s}(z) \ge \operatorname{Im} z, \quad \left| h_{t'', t'}(z) \right| \le \frac{1}{(\operatorname{Im} z)},$$

используя которые, из (7) получаем

$$\left| w_{t_{i,s}^{"}}(z) - w_{t_{i,s}^{'}}(z) \right| \leq \frac{1}{\operatorname{Im} z} (\lambda(t'') - \lambda(t')).$$

ность функции $w = w_{t,s}(z)$, $s \le t \le T$. Стандартные рассуждения с использованием теоремы Витали (см., например, [9, с. 160]) показывают, что для почти всех t существует производная

Отсюда и из абсолютной непрерывности $\lambda(t)$ следует абсолютная непрерыв-

$$\frac{\partial}{\partial t}w_{t,s}(z) = V(z,t),$$

которая является голоморфной по z и измеримой по t функцией. Из равенства (7) и компактности класса \Re следует также вид функции V:

$$V(z,t) = \lambda'(t)H(w_{t,s}(z),t),$$

где $H(\cdot, t) \in \mathbb{R}$. Теорема доказана.

Полученный результат имеет обобщение.

Теорема 4. Пусть $H(w, t) - \phi$ ункция, определенная на $U \times [0,T]$, голоморфная по z, измеримая по t и такая, что $H(\cdot, t) \in \mathbb{R}$ для п.в. t. Тогда для всех $s \in [0,T)$ и $z \in U$ существует и единственно абсолютно непрерывное решение w = (t, z, s; H), $s \le t \le T$, уравнения

$$\frac{dw}{dt} = H(w,t) \tag{8}$$

с начальным условием $w|_{t=s} = z$. При этом отображение $w_{t,s}^H: z \to w(t, z, s; H)$, $s \le t \le T$, принадлежит классу \mathbf{G} , а $\{w_{t,s}^H: 0 \le s \le t \le T\}$ — эволюционное семейство в \mathbf{G} .

Доказательство. Из голоморфности функции H(z, t) по z следует выполнимость для уравнения (8) условий локальных теорем существования и един-

ственности в цилиндрическом множестве $U \times [0,T]$. Возможность продолжения решений следует из неравенств

$$\frac{d}{dt}\operatorname{Im} w = \operatorname{Im} H(w,t) > 0$$

и

$$|w-z| \le \int_{s}^{t} |H(w,t)| d\tau \le \int_{s}^{t} \frac{d\tau}{\operatorname{Im} w} \le \frac{t-s}{\operatorname{Im} z}.$$

Голоморфность отображений $w_{t,s}^H$ следует из голоморфности функции H(z,t) по z. Из теоремы единственности для уравнения (8) следует также однолистность этих отображений. Остается показать, что $w_{t,s}^H$ принадлежит классу ρ . Для этого заметим, что

$$(\operatorname{Im} z) \left| w_{t,s}^{H}(z) - z \right| = (\operatorname{Im} z) \left| \int_{s}^{t} H(w,t) d\tau \right| \le$$

$$\le \int_{s}^{t} (\operatorname{Im} z) |H(w,t)| d\tau \le \int_{s}^{t} (\operatorname{Im} w) |H(w,t)| d\tau \le t - s.$$

Тогда принадлежность функции $w_{t,s}^H$ классу ρ следует из леммы 1.

Отметим, наконец, что для $\{w_{t,s}^H: 0 \le s \le t \le T\}$ выполняются условия a) - b) эволюционных семейств. Теорема доказана.

Замечание. Из доказательства теоремы следует также неравенство $l(w_{t,s}^H) \le t - s$.

В терминологии работы [4] (8) называется эволюционным уравнением полугруппы \mathfrak{S} . Так же, как и в [4], устанавливается, что если функции $H, H_n, n = 1, 2,...$, удовлетворяют условиям теоремы 4 и $H_n \to H$ слабо в $\mathfrak{F}(U, [0,T])$ (см. [4]), т.е для любой измеримой ограниченной функции \mathfrak{I}

$$\int_{0}^{T} H_{n}(z,t) \eta(t) dt \to \int_{0}^{T} H(z,t) \eta(t) dt$$

при $n \to \infty$, локально равномерно в U, то $w_{t,s}^{H_n} \to w_{t,s}^H$ при $n \to \infty$, локально равномерно в $U, 0 \le s \le t \le T$.

4. Инфинитезимальное описание полугруппы $\mathfrak S$. Покажем теперь, что

любую функцию f из G можно представить в виде $f = w_{T,0}^H$, где H удовлетворяет условиям теоремы 4. Заметим, прежде всего, что это легко показать в случае, когда $U \setminus f(U)$ — ограниченное множество. Действительно, поскольку в этом случае гидродинамическая нормировка является внутренним условием, то (см., например, [9], гл.6) можно построить семейство функций $F_t \in G$, $0 \le t \le T = l(f)$, удовлетворяющее условиям $F_s(U) \subseteq F_t(U)$, $s \le t$, $F_0 = f$, $F_T(z) \equiv z$, $l(F_t) = T - t$. Но тогда $\{w_{t,s} = F_t^{-1} \circ F_s \colon 0 \le s \le t \le T\}$ — эволюционное семейство в G, для которого $\lambda(t) = l(w_{t,0}) = t$ и $w_{T,0} = f$, и по теореме 3 его можно получить как решение эволюционного уравнения.

Для доказательства утверждения в общем случае заметим вначале, что, следуя схеме доказательства теоремы Каратеодори о сходимости к ядру с ис-

пользованием компактности множества $\{f \in \mathcal{P}: l(f) \leq M\}$, легко получить следующий результат.

Лемма 2. Пусть $f, f_n \in \mathfrak{S}$ и $l(f_n) \leq M, n = 1, 2, ...$ Тогда $f_n \to f$ локально равномерно в U в том и только в том случае, если $f_n(U) \to f(U)$ в смысле сходимости к ядру.

Установим теперь следующий важный аппроксимационный результат.

Лемма 3. Для любой функции f из $\mathfrak S$ найдется такая последовательность $\{f_n\} \subset \mathfrak S$, что $U \setminus f_n(U)$ является ограниченным множеством для каждого $n=1,2,...,f_n \to f$ локально равномерно в U и $l(f_n) \nearrow l(f)$ при $n \to \infty$.

Доказательство. Для $\alpha > 0$ обозначим $f_a(z) = f(z + i\alpha) - i\alpha$. Из неравенства $\text{Im } f(z) \ge \text{Im } z$ следует, что f_a является функцией Пика при каждом $\alpha > 0$. Далее, из равенства

$$y\operatorname{Im}[f_{\alpha}(iy) - iy] = y\operatorname{Im}[f(i(y+\alpha)) - i(y+\alpha)] =$$

$$= (y+\alpha)\operatorname{Im}[f(i(y+\alpha)) - i(y+\alpha)] - \alpha\operatorname{Im}[f(i(y+\alpha)) - i(y+\alpha)],$$

принадлежности функции f классу G и леммы 1 следует, что $f_a \in \mathcal{P}$ и $l(f_a) = l(f)$. Из однолистности f следует однолистность функций f_a , т.е $f_a \in G$. Кроме того, $f_a(z) \to f(z)$ локально равномерно в U при $\alpha \to 0$.

Заметим теперь, что f_a отображает верхнюю полуплоскость U на область D_{α} , расположенную над аналитической кривой Λ_{α} . Поскольку $f(z)-z\to 0$ и $f'(z)\to 1$ при $z\to \infty$ внутри U_{α} , то найдется такое $r_0=r_0(\alpha)$, что при $r\ge r_0$

$$D_{\alpha,r} = D_{\alpha} \cup \left\{ w \in U : \operatorname{Re} w < -r \right\} \cup \left\{ w \in U : \operatorname{Re} w > r \right\}$$

являются односвязными областями. Очевидно, что $D_{\alpha,r} o D_{\alpha}$ как к ядру при $r o \infty$.

Пусть $f_{\alpha,r}$ – однолистная в U функция, отображающая конформное отображение U на $D_{\alpha,r}$ и удовлетворяющая гидродинамической нормировке. Покажем, что $l(f_{\alpha,r}) \leq l(f)$. Для этого рассмотрим $g_{\alpha,r} = f_{\alpha,r}^{-1} \circ f_{\alpha}$, которая, очевидно, является функцией Пика. Поскольку

$$\lim_{w\to\infty} w \Big[f_{\alpha,r}^{-1}(w) - w \Big] = \lim_{z\to\infty} f_{\alpha,r}(z) \Big[z - f_{\alpha,r}(z) \Big] = l(f_{\alpha,r})$$

и $f_{\alpha}(z)/z \to 1$ при $z \to \infty$ внутри $\Delta_{\theta}, 0 < \theta < \pi/2$, то выполняются соотношения для угловых пределов

$$\lim_{z \to \infty} z \left[g_{\alpha,r}(z) - z \right] = \lim_{z \to \infty} f_{\alpha}(z) \left[f_{\alpha,r}^{-1} \circ f_{\alpha}(z) - f_{\alpha}(z) \right] +$$

$$+ \lim_{z \to \infty} z \left[f_{\alpha}(z) - z \right] = l(f_{\alpha,r}) - l(f_{\alpha}).$$

Таким образом, $g_{\alpha,r} \in \mathfrak{S}$ и $l(g_{\alpha,r}) = l(f_{\alpha}) - l(f_{\alpha,r})$. Учитывая неотрицательность функционала l, получаем неравенство $l(f_{\alpha,r}) \leq l(f_{\alpha}) = l(f)$.

Из леммы 2 имеем теперь, что $f_{\alpha,r} \to f_{\alpha}$ локально равномерно в U при $r \to \infty$. Но тогда из функций $f_{\alpha,r}$ можно выделить последовательность $\{f_n\}$,

удовлетворяющую условиям $f_n \to f$ локально равномерно в U при $n \to \infty$ и $l(f_n) \le l(f)$. Остается показать, что $l(f_n) \to l(f)$ при $n \to \infty$. Допустим противное. Тогда найдется подпоследовательность $\left\{f_{n_k}\right\}$, для которой $l(f_{n_k}) \to \beta < l(f)$

Тогда найдется подпоследовательность $\{f_{n_k}\}$, для которой $l(f_{n_k}) \to \beta < l(f)$ при $n \to \infty$. Если μ , μ_k – меры, представляющие по формуле (2) функции f, f_{n_k} соответственно, то использование слабой компактности семейства мер, ограниченных константой, приводит к неравенству

$$\mu(\mathbb{R}) \le \underline{\lim}_{k \to \infty} \mu_k(\mathbb{R}) \le \beta.$$

Полученное неравенство противоречит условию $\mu(\mathbb{R}) = l(f) > \beta$. Лемма доказана.

Теорема 5. Для того чтобы голоморфная в U функция f принадлежала классу G, необходимо и достаточно, чтобы она допускала представление g виде $f = w_{T,0}^H$, где функция f удовлетворяет условиям теоремы f.

Доказательство. Достаточность утверждения следует из теоремы 4.

Пусть $f \in \mathfrak{S}$ и l(f) = T > 0. В случае l(f) = 0 имеем $f(z) \equiv z$. Выбираем последовательность $\{f_n\}$ как в лемме 3. Из рассуждений, приведенных в начале пункта, следует существование функций H_n , удовлетворяющих условиям теоремы 4 и таких, что $w_{T_n,0}^{H_n} = f_n$, $T_n = l(f_n)$. Доопределим функции H_n на $U \times \times [0,T]$, полагая $H_n(z,t) = 0$ при $t \in (T_n,T]$. Тогда соответствующие эволюционные семейства будут определены над общим интервалом [0,T] и $w_{t,s}^{H_n}(z) \equiv z$ при $T_n \leq s \leq t \leq T$. Следовательно, $w_{T,0}^{H_n} = f_n$. Поскольку \Re -значные функции образуют в $\Re(U,[0,T])$ компактное относительно слабой сходимости множество (см. [4]), то найдется последовательность $\{H_{n_k}\}$, слабо сходящаяся в $\Re(U,[0,T])$ к некоторой \Re -значной функции H. Но тогда $w_{t,s}^{H_{n_k}} \to w_{t,s}^{H}$ локально равномерно в U при $k \to \infty$ и всех $0 \leq s \leq t \leq T$. Следовательно,

$$w_{T,0}^{H}(z) = \lim_{k \to \infty} w_{T,0}^{H_{n_k}}(z) = \lim_{k \to \infty} f_{n_k}(z) = f(z),$$

и теорема доказана.

- 1. *Куфарев П. П., Соболев В. В., Спорышева Л.В.* Об одном методе исследования экстремальных задач для функций, однолистных в полуплоскости // Вопросы геометр. теории функций: Тр. Томск.ун-та.— 1968.— 200, вып. 5.—С. 142—164.
- Александров И. А. Параметрические продолжения в теории однолистных функций. М.: Наука, 1976. – 344 с.
- 3. Александров И. А., Александров С.Т., Соболев В.В. Экстремальные свойства огображений полуплоскости в себя// Complex analysis. Banach center publications.— 1983.— 11.—P. 7—32.
- 4. Горяйнов В.В. Полугруппы конформных отображений// Мат. сб. 1986. 129, №4. С. 451 472.
- 5. Аткинсон Ф. Дискретные и непрерывные граничные задачи. М.: Мир, 1968. 750 с.
- 6. Ахиезер Н. И., Глазман И. М. Теория линейных операторов в гильбертовом пространстве. -
- М.: Наука, 1966.–543 с. 7. Валирон Ж.Аналитические функции.– М.: Гостехтеоретиздат., 1957.– 236 с.
- Хилле Э., Филлипс Р. Функциональный анализ и полугруппы.-М.: Изд-во иностр. лит., 1962.- 829 с.
- 9. Pommerenke Ch. .Univalent functions.- Göttingen: Vandenoeck and Ruprecht, 1975.- 376 p.

Получено 01.04.92