## удК 517.53

А.А.Довгошей, канд. физ.-мат. наук(Ин-т прикл. математики и механики АН Украины, Донецк)

## КОНТИНУУМЫ СО СВОЙСТВАМИ ДИРИХЛЕ И ПРОИЗВЕДЕНИЯ ПРОСТРАНСТВ ХАРДИ

Для системы непересекающихся односвязных областей рассмотрена задача об одновременной аппроксимации функций из пространств Харди функциями, непрерывными на сфере Римана. Установлен критерий разрешимости этой задачи.
Для системи однозв'язних областеи, що не перетинаються, розглянуто задачу про одночасну апроксимацію функцій із просторів Харді функціями, неперервними на сфері Рімана. Встановлено критерій існування розв'язків цієї задачі.
Пусть $\Omega$ - область на сфере Римана $\overline{\mathbb{C}}, \Gamma$ - граница области $\Omega, a_{0}$ - фиксированная точка этой области. Классом Харди $H^{p}(\Omega), 0<p<\infty$, называется множество голоморфных в $\Omega$ функций $f$, для которых $|f|^{p}$ имеет в $\Omega$ เармоническую мажоранту. При любом $p$ из $(0, \infty)$ на $H^{p}(\Omega)$ определен неотрицательный функционал

$$
\begin{equation*}
\|f\|_{H^{p}(\Omega)}=:\left[u_{f}\left(a_{0}\right)\right]^{1 / p}, \tag{1}
\end{equation*}
$$

где $u_{f}$ - наименьшая гармоническая мажоранта субгармонической функции $|f|^{p}$. Если $p \geq 1$, то $H^{p}(\Omega)$ - банахово пространство с нормой (1), а для $p<1$ $H^{p}(\Omega)$ - полное метрическое пространство, расстояние между точками которого определяется формулой

$$
\begin{equation*}
\rho(f, g)=\left[\|f-g\|_{H^{p}(\Omega)}\right]^{p} \tag{2}
\end{equation*}
$$

Для континуума $K$, лежащег о на сфере Римана $\overline{\mathbb{C}}$, предположим, что $G=$ $=\overline{\mathbb{C}} \backslash$ - открытое множество, представляющее собой об'ьединение односвязных областей $G_{i}$ - компонент связности $\overline{\mathbb{C}} \backslash$. Каждой из областей $G_{i}$ сопоставим пространіство $H^{(i)}\left(H^{(i)}=: H^{p_{i}}\left(G_{i}\right), 0<p_{i}<\infty\right)$ и точку $a_{i} \in G_{i}$, определяющую по формулам (1), (2) метрику в $H^{(i)}$. Если $H$ - произведение пространсттв $H^{(i)}, H=\prod_{i=1}^{\infty} H^{(i)}$, снабженное тихоновской топологией, то любая голоморфная на $G$ функция такая, что $f_{G_{i}} \in H^{(i)}$, естественным образом отождествляется с соответствующим элементом $H$. В частности, для алебры фуикций $A(K)$, непрерывных на $\overline{\mathbb{C}}$ и голоморфных в $G$, получим $A(K) \subset H$.

Настоящая работа посвящена решению следующей задачи: при каких условиях множество $A(K)$ плотно в $H$ ? Ниже показано, что условие плотности $A(K)$ в $H$ эквивалентно условию принадлежности континуума $K$ классу множеств, имеющих свойство Дирихле.

Напомним, что $K$ имеет свойство Дирихле, если $A(K)$ - алгебра Дирихле, т.е. любая непрерывная на $K$ действительнозначная функция может быть равномерно на $K$ аппроксимирована функциями из $\operatorname{Re} A(K)$.

Теорема. Если коптипуум $К$ имеет свойство Дирихле, то для лобой последовательности положительных чисел $\left\{p_{i}\right\}, 0<p_{i}<\infty$, алгебра $A(К)$ плотна в $H=: \prod_{i=1} H^{p_{i}}\left(G_{i}\right)$..

Обратно, пусть для какой-нибудь последовательности $\left\{p_{i}\right\}, 0<p_{i}<\infty$, алгебра $A(К)$ плотна в $Н$. Тогда $К$ имеет свойство Дирихле.

Как показали Гамелин и Гарнетт [1], свойство Дирихле для $K$ эквивалентно возможности ограниченю поточечно приблизить любую функцию из $H^{\infty}(G)$

функциями из $A(K)$. Это важное утверждение лежит в основе доказательства теоремы. Кроме того, будет использован приведенный ниже критерий принадлежности $K$ классу множеств, имеющих свойство Дирихле.

Для односвязной области $\Omega$ через $\psi$ обозначим конформное и однолистное отображение единичного круга $D$ на эту область, нормированное условиями $\psi(0)=\dot{a_{0}}, \psi^{\prime}(0)>0$.

Отметим, что при такой нормировке преобразование $f \mapsto f \circ \psi$ является изометрическим изоморфизмом пространств $H^{p}(\Omega)$ и $H^{p}=H^{p}(D)$ [2].

Следуя Гликсбергу [3], будем говорить, что область хорошо связна (в оригинале: nicely connected), если на единичной окружности $T$ найдется множество $A$ полной меры такое, что отображение $\psi$ инъективно на $A$ (т. е. во всех точках из $A$ отображение $\psi$ имеет угловые предельные значения и эти значения различны для различных точек из $A$ ).

Критерий Браудера-Вермера-Дэви: $K$ имеет свойство Дирихле тогда и только тогда, когда каждая из областей $G_{i}$ хорошо связна и для различных областей $G_{i_{1}}$ и $G_{i_{2}}$ гармонические меры, заданные на $\partial G_{i_{1}}$ и $\partial G_{i_{2}}$ соответственно, взаимно сингулярны $\omega_{i_{1}} \perp \omega_{i_{2}}$. Браудером и Вермером этот результат доказан для кривых [4], а Дэви - для произвольных континуумов [5, 6].

Прежде чем перейти к доказательству теоремы, убедимся в справедливости следующей леммы.

Лемма. Пусть область $\Omega$ хорошо связна, $f \in H^{p}(\Omega), p>0, \omega-$ гармоническая мера на $\Gamma=\partial \Omega$ относительно точки $a_{0} \in \Omega$. Тогда на Г существует борелевское множество $\Gamma_{1}$ полной меры, каждой точке $\xi$ которого можно сопоставить единственное число $\tilde{f}(\xi)$ такое, что в области $\Omega$ найдется путь s, ведущий в точку $\xi$ и переходящий в некасательный при отображении на круг, причем такой, что у функции $f(z)$ существует предел - $\tilde{f}(\xi)$ при $z \rightarrow \xi$ по s. Если $s_{1}$ - другой путь, ведущий в $\xi$, переходящий в некасательный при отображении на круг и гомотопный $s$, то вдоль $s_{1}$ у функции существует предел, совпадающий с $\tilde{f}(\xi)$,

$$
\begin{equation*}
\|f\|_{H^{p}(\Omega)}=\left(\int_{\Gamma}|\tilde{f}(\xi)|^{p} d \omega(\xi)\right)^{1 / p} \tag{3}
\end{equation*}
$$

Доказательство. Почти всюду на множестве $A$, введенном в определение хорошо связной области, функция $f \circ \psi$ имеет угловые предельные значения. Выбрасывая из $\psi(A)$ множество нулевой гармонической меры, получаем $\Gamma_{1}$. Равенство (3) следует из конформной инвариантности нормы в $H^{p}(\Omega)$ и инвариантности гармонической меры при конформном отображении на круг.

Доказательство теоремы. Пусть замыкание $A(K)$ в $H$ совпадает со всем пространством $H$. Зафиксируем $\Omega$ - произвольную компоненту связности $\overline{\mathbb{C}} \bigvee K$. Покажем, что область $\Omega$ хорошо связна.

Выберем функцию $f \in H$, для которой $\left.\right|_{\left.\right|_{\Omega}}=\varphi$, где $\varphi=\psi^{-1}$ - функция Римана области $\Omega$. Так как $A(K)$ плотно в $H$, то найдется последовательность функций $g_{n}$, голоморфных в $\Omega$ и непрерывных в $\bar{\Omega}$ (замыкании $\Omega$ на сфере Римана), для которой

$$
\lim _{n \rightarrow \infty}\left(1 / 2 \pi \int_{0}^{2 \pi}\left|e^{i \theta}-g_{n}\left(\psi\left(e^{i \theta}\right)\right)\right|^{p} d \theta\right)=0
$$

Выберем множество $A$ полной меры, лежащее на единичной окружности, в каждой точке которого функция $\psi$ имеет некасательные предельные значения. Выделим из последовательности $\left\{g_{n}\right\}$ подпоследовательность $\left\{g_{n_{k}}\right\}$ такую, что во всех точках $e^{i \theta}$ некоторого множества $B$ полной меры $B=T$

$$
\lim _{n_{k} \rightarrow \infty} g_{n_{k}}\left(\psi\left(e^{i \theta}\right)\right)=e^{i \theta}
$$

Теперь, если точки $e^{i \theta_{1}}$ и $e^{i \theta_{2}}$ принадлежат $A \cap B$, то из $\psi\left(e^{i \theta_{1}}\right)=\psi\left(e^{i \theta_{2}}\right)$, в силу непрерывности $g_{n_{k}}$, следует $g_{n_{k}}\left(\psi\left(e^{i \theta_{1}}\right)\right)=g_{n_{k}}\left(\psi\left(e^{i \theta_{2}}\right)\right)$, а,значит, $e^{i \theta_{1}}=$ $=e^{i \theta_{2}}$. Следовательно, $\Omega$ - хорошо связна.

Если теперь $G_{i}$ и $G_{j}$ - различные компоненты связности множества $\overline{\mathbb{C}} \backslash K$, то выберем $f \in H$ такую, что

$$
f^{(i)}=\left.f\right|_{G_{i}} \equiv 1 ; f^{(j)}=\left.f\right|_{G_{j}} \equiv-1 .
$$

Пусть $\omega_{i}$ и $\omega_{j}$ - гармонические меры, соответствующие областям $G_{i}$ и $G_{j}$. По предположению, существует последовательность $\left\{\chi_{n}\right\}_{n=1}^{\infty}, \chi_{n} \in A(K)$ такая, что

$$
\lim _{n \rightarrow \infty}\left\|\chi_{n}^{(i)}-1\right\|_{H^{p_{i}}\left(G_{i}\right)}=\lim _{n \rightarrow \infty}\left\|\chi_{n}^{(j)}+1\right\|_{H^{p_{j}}\left(G_{j}\right)}=0
$$

где $\chi_{n}^{(i)}=\chi_{\left.n\right|_{G_{i}}} ; \chi_{n}^{(j)}=\chi_{\left.n\right|_{G j}}$. Используя лемму, получаем

$$
\lim _{n \rightarrow \infty} \int_{\partial G_{i}}\left|\chi_{n}(\xi)-1\right|^{p_{i}} d \omega_{i}(\xi)=\lim _{n \rightarrow \infty} \int_{\partial G_{j}}\left|\chi_{n}(\xi)+1\right|^{p_{j}} d \omega_{j}(\xi)=0
$$

Следовательно, можно выделить борелевские множества $B_{j} \subset \partial G_{j}$ и $B_{i} \subset \partial G_{i}$ такие, что

$$
\begin{gather*}
\omega_{i}\left(B_{i}\right)=\omega_{j}\left(B_{j}\right)=1  \tag{4}\\
\quad \lim _{n_{k} \rightarrow \infty} \chi_{n_{k}}(f) \equiv 1 \tag{5}
\end{gather*}
$$

при всех $\xi \in B_{i}$ и

$$
\begin{equation*}
\lim _{n_{k} \rightarrow \infty} \chi_{n_{k}}(f) \equiv-1 \tag{6}
\end{equation*}
$$

при всех $\xi \in B_{j}$, где $\left\{\chi_{n_{k}}\right\}$ - некоторая подпоследовательность последовательности $\left\{\chi_{n}\right\}$. Из условий (5) и (6) следует $B_{i} \cap B_{j}=\varnothing$, а с учетом (4) этого достаточно для того, чтобы - $\omega_{i} \perp \omega_{j}$. Используя критерий Браудера-Вермера Дэви, можно утверждать, что $K$ имеет свойство Дирихле.

Обратно, пусть $K$ имеет свойство Дирихле. В силу того что алгебра $H^{\infty}(G)$ плотна в $H$, достаточно показать, что произвольная $f \in H^{\infty}(G)$ может быть приближена в $H$ элементами из $A(K)$. Сходимость в $H$ эквивалентна "покомпонентной" сходимости в $H^{(i)}$, т.е. $f_{n} \rightarrow f$ тогда и только тогда, когда $\forall i$ $f_{n}^{(i)} \rightarrow f^{(i)}$, где $f^{(i)}, f_{n}^{(i)}$ - образы $f$ и $f_{n}$ при естественной проекции $H$ на $H^{(i)}$.

Пусть теперь $f$ - произвольная функция из $H^{\infty}(G)$. Покажем, что $f$ аппроксимируется в $H$ элементами из $A(K)$.

Не уменьшая общности, можно считать, что $\|f\|_{H^{\infty}(G)} \leq 1$. Рассмотрим вначале случай, когда все $p_{i}>1$. Как следует из работы Гамелина и Гарнетта [1] (см. также [5]), любая функция $f \in H^{\infty}(G)$ может быть ограниченно поточеч-

но приближена функциями из $A(K)$, т.е. существует последовательность $\left\{g_{j}\right\}_{j=1}^{\infty}, g_{j} \in A(K)$ такая, что при всех $z \in G$ и всех $j$

$$
\begin{gather*}
\left\|g_{j}\right\|_{\infty} \leq\|f\|_{\infty},  \tag{7}\\
\lim _{j \rightarrow \infty} g_{j}(z)=f(z) . \tag{8}
\end{gather*}
$$

Следовательно, при каждом $i$ функции $g_{j}^{(i)}$ принадлежат единичному шару пространства $H^{p_{i}}\left(G_{i}\right)$, т.е. $\left\|g_{j}^{(i)}\right\|_{H^{p_{i}}\left(G_{i}\right)} \leq 1$. Так как $p_{1}>1$, то $H^{p_{1}}\left(G_{1}\right)-$ рефлексивное банахово пространство. Единичный шар в $H^{p_{1}}\left(G_{1}\right)$ слабо компактен, и из последовательности $\left\{g_{j}\right\}$ можно выделить подпоследовательность $\left\{g_{j,(1)}\right\}$ такую, что $\left\{g_{j,(1)}^{(1)}\right\}, g_{j,(1)}^{(1)}=g_{j,(1) \mid G_{1}}$ слабо сходится в $H^{p_{1}}\left(G_{1}\right)$. Аналогично, $H^{p_{2}}\left(G_{2}\right)$ - рефлексивно, и из $\left\{g_{j,(1)}\right\}$ можно выделить подпоследовательность $\left\{g_{j,(2)}\right\}$, для которой $\left\{g_{j,(2)}^{(2)}\right\}$ слабо сходится в $H^{p_{2}}\left(G_{2}\right)$. Повторяя процесс, получаем семейство последовательностей $\left\{g_{j,(n)}\right\}, n=\overline{1,2, \ldots}$. Применяя к этому семейству канторовский диагональный процесс, получаем последовательность $L=\left\{l_{j}\right\}_{j=1}^{\infty}, l_{j}=g_{j(0)}$, для которой каждая $\left\{l_{j}^{(i)}\right\}$ слабо сходится в $H^{p_{i}}\left(G_{i}\right)$. Так как для любой точки $z$, принадлежащей $G$,

$$
\lim _{j \rightarrow \infty} l_{j}(z)=\lim _{j \rightarrow \infty} g_{j}(z)=f(z),
$$

а соответствующий линейный функционал $\mu_{z}^{(i)} \quad\left(\forall z \in G_{i}, \quad \forall f \in H^{p_{i}}\left(G_{i}\right)\right.$, $\left.\mu_{z}^{(i)}(f)=: f(z)\right)$ непрерывен в $H^{p_{i}}\left(G_{i}\right)$, то слабый предел $\left\{l_{j}^{(i)}\right\}$ равен $f^{(i)}=f \mid G_{i}$

Пусть $\left\{\varepsilon_{k}\right\}_{k=1}^{\infty}$ - последовательность положительных чисел, для которой $\lim _{k \rightarrow \infty} \varepsilon_{n}=0$. Используя теорему Мазура [7, с.173], находим выпуклую линейную комбинацию $d_{1}$

$$
d_{1}=\sum_{j=1}^{N_{i}} \beta_{1, j} l_{j}, \quad \beta_{1, j} \geq 0, \sum_{j=1}^{N_{1}} \beta_{1, j}=1,
$$

для которой

$$
\left\|f^{1}-d_{1}^{(1)}\right\|_{H^{p_{1}}\left(G_{1}\right)} \leq \varepsilon_{1}, \quad f_{1}=f_{\mid G_{1}}, \quad d_{1}^{(1)}=\left.d_{1}\right|_{G_{1}} .
$$

Аналогично находится выпуклая линейная комбинация $d_{2}$

$$
d_{2}=\sum_{j=N_{1}+1}^{N_{2}} \beta_{2, j} l_{j} ; \quad \beta_{2, j} \geq 0 ; \quad \sum_{j=N_{1}+1}^{N_{2}} \beta_{2, j}=1,
$$

для которой $\left\|f^{(1)}-d_{2}^{(1)}\right\|_{H^{P_{1}}\left(G_{1}\right)} \leq \varepsilon_{2} ; d_{2}^{(1)}=\left.d_{2}\right|_{G_{1}}$, и т. д.
Последовательность $\left\{d_{j}^{(1)}\right\}$ сходится по норме $H^{p_{1}}\left(G_{1}\right)$ к $f_{1}$, а любая из $\left\{d_{j}^{(i)}\right\}$ при $i \geq 2$ слабо сходится к $f_{\mid G_{i}}$ в $H^{p_{i}}\left(G_{i}\right)$.

Повторим этот процесс, взяв вместо последовательности $\left\{l_{j}\right\}$ последовательность $D_{1}=\left\{d_{j}\right\}_{j=1}^{\infty}$, а вместо пространства $H^{p_{1}}\left(G_{1}\right)$ - пространство $H^{p_{2}}\left(G_{2}\right)$. В результате получим последовательность $D_{2}$, элементы которой сильно сходятся к $f_{1}$ и $f_{2}$ в $H^{p_{1}}\left(G_{1}\right)$ и $H^{p_{2}}\left(G_{2}\right)$ соответственно и слабо сходятся к $f_{i}$ в
$H^{p_{i}}\left(G_{i}\right)$ при $i \geq 3$. Аналогично, взяв в качестве исходной последовательности $D_{2}$ и повторив описанные выше построения, получим $D_{3}$, сходящуюсяк $f_{3}$ по норме $H^{p_{3}}\left(G_{3}\right)$, и т.д. Применив к семейству последовательностей $P_{n}$, $n=\overline{1,2, \ldots}$, диагональный процесс Кантора, получим последовательность элементов $A(K)$, сходящуюся к $f$ в топологии пространства $H$.

Заметим, наконец, что из сходимости последовательности функций в $H^{p_{1}}$ следует сходимость этой последовательности в $H^{p_{2}}$ при $p_{2}<p_{1}$. Таким образом, последовательность из $A(K)$, построенная для набора $\left\{p_{i}\right\}$, такого, что все $p_{i}<1$, будет сходиться к $f$ и в случае, когда некоторые из $p_{i}$ будут заменены числами $p_{i}^{*}, 0<p_{i}^{*} \leq 1$.

Приведем некоторые следствия доказанной теоремы.
Пусть $\Omega$ - произвольная односвязная область на $\overline{\mathbb{C}}, A(\bar{\Omega})$ - алгебра функций, голоморфных в $\Omega$ и непрерывных в $\bar{\Omega}, 0<p<\infty$.

Следствие 1. Алгебра $A(\bar{\Omega})$ плотна в $H^{p}(\Omega)$ тогда и только тогда, когда $\Omega$ хорошо связна.

Доказательство. Так как любая непрерывная на $\partial \Omega$ функция может быть продолжена на все $\overline{\mathbb{C}} \backslash \Omega$, то утверждение непосредственно вытекает из доказательства теоремы.

Замечание. Некоторые свойства хорошо связных областей изучались ранее автором в $[8,9]$. В этих работах, не зная об определении Гликсберга, автор называл такие области областями с почти всюду жордановой границей. К числу этих областей принадлежат области Каратеодори, лунообразные области и, вообще, любые односвязные области $\Omega$, для которых $\Omega=\operatorname{Int} \bar{\Omega}$.

Следствие 2. Пусть Г - замкнутая кривая Жордана на сфере Римана $\overline{\mathbb{C}} ; G$ и $G_{2}$ - односвязные области с границей Г; $p_{1}$ и $p_{2}$ - положительные числа; М - множество точек Г, в которьх эта кривая имеет касательную. Алгебра $А(\Gamma)$ плотна в произведении пространств $H^{p_{1}}\left(G_{1}\right) \otimes H^{p_{2}}\left(G_{2}\right)$ тогда и только тогда, когда $\Lambda_{1}$-мера Хаусдорфа множества М равна нулю.

Доказательство непосредственно следует из теоремы и геометрического критерия сингулярности гармонических мер (см. [10, 11]).

1. Gamelin T.W., Garnett J.B. Pointwise bounded approximation and Dirichlet algebras // J. Funct. Anal.- 1971.-8.-P.360-404..
2. Duren P.L. Theory of $H^{p}$ spaces.- New York; London: Acad. press, 1970.- 258p.
3. Glicksberg I. Dominant representing measures and rational approximation // Trans. Amer. Math. Soc. - 1968.- 130.- P. 425-462.
4. Browder A., Wermer J. Some algebras of function on an arc // J. Math. and Mech.-1963.-12.-P.119-130.
5. Davie A.M. Dirichlet algebras of analytic functions // J. Funct. Anal.- 1970. - 6. - P.348-356.
6. Davie A.M. Bounded approximation and Dirichlet sets // Ibid.- P.460-467.
7. Иосида К. Функциональный анализ. -М.: Мир, 1967.- 625 c .
8. Довгошей А.А. Приближение аналитических функций в некоторых функциональных пространствах и рациональная аппроксимация функций из классов Харди // Докл. АН УССР. Сер.A. - 1990.- ${ }^{\circ}$ 10.- C.19-21.
9. Довгоией А.А. Об интегральных представлениях в классах Харди и наилучших приближениях в некоторых функциональных пространствах // Укр. мат. журн. - 1991-43, №3. C. 342-347.
10. Bishop C.J., Carleson L., Garnett J.B., Jones P.W. Harmonic measures supported on curves // Pacif. J. Math. - 1989. - 138. - P. 233-236.
11. Bishop C.J. Constructing continuous functions holomorphic off a curve // J. Funct. Anal. - 1989. 82. - P. 113-137.

Получено 01.04.92

