УДК 517.54

В.Я. Гутлянский, д-р физ.-мат. наук (Ин-т прикл.математики и механики АН Украины, Донецк),

С.А.Копанев, канд. физ.-мат. наук (Том. ун-т)

О КОНФОРМНЫХ ОТОБРАЖЕНИЯХ КРУГА НА ВЫПУКЛЫЕ ОБЛАСТИ

Доказан ряд точных неравенств для конформных отображений круга на выпуклые области, связывающих между собой кривизну, уклонение, шварциан и другие характеристики линий уровня и ортогональных траекторий.

Доведено ряду точних нерівностей для конформних відображень круга на опуклі області. Ці нерівності зв'язують між собою кривину, відхилення, шварціан та інші характеристики ліній рівня та ортогональних траєкторій.

1. Введение. Пусть D – единичный круг с центром в начале координат в комплексной плоскости \mathbb{C} . Обозначим через S^c множество всех конформных отображений

$$g(z) = z + a_2 z^2 + a_3 z^3 + \dots$$
(1)

круга *D* на выпуклые области. Как известно, образ окружности |z| = r, $0 \le r < 1$, называется линией уровня, а образ радиуса arg $z = \theta$, $0 \le \theta < 2\pi$, — ортогональной траекторией для отображения g. Среди геометрических характеристик этих кривых выделим *кривизну* и *уклонение* (см., например, [1]).

Работа посвящена доказательству ряда точных неравенств в классе S^c, связывающих между собой кривизну, уклонение, производную Шварца, скорость вращения касательной и другие характеристики линий уровня и ортогональных траекторий.

2. Определения и предварительные результаты. Пусть $f \in S^c$. Тогда для кривизны K_f линии уровня в точке $f(z), z = re^{it}$, справедлива формула

$$K_f = K_f(z) = T_f(z) / |zf'(z)|,$$

где $T_f = T_f(z) = 1 + \Re(zf''(z)/f'(z))$ — величина, характеризующая скорость вращения касательной к линии уровня.

Из работы [1, с. 262] следует, что уклонение A b плоской кривой $x = x(\tau)$, $y = y(\tau)$, τ – параметр, в произвольной точке $x(\tau)$, $y(\tau)$ вычисляется по формуле

$$A b = \tan \delta = \frac{1}{3} \frac{d\rho}{ds},$$

где ρ – радиус кривизны, а *s* – длина кривой. Подставляя сюда известные выражения для ρ и *s*, получим

$$Ab = \frac{x'x'' + y'y''}{x'y'' - x''y'} - \frac{(x'^2 + y'^2)(x'y''' - x'''y')}{3(x'y'' - x''y')^2}.$$

Если в качестве кривой рассмотреть линию уровня

$$x(\tau) + iy(\tau) = f(re^{i\tau}), \ 0 \le r \le 2\pi,$$

то для уклонения Ab_f в точке $f(z), z = re^{it}$, получим формулу

$$Ab_f = Ab_f(z) = \frac{1}{3} \Im(z^2 \{f, z\}) (T_f(z))^{-2},$$

1330 ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 10

© В.Я. ГУТЛЯНСКИЙ, С.А.КОПАНЕВ, 1992

где

$$\{f, z\} = f'''(z) / f'(z) - \frac{3}{2} (f''(z) / f'(z))^2$$

— производная Шварца отображения f в точке z.

Если обозначить через K_f^{\perp} , Ab_f^{\perp} и T_f^{\perp} соответственно кривизну, уклонение и скорость вращения касательной ортогональных траекторий, то формулы примут вид

$$K_f^{\perp} = T_f^{\perp} / |zf'(z)|,$$
$$Ab_f^{\perp} = -\frac{1}{3} \Im (z^2 \{f, z\}) (T_f^{\perp})^{-2}$$
$$T_f^{\perp} = \Im (zf''(z) / f'(z)).$$

Пусть Γ – группа конформных автоморфизмов круга *D*. Класс *S^c* линейно инвариантен относительно действия элементов этой группы. Другими словами, формула

Aut
$$S^c: g \to f = \frac{g \circ \gamma - g(\gamma(0))}{g'(\gamma(0))\gamma'(0)}, \gamma \in \Gamma,$$
 (2)

устанавливает автоморфизм класса S^c.

Если в (2) положить

 $\gamma(\zeta) = e^{-i \arg z} (z - \zeta) / (1 - \overline{z} \zeta),$

то формулы для рассматриваемых геометрических характеристик линий уровня и ортогональных траекторий отображения f в точке f(z), $z = re^{it}$, примут вид $1 + zf''(z)/f'(z) = (1 + r^2)/(1 - r^2) - 2ra_2/(1 - r^2)$,

$$\{f, z\} = 6e^{-2it} (1 - r^2)^{-2} (a_3 - a_2^2),$$
(3)

$$Ab_{f} = 2\Im(a_{3} - a_{2}^{2})(r - 2\Re a_{2} + r^{-1})^{-2},$$
(4)

$$Ab_{f}^{\perp} = \frac{1}{2}\Im(a_{2}^{2} - a_{3})(\Im a_{2})^{-2},$$
(5)

где a_n – коэффициенты разложения (1).

Пусть *С* — класс Каратеодори голоморфных отображений в круге *D* с неотрицательной вещественной частью и разложением в ряд Тейлора вида

$$p(z) = 1 + 2\alpha_1 z + 2\alpha_2 z^2 + \dots$$
 (6)

Из теоремы Каратеодори–Шура (см., например, [2]), устанавливающей необходимые и достаточные условия в терминах коэффициентов α_n принадлежности отображения *p* классу *C*, следует предложение.

Предложение 1. Множество значений системы { α_1, α_2 } коэффициентов на классе C имеет параметрическое представление

$$\alpha_1 = \mathbf{v},$$

$$\alpha_2 = \alpha_1^2 + \eta (1 - |\mathbf{v}|^2),$$

где комплексные параметры V и η принимают любые значения из замкнутого круга \overline{D} . При этом, если |v| = 1, то $p(z) = (1 + e^{i\theta}z)/(1 - e^{i\theta}z)$, если же |v| < 1,

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 10

1331

 $a |\eta| = 1, mo$

$$p(z) = \lambda \left(1 + e^{i\theta} z \right) / \left(1 - e^{i\theta} z \right) + (1 - \lambda) \left(1 + e^{i\tau} z \right) / \left(1 - e^{i\tau} z \right),$$

 $z\partial e \quad 0 < \lambda < 1, 0 \le \theta, \tau \le 2\pi.$

Хорошо известно, что формула

$$p(z) = 1 + \frac{zf''(z)}{f'(z)}$$
(7)

устанавливает взаимно однозначное соответствие между отображениями классов C и S^c . Это позволяет редуцировать поставленные выше задачи в классе S^c к соответствующим задачам в классе Каратеодори.

3. Основные неравенства. Первая группа результатов связывает между собой $\{f, z\}, T_f$ и Ab_f Всюду ниже $R^- = R^-(r) = (1 - r)/(1 + r), R^+ = R^+(r) = (1 + r)/(1 - r).$

Теорема 1. В классе S^c при фиксированном $T_f, R^- \leq T_f \leq R^+$, справедливы точные оценки

$$\left|\{f,z\}\right| \le \left(2R^{+}(|z|)^{2}T_{f}(z) - T_{f}^{2}(z) - 1\right)/2|z|^{2}$$
(8₁)

$$\left|\{f,z\}\right| \le \frac{1}{2|z|^2} \left(2R^+(|z|)^2 \left|1 + \frac{zf''(z)}{f'(z)}\right| - \left|1 + \frac{zf''(z)}{f'(z)}\right|^2 - 1\right).$$
(8₂)

Доказательство. Пусть $f \in S^c$ и $\{f, z\}$ – ее шварциан. Учитывая формулу (3) и отмеченную выше связь между классами S^c и C, запишем шварциан в терминах коэффициентов разложения (6) отображения $p \in C$:

$$\{f, z\} = 2e^{-2it}(1-r^2)^{-2}(\alpha_2 - \alpha_1^2).$$
(9)

Отметим, что в этих терминах

$$T_f(z) = R^+(r^2) - 2r(1 - r^2)^{-1} \Re \alpha_1.$$
(10)

Отсюда и из предложения 1, в частности, следует, что при фиксированном $z = re^{it} \in D$ функционал $T_f(z)$ на классе S^c принимает все значения из промежутка $[R^r, R^+]$. Для того чтобы найти точные оценки модуля шварциана на классе S^c при фиксированном значении T_f нужно в соответствии с формулами (9) и (10) решить следующую экстремальную задачу на классе C: при фиксированном значении $\Re \alpha_1$ из [-1, 1] найти точные оценки для $|\alpha_2 - \alpha_1^2|$. Эта задача может быть решена с использованием предложения 1. Действительно, при фиксированном значении $\Re \alpha_1$ из [-1, 1] параметр v связан ограничением $\Re \alpha_1 \leq |v| \leq 1$. Следовательно, $|\alpha_2 - \alpha_1^2| \leq 1 - \Re^2 \alpha_1$. При этом, если $\Re \alpha_1 = \pm 1$, то |v| = 1. Если же $-1 < \Re \alpha_1 < 1$, то |v| < 1, а $|\eta| = 1$. Отсюда и из формул (2), (7), (9) и (10) следуют точные оценки (8₁) и вид этих экстремальных отображений. Оценки (8₂) находятся аналогично.

Замечание 1. В классе S^c при фиксированном T_f , $R^- \leq T_f \leq R^+$, справедлива точная оценка

$$\left|\{f,z\}\right| \le \frac{1}{2|z|^2} \left(2R^+ (|z|)^2 T_f(z) - \left|1 + \frac{zf''(z)}{f'(z)}\right|^2 - 1\right).$$
(8₃)

Действительно, из (2), (3) и предложения 1 следует точная оценка

$$\left|\alpha_{2}-\alpha_{1}^{2}\right|\leq1-\left|\alpha_{1}^{2}\right|,$$

что эквивалентно неравенству (8₃). Из (8₃) элементарно следуют неравенства (8₁) и (8₂).

Теорема 2. В классе S^c при фиксированном $T_f, R^- \leq T_f \leq R^+$, справедлива точная оценка

$$6\left|Ab_{f}(z)\right| \leq 2R^{+}\left(\left|z\right|^{2}\right)T_{f}^{-1}(z) - T_{f}^{-2}(z) - 1.$$
(11)

Доказательство. Для того чтобы найти точные оценки модуля уклонения на классе S^c при фиксированном значении T_f , нужно в соответствии с формулами (4), (7) и (10) решить следующую экстремальную задачу на классе C. При фиксированном значении $\Re \alpha_1$ из [-1, 1] найти точные оценки для $\Im (\alpha_2 - \alpha_1^2)$ Эта задача может быть решена с помощью предложения 1. Действительно, как и при доказательстве предыдущей теоремы, устанавливаются точные оценки $\Im (\alpha_2 - \alpha_1^2) \le 1 - \Re^2 \alpha_1$ и экстремальные отображения. Отсюда обычным путем следует оценка (11).

Следствие 1. В классе S^c справедлива точная оценка

$$|Ab_f(z)| \le \frac{2}{3} (|z|^2 / (1 - |z|^2))^2.$$

Экстремальными являются отображения

$$f(\zeta) = \frac{k}{2\gamma} \left(\left[\frac{k+\zeta}{k-\zeta} \right]^{\gamma} - 1 \right),$$

где $k = z(1+r^2 \pm i(1-r^2))[2r^2(1+r^4)]^{-1/2}, \gamma = -r[2/(1+r^4)]^{1/2}$ и ветвь выбрана из условия $1^{\gamma} = 1$.

Задача о точных оценках уклонения линий уровня при конформных отображениях круга была впервые поставлена и исследована на классе S^c одним из авторов [3]. Однако в доказательстве теоремы 6 из [3] имеется легко устранимая неточность.

Прежде чем сформулировать следующий результат, условимся о терминологии.

Пусть $\mu: \mathbb{C} \to D$ – произвольная измеримая функция, удовлетворяющая условию $\|\mu\|_{\infty} = \mathrm{ess\,sup}|\mu| \le k < 1$ и Q = (1+k)/(1-k).

Сохраняющий ориентацию гомеоморфизм f плоскости \mathbb{C} называется Qквазиконформным с комплексной характеристикой μ , если он удовлетворяет уравнению Бельтрами

$$f_{\overline{z}} = \mu(z)f_z$$

почти везде в С.

Пусть f — квазиконформный автоморфизм плоскости \mathbb{C} . Окружность |z| = 1переходит при этом отображении в некоторую замкнутую кривую Жордана Λ , которую называют *квазиконформной кривой* или *квазиокружностью*. Альфорс [5] дал изящную геометрическую характеристику квазиконформных кривых.

Именно он доказал, что кривая Жордана Л является квазиконформной тогда и только тогда, когда

$$\max_{w \in \Lambda(w_1, w_2)} \frac{|w_2 - w| + |w - w_1|}{|w_2 - w_1|}$$

ограничен. Здесь $\Lambda(w_1, w_2)$ – меньшая дуга Λ (относительно диаметра) между w_1 и w_2 . Ясно, что если f – конформное отображение круга на область с квазиконформной границей, то его всегда можно продолжить до квазиконформного автоморфизма \mathbb{C} с некоторым Q.

Из критерия Альфорса, в частности, следует, что квазиокружность не может иметь нулевых углов. Таким образом, не всякая функция из класса S^c может быть продолжена до квазиконформного гомеоморфизма плоскости \mathbb{C} .

Первыми охарактеризовали квазиконформные кривые в терминах внутренних свойств конформных отображений Альфорс и Беккер (см. [4-6]). Именно они доказали, что если *f* голоморфна и однолистна в *D* и

$$|(1-|z|^2)^2 \{f,z\}| \le 2k,$$

либо

$$\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{k}{1-|z|^2},$$

то f продолжается до Q-квазиконформного гомеоморфизма плоскости и, стало быть, f(|z| = 1) — квазиконформная кривая. В этой связи сформулируем следующий результат.

Теорема 3. Если отображение f ∈ S^c и в круге D удовлетворяет условию

$$\left| \frac{zf''(z)}{f'(z)} - \frac{2|z|^2}{1 - |z|^2} \right| \ge \frac{2|z|}{1 - |z|^2} (1 - k)^{1/2}, \tag{12}$$

то оно допускает Q-квазиконформное продолжение в $\mathbb{C} \setminus D$ $c Q = (1 + k)/(1 - k), 0 \le k < 1.$

Доказательство. Если $f \in S^c$, то по теореме 1 для ее шварциана справедлива точная оценка (8₂). С другой стороны, если выполнено неравенство (12), то $|\{f, z\}| \le 2k(1 - r^2)^2$. По теореме Альфорса [6] отображение f Q-квазиконформно продолжается до гомеоморфизма С.

Рассмотрим пример. Пусть $p = (1 - k^2)^{1/2}$ и $\lambda = (1 - p)/2$. Определим функцию класса S^c из уравнения

$$1 + \frac{zf''(z)}{f'(z)} = \lambda \frac{1+z}{1-z} + (1-\lambda)\frac{1-z}{1+z}$$

Легко проверить, что для этой функции всюду в круге *D* выполняется неравенство (12). С другой стороны,

$$\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{2|z|(|z|-p)}{1-|z|^2}$$

и, следовательно, при |z|, близких к единице, и 0 , для нее не выполняется условие

$$\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{1}{1-|z|^2}$$

при 0≤l<1.

Вторая группа результатов связывает между собой Ав, К, и Т,

Предварительно сформулируем следующее утверждение, которое легко получить из соотношения (7) и известной формулы Риса– Герглотца об интегральном представлении функций класса Каратеодори (см. [7], теорема 6, следствие 4).

Предложение 2. На классе S^c при заданных z, 0 < |z| = r < 1, и $\Re(zf''(z)/f'(z))$ для |f'(z)| справедливы точные оценки

$$(1-r^{2})|f'(z)| \le 1 + \Re \frac{zf''(z)}{f'(z)} \le 2r \frac{\ln\left[(1-r)^{2}|f'(z)|\right]}{(1-r^{2})\ln\frac{1+r}{1-r}} + \frac{1+r}{1-r}.$$
(13)

Введем обозначения

$$K^{-} = (1 - r^{2})/r, K^{*} = K^{-} R^{-} (r^{2}) (R^{+}(r))^{2r/(1 + r^{2})},$$
$$K^{+} = \frac{2}{e} (R^{+}(r))^{(1 + r)^{2}/2r} \ln^{-1} R^{+}(r).$$

Теорема 4. В классе S^c при фиксированном K_f справедливы точные оценки

$$\min\{\Phi(\xi_1), \Phi(\xi_2)\} \le |Ab_f(z)| \le \frac{2}{3} (r/(1-r^2))^2,$$

если $K_f \in [K^-, K^*],$

$$\Phi(\xi_2) \leq \left| Ab_f(z) \right| \leq \Phi(\xi_1),$$

если $K_f \in [K, K^+], где$

$$\Phi(x) = \left(2R^{+}(r^{2})x^{-1} - x^{-2} - 1\right)/6.$$
(14)

Здесь $\xi_{1,2}, \xi_1 \leq \xi_2$ -корни уравнения

$$\frac{\left(1-r\right)^2}{r} \left(R^+(r)\right)^{\left(1-r\right)^2/2r} x e^{-x\frac{1-r^2}{2r}\ln R^+(r)} - K_f(z) = 0$$
(15)

относительно х.

Доказательство. Пусть $f \in S^c$ и $z = re^{it}$ — фиксированная точка круга D. Так как кривизна $K_f(z)$ определяется по формуле

$$K_{f}(z) = \frac{1 + \Re(zf''(z)/f'(z))}{|zf'(z)|},$$

то, учитывая неравенства (13) для K_(z), получаем точные оценки

$$K^{-} \leq K_{f}(z) \leq \frac{(1-r)^{2}}{r} \left(R^{+}(r) \right)^{(1+r)^{2}/2r} T_{f}(z) e^{-T_{f}(z) \frac{1-r^{2}}{2r} \ln R^{+}(r)}.$$
 (16)

Эти неравенства определяют область значений комплекснозначного функционала

$$T_f(z) + iK_f(z)$$

на классе S^c . Максимум правой части по T_f в формуле (16) достигается при

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, Nº 10

$$T_f(z) = \frac{2r}{1 - r^2} \ln^{-1} R^+(r) = \frac{2r}{(1 - r^2) \ln R^+(r)}$$

и равен (см. [8]) K^+ . Обратно, при фиксированном K_f из промежутка [K^- , K^+] для $T_f(z)$ справедливъ точные двусторонние оценки

$$\xi_1 \leq T_f(z) \leq \xi_2,$$

где ξ_1, ξ_2 — корни уравнения (15). Имея теперь в виду неравенство (11) и отыскивая экстремум его правой части по $T_f(z)$ на промежутке [ξ_1, ξ_2], получаем оценки модуля уклонения $Ab_f(z)$ линии уровня отображения f в точке f(z)через значение кривизны $K_f(z)$ в этой точке.

Аналогичными рассуждениями можно получить точные неравенства, связывающие между собой K_f^{\perp} , Ab_f^{\perp} и T_f^{\perp} . Приведем для примера следующий результат.

Теорема 5. В классе S^c при фиксированном $T_{f,0}^{\perp} \leq |T_f^{\perp}| \leq 2r/(1-r^2)$, вънполняются точные неравенства

$$6 \left| Ab_f^{\perp}(z) \right| \le \left(T_f^{\perp}(z) \right)^{-2} 4 \left| z \right|^2 / \left(1 - \left| z \right|^2 \right)^2 - 1$$

u

$$\left(1-|z|^{2}\right)^{2} / |z| K_{f}^{\perp}(z) - \left(1+|z|^{2}\right) / T_{f}^{\perp}(z) \le \left(4|z|^{2} - \left(1-|z|^{2}\right)^{2} \left(T_{f}^{\perp}(z)\right)^{2}\right)^{1/2}$$

- Schot S.H. Aberrancy: geometry of the third derivative//Math. Mag. 1987.– 51, № 5.– P. 259– 275.
- 2. Ахиезер Н.И. Классическая проблема моментов. -М.: Физматгиз, 1961. 312 с.
- 3. Черников В. В., Копанев Р. А. Об уклонении линий уровня и их ортогональных траекторий при однолистных конформных отображениях//Сиб. мат. журн. –1986. 27, № 2, С. 193–201.
- 4. Альфорс Л. Лекции по квазиконформным отображениям. -М: Мир, 1966. 136 с.

5. Ahlfors L. Sufficient conditions for quasiconformal extension//Ann. Math. Stud. - 1974. - 79. - P. 23-29.

6. Becker J. Conformal mappings with quasiconformal extensions//Aspects of Contemporary Complex Analusis (Rroc. Conf. Dyrxam 1979).– London etc.: Acad. press, 1980. – p. 37–77.

 Гутлянский В.Я. Об областях значений некоторых функционалов и свойствах линий уровня на классах однолистных функций// Вопросы геометр. теории функций: Тр. Томск. ун-та.

- 1968. - 200, въп.5. - С. 71-87.

8. Зморович В.А. О некоторых вариационных задачах теории однолистных функций//Укр. мат. журн.–1952. – 4, № 3. –С. 276–298.

Получено 01.04.92