А.О.Игнатьев, канд.физ.-мат.наук(Ин-т прикл. математики и механики АН Украины, Донецк)

ПРИМЕНЕНИЕ ПРЯМОГО МЕТОДА ЛЯПУНОВА К ИССЛЕДОВАНИЮ ИНТЕГРАЛЬНЫХ МНОЖЕСТВ

Определены понятия устоичивости, притяжения и асимптотической устойчивости интегральных множеств систем обыкновенных дифференциальных уравнений. С использованием второго метода Ляпунова доказан ряд теорем об устоичивости интегральных множеств.
Визначені поняття стійості, притягання і асимптотичної стіикості інтегральних множин систем звичайних диференціальних рівнянь. З використанням другого методу Ляпунова доведені теореми про стійкість інтегральних множин.
Рассмотрим систему обыкновенных дифференциальных уравнений

$$
\begin{equation*}
\dot{x}=X(t, x) \tag{1}
\end{equation*}
$$

где $x, X \in R^{n}, t \in I=[0, \infty)$, точка в левой части уравнений (1) означает дифференцирование по t. Предположим, что при

$$
\begin{equation*}
(t, x) \in \Gamma_{H_{1}}=I \times B_{H_{1}} ; B_{H_{1}}=\left\{x \in R^{n}:\|x\|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}<H_{1}\right\} \tag{2}
\end{equation*}
$$

выполнены условия существования и единственности решений системы (1). Введем ряд определений, аналогичных тем, которые использованы в работах [1-4].

Определение 1. Множество M пространства (t, x) называется интегральным, если для любой точки $\left(t_{0}, x_{0}\right) \in M$ выполняется $(t, x(t)) \in M$, где $x(t)=x\left(t, t_{0}, x_{0}\right)$-решение системы (1) с начальными данными $x\left(t_{0}\right)=x_{0}$.

Пусть $M \subset I \times R^{n}$. Обозначим через M_{s} пересечение этого множества с гиперплоскостью $t=s$, а $\rho\left(x, M_{s}\right)$ - расстояние от точки x до множества M_{s}.

Определение 2. Интегральное множество $М$ системы (1) называется устойчивым, если для любых $t_{0} \in I, \varepsilon>0$ можно указать $\delta=\delta\left(t_{0}, \varepsilon\right)>0$ такое, что из неравенства $\rho\left(x_{0}, M_{t_{0}}\right)<\delta$ следует неравенство $\rho\left(x(t), M_{t}\right)<\varepsilon$ $n p u t \geq t_{0}$.

Определение 3. Интегральное множество $М$ системы (1) называется равномерно устойчивым, если в определении 2 число δ зависит только от є.

Обозначим $S\left(M_{t}, r\right)=\left\{x \in R^{n}: \rho\left(x, M_{t}\right)<r\right\}$.
Определение 4. Интегральное множество называется притягивающим, если для всякого $t_{0} \in I$ суцествует $\eta=\eta\left(t_{0}\right)>0$ такое, что для любых $\varepsilon>$ >0 и $x_{0} \in S\left(M_{t_{0}}, \eta\right)$ можно указать $\sigma=\sigma\left(t_{0}, \varepsilon, x_{0}\right)>0$ такое, что $x\left(t, t_{0}, x_{0}\right) \in$ $\in S\left(M_{t}, \varepsilon\right)$ для всех $t \geq t_{0}+\sigma$. Область $S\left(M_{t_{0}}, \eta\right)$ называется областью притяжения интегрального множества M в момент t_{0}.

Определение 5. Интегральное множество $М$ называется равномерно притягивающим, если для некоторого $\eta>0$ и любого $\varepsilon>0$ найдется $\sigma=\sigma(\varepsilon)>0$ такое, что справедливо неравенство $\rho\left(x\left(t, t_{0}, x_{0}\right), M_{t}\right)<\varepsilon$ для всех $t_{0} \in I, x_{0} \in$ $\in S\left(M_{t_{0}}, \eta\right), t \geq t_{0}+\sigma$.

Определение 6. Интегральное множество М называется: асимптотически устойчивым, если оно устойчиво и притягиваюце; равномерно асимптотически устойчивым, если оно равномерно устойчиво и равномерно притягивающе.

Будем рассматривать, следуя А.М. Ляпунову, вещественные функции $v(t, x)$ переменных t, x, определенные и непрерывно дифференцируемые в области

$$
U_{H}(M)=\left\{(t, x) \in R^{n+1}: t \in I, x \in S\left(M_{v}, H\right)\right\},
$$

причем $U_{H}(M) \subset \Gamma_{H_{1}}$. Будем предполагать, если не оговорено противное, выполнение равенства

$$
\begin{equation*}
v(t, x)=0 \text { при } t \in I, x \in M_{t} . \tag{3}
\end{equation*}
$$

Определение 7. Функция $v(t, x)$ называется знакопостоянной относительно M, если на множестве $U_{H}(M)$ она принимает значения одного знака и может обращаться в нуль, причем выполняется условие (3).

Определение 8. Функиия $v(t, x)$ называется определенно-положительной относительно интегрального множества М системы (1), если выполняотся условия (3) $u \quad v(t, x) \geq a\left(\rho\left(\mathrm{x}, M_{t}\right)\right), a \in K$, где K - класс функций Хана [4]. Аналогично, функция $v(t, x)$ называется определенно-отрицательной относительно множества M, если $v(t, x) \leq-a\left(\rho\left(x, M_{t}\right)\right), a \in K$.

Определение 9. Функция $v(t, x)$ допускает в области $U_{H}(M)$ высиий предел, бесконечно малый на множестве M (или короче - бесконечно малый высший предел относительно $М$), если суцествует функция $b \in K$ такая, что $v(t, x) \leq b\left(\rho\left(x, M_{t}\right)\right)$.

Теорема 1. Если дифференциальные уравнения (1) таковы, что возможно найти непрерывную знакоопределенную относительно интегрального множества M функцию $v(t, x)$, производная которой в силу этих уравнений была бы или знакопостоянной функцией относительно M противоположного знака $с$ v, или тождественно равной нулю, то интегральное множество $М$ устойчиво.

Доказательство. Пусть заданы $t_{0} \in I$ и $\varepsilon>0$. Так как $v(t, x)$ непрерывна и $v\left(t_{0}, x\right)$ для всех $x \in M_{t_{0}}$, то найдется $\delta=\delta\left(t_{0}, \varepsilon\right)>0$ такое, что $v\left(t_{0}, x_{0}\right)<$ $<a(\varepsilon)$ для всех $x_{0} \in S\left(M_{t_{0}}, \delta\right)$. Обозначим $x(t)=x\left(t, t_{0}, x_{n}\right)$. Для любых $x_{0} \in$ $\in S\left(M_{t_{0}}, \delta\right)$ и $t \geq t_{0}$ получаем

$$
a\left(\rho\left(x(t), M_{t}\right)\right) \leq v(t, x(t)) \leq v\left(t_{0}, x_{0}\right)<a(\varepsilon) .
$$

Поскольку $a \in k$, то заключаем, что $\rho\left(x(t), M_{t}\right)<\varepsilon$, что и требовалось доказать.
Теорема 2. Если в условии теоремы 1 дополнительно потребовать, чтобы функция $v(t, x)$ допускала бесконечно малый высиий предел относительно М, то интегральное множество $М$ системы (1) равномерно устойчиво.

Доказательство. Действительно, в этом случае можно выбрать δ не зависящим от t_{0}. Для этого достаточно положить $\delta=b^{-1}(a(\varepsilon))$. Здесь и в дальнейшем b^{-1} - функция, обратная функции b.

Теорема 3. Предположим, что суцествует непрерывно дифференцируемая функция $v: U_{H}(M) \rightarrow R$ такая, что для некоторых функций $a, b, c \in k u$ любых $(t, x) \in U_{H}(M)$ справедливы оценки

$$
\begin{gather*}
a\left(\rho\left(x, M_{t}\right)\right) \leq v(t, x) \leq b\left(\rho\left(x, M_{t}\right)\right), \tag{4}\\
\dot{v}(t, x) \leq-c\left(\rho\left(x, M_{t}\right)\right) . \tag{5}
\end{gather*}
$$

Тогда интегральное множество М равномерно асимптотически устойчиво.
Доказательство. Равномерная устойчивость M следует из предыдущей

теоремы. Покажем, что это множество - равномерно притягивающее. Пусть $\eta>0$ - такое число, что $x(t) \in S\left(M_{t}, \eta\right)$ при $x_{0} \in S\left(M_{t}, b^{-1}(a(\eta))\right)$. Возьмем произвольное $\varepsilon(0<\varepsilon<\eta)$. Оценим промежуток времени, в течение которого траектория $x(t)$ может находиться на множестве

$$
\begin{equation*}
x \in S\left(M_{t}, \eta\right) \backslash S\left(M_{t}, \delta\right) \tag{6}
\end{equation*}
$$

где $\delta=b^{-1}(a(\varepsilon))$. Производная $\dot{v}(t, x)$ в области (6) допускает оценку $\dot{v}(t, x) \leq$ $\leq-c(\delta)<0$. Выбирая

$$
\begin{equation*}
\sigma=\frac{b(\eta)-a(\delta)}{c(\delta)} \tag{7}
\end{equation*}
$$

заключаем, что если $x_{0} \in S\left(M_{t}, b^{-1}(a(\eta))\right)$, то $x\left(t_{0}+\sigma\right) \in S\left(M_{t}, \sigma\right)$, следовательно, $x(t) \in S\left(M_{t}, \varepsilon\right)$ при $t>t+\sigma$. Это означает, что множество M - притягивающее. Тот факт, что δ в выражении (7) зависит лишь от ε, указывает на равномерность притяжения. Теорема доказана.

Наряду с уравнениями (1) рассмотрим систему

$$
\begin{equation*}
\dot{x}=X(t, x)+R(t, x) \tag{8}
\end{equation*}
$$

в которой $R=\left(R_{1}, \ldots, R_{n}\right)$. Предположим, что правые части системы (8) в области (2) непрерывны и удовлетворяют условиям существования единственного решения с заданными начальными условиями; решения систем (1), (8) определены для всех значений $(t, x) \in U_{H}(M)$. Здесь M, по-прежнему, обозначает интегральное множество системы (1), $M_{t_{0}}$ - его пересечение с гиперплоскостыо $t=t_{0}$, а $x(t)=x\left(t, t_{0}, x_{0}\right)$ - решение уравнений (8) с начальными условиями $x\left(t_{0}\right)=x_{0}$.

Определение 10. Интегральное множество $М$ назовем устойчивым при постоянно действующих возмущениях (n. д. в.), если для любого $\varepsilon>0$ существуют $\eta_{1}(\varepsilon)>0$ и $\eta_{2}(\varepsilon)>0$ такие, что всякое решение уравнений (8) с начальными зіачениями, удовлетворяющими условию $x_{0} \in S\left(M_{t_{0}}, \eta_{1}\right)$ при произвольньх R_{s}, которые удовлетворяот в области $t \geq t_{0}, x \in S\left(M_{t}, \varepsilon\right)$ неравенству $\|R(t, x)\| \leq \eta_{2}$, удовлетворяет при всех $t>t_{0}$ условию $x(t) \in S\left(M_{t}, \varepsilon\right)$.

В этом определении предполагается, что п. д. в. и соответствующие им функции R_{s} малы при всех $t \geq t_{0}$ в окрестности M. Однако, как указано в работах [5-7], интересны случаи, когда функции, характеризующие п. д. в., не будут малыми при всех $t \geq t_{0}$, а интервалы времени, когда они не малы, будут достаточно малыми. Введем следующее определение.

Определение 11. Иитегральное множество $М$ назовем устойчивым при n. д. в., ограпиченььх в среднем, если для лобой пары положительных чисел ε, т можно указать два таких числа $\delta>0$ и $\eta>0$, что при выполпепии неравенства

$$
\begin{equation*}
\int_{t}^{t+T} \varphi(s) d s<\eta, \tag{9}
\end{equation*}
$$

ъде $\varphi(t)$ - какая-либо непрерывная функция, удовлетворяюцая условию

$$
\begin{equation*}
\|R(t, x)\| \leq \varphi(t) \quad n p u \quad x \in S\left(M_{t}, \varepsilon\right) \tag{10}
\end{equation*}
$$

каждое решение $x\left(t, t_{0}, x_{0}\right)$ с начальными данными $x_{0} \in S\left(M_{t_{0}}, \delta\right)$ удовлетворяет условиюо $x(t) \in S\left(M_{t}, \varepsilon\right)$ при всех $t \geq t_{0}$.

Замечание. Из определений 10,11 следует, что решение, устойчивое при п. д. в., ограниченных в среднем, будет тем более устойчивым при п. д. в. (малых). Число η из определения 11 связано с числом η_{2} из определения 10 соотношением $T_{\eta_{2}}=\eta$.

Теорема 4. Пусть интегральное множество M системь (1) равномерно асимптотически устойчиво, причем эта устойчивость доказана методом построения функции $v(t, x)$, имеющей в некоторой окрестности M ограниченные частные производные и удовлетворяющей условиям теоремы 3. Тогда интегральное множество М устойчиво при п. д. в., ограниченных в среднем..

Доказательство. Воспользуемся методом доказательства из работ [5, 6]. Пусть в области $t \in I, x \in S\left(M_{t}, h\right)$, где $h<H$, существует функция $v(t, x)$ со свойствами, указанными в условии теоремы. Кроме того, пусть, ε - достаточно малое положительное число. Во всяком случае считаем $\varepsilon<h$. В силу оценок (4) имеем

$$
\begin{gather*}
\inf v(t, x) \geq a(\varepsilon)=2 \alpha \tag{11}\\
\rho\left(x, N_{t}\right)=\varepsilon \\
\sup v(t, x) \leq b(\varepsilon)=\frac{\alpha}{e^{2}}, x \in S\left(M_{t}, \delta\right) \tag{12}
\end{gather*}
$$

где $\delta=b^{-1}\left(e^{-2} \alpha\right)$. Рассмотрим область

$$
\begin{equation*}
t \in I, \quad x \in S\left(M_{t}, \varepsilon\right) \backslash S\left(M_{t}, \delta\right) \tag{13}
\end{equation*}
$$

Построим в этой области функцию $V(t, x)=v(t, x) \exp \beta(t)$, где $\beta(t)$ - некоторая непрерывно дифференцируемая функция. Ее производная в силу уравнений (8) имеет вид

$$
\left.\dot{V}(t, x)\right|_{(8)}=V(t, x)\left[\dot{\beta}(t)+\left.\frac{1}{v} \dot{v}\right|_{(1)}+\frac{1}{v} \sum_{i=1}^{n} \frac{\partial v}{\partial x_{i}} R_{i}\right] .
$$

Обозначим через N положительное число, удовлетворяющее неравенствам

$$
\begin{equation*}
\left|\frac{\partial v}{\partial t}\right| \leq N,\left|\frac{\partial v}{\partial x_{i}}\right| \leq N, i=1,2, \ldots, n \tag{14}
\end{equation*}
$$

Пользуясь неравенствами (10), (4), (5), (14), получаем в области (13) оценку

$$
\begin{equation*}
\left.\dot{V}(t, x)\right|_{(8)} \leq V(t, x)\left[\dot{\beta}(t)-\frac{c(\delta)}{b(\varepsilon)}+\frac{n N}{a(\delta)} \varphi(t)\right] . \tag{15}
\end{equation*}
$$

Пусть $q \in(0,1)$. Определим непрерывную функцию $\psi(t)$ так, чтобы выполнялись равенства

$$
\begin{equation*}
\int_{k T}^{(k+1) T} \psi(t) d t=\int_{k T}^{(k+1) T}\left[(1-q) \frac{c(\delta)}{b(\varepsilon)}-\frac{n N}{a(\delta)} \varphi(t)\right] d t, \quad k=0,1,2, \ldots \tag{16}
\end{equation*}
$$

Из условия (9) заключаем, что интеграл в правой части равенства (16) неотрицателен, если η удовлетворяет условию

$$
\begin{equation*}
\eta \leq \frac{(1-q) a(\delta) c(\delta) T}{n N b(\varepsilon)} \tag{17}
\end{equation*}
$$

При выполнении соотношения (17) функцию $\psi(t)$ можно подобрать неотрицательной. В дальнейшем предполагаем, что выпоняется равенство (16) и $\psi(t) \geq$
≥ 0. Определим теперь функцию $\beta(t)$:

$$
\begin{equation*}
\beta(t)=\int_{0}^{t}\left[-\psi(s)+(1-q) \frac{c(\delta)}{b(\varepsilon)}-\frac{n N}{a(\delta)} \varphi(s)\right] d s . \tag{18}
\end{equation*}
$$

Подставляя выражение (18) в правую часть неравенства (15), получаем оценку

$$
\begin{equation*}
\left.\dot{V}(t, x)\right|_{(8)} \leq V(t, x)\left[-\psi(t)-q \frac{c(\delta)}{b(\varepsilon)}\right] \leq-q \frac{c(\delta)}{b(\varepsilon)} V(t, x) . \tag{19}
\end{equation*}
$$

Отметим, что в силу соотношения (16) функция $\beta(t)$ обращается в нуль при $t=$ $=k T(k=0,1,2, \ldots)$. Тогда для любого положительного t существует натуральное число k такое, что $k T \leq t<(k+1) T$, следовательно, из вида функции $\beta(t)$ вытекает

$$
\begin{gathered}
|\beta(t)|=\left|\int_{k T}^{t}\left[-\psi(s)+(1-q) \frac{c(\delta)}{b(\varepsilon)}-\frac{n N}{a(\delta)} \varphi(s)\right] d s\right| \leq \\
\leq(1-q) \frac{c(\delta)}{b(\varepsilon)} T+\int_{k T}^{(k+1) T}\left[\psi(s)+\frac{n N}{a(\delta)} \varphi(s)\right] d s=2(1-q) \frac{c(\delta)}{b(\varepsilon)} T .
\end{gathered}
$$

Выберем такое значение q, чтобы выполнялось неравенство $2(1-q) \mathrm{c}(\delta) T \leq b(\varepsilon)$; при этом в области (13) выполнены соотношения $|\beta(t)| \leq 1$ и

$$
\begin{equation*}
e^{-1} v(t, x) \leq V(t, x) \leq e v(t, x) . \tag{20}
\end{equation*}
$$

Таким образом, построенная функция $V(t, x)$ удовлетворяет (19) и согласно условиям (11), (12), (20) неравенствам

$$
\begin{array}{ll}
\inf V(t, x) \geq 2 \alpha e^{-1}, & \sup V(t, x) \leq \alpha e^{-1}, \tag{21}\\
\rho\left(M_{v}, x\right)=\varepsilon, & x \in S\left(M_{t}, \delta\right) .
\end{array}
$$

Рассмотрим какую-нибудь траекторию $x\left(t, t_{0}, x_{0}\right)$, проходящую в момент времени t_{0} через точку x_{0}. Пусть $x_{0} \in S\left(M_{t}, \delta\right)$. Из оценок (19), (21) следует, что в этом случае траектория остается в области $S\left(M_{t}, \varepsilon\right)$, что и требовалось доказать.

Теорема 5. Пусть при условиях теоремы 4 выполнено равенство

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{t}^{t+T} \varphi(s) d s=0 \tag{22}
\end{equation*}
$$

Тоюда наряду с устойчивостью интегрального множества $М$ при п.д.в., ограниченных в среднем, выполняется соотношение

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \rho\left(M_{t}, x\left(t, t_{0}, x_{0}\right)\right)=0 . \tag{23}
\end{equation*}
$$

Если предельное соотношение (22) выполнено равномерно относительно T, то предел в равенстве (23) является равномерным по t_{0}, x_{0} из области $U_{\delta}(M)$.

Доказательство. Рассмотрим произвольную траекторию $x\left(t, t_{0}, x_{0}\right)$ такую, что $x_{0} \in S\left(M_{t_{0}}, \delta\right)$. Тогда, как показано в теореме 4 , во все время движения $x\left(t, t_{0}, x_{0}\right) \in S\left(M_{t}, \varepsilon\right)$. Выберем теперь произвольное сколь угодно малое $\varepsilon_{1}>0$ $\left(\varepsilon_{1}<\varepsilon\right)$ и покажем, что существует момент времени t_{1} такой, что

$$
\begin{equation*}
x\left(t, t_{0}, x_{0}\right) \in S\left(M_{t}, \varepsilon_{1}\right) \text { при } t>t_{1} . \tag{24}
\end{equation*}
$$

Пусть p-такое натуральное число, что при $k \geq p$ выполняются неравенства

$$
\begin{gather*}
\int_{k T}^{(k+1) T} \varphi(t) d t \leq \frac{\left(1-q_{1}\right) a\left(\delta_{1}\right) c\left(\delta_{1}\right) T}{n N b\left(\varepsilon_{1}\right)}, 0<q_{1}<1, \\
1-q_{1}>\min \left\{\frac{b\left(\varepsilon_{1}\right)}{2 c\left(\delta_{1}\right) T} ; \frac{b\left(\varepsilon_{1}\right)}{2 b(\varepsilon)}\right\} . \tag{25}
\end{gather*}
$$

Рассмотрим функции $\psi_{1}(t) \geq 0$ и $\beta_{1}(t)$, задаваемые равенствами

$$
\begin{aligned}
& \int_{k T}^{(k+1) T} \psi_{1}(t) d t=\int_{k T}^{(k+1) T}\left[\left(1-q_{1}\right) \frac{c\left(\delta_{1}\right)}{b\left(\varepsilon_{1}\right)}-\frac{n N}{a\left(\delta_{1}\right)} \varphi(t)\right] d t, \\
& \beta_{1}(t)=\int_{p T}^{t}\left[-\psi_{1}(s)+\left(1-q_{1}\right) \frac{c\left(\delta_{1}\right)}{b\left(\varepsilon_{1}\right)}-\frac{n N}{a\left(\delta_{1}\right)} \varphi(s)\right] d s .
\end{aligned}
$$

Теперь с помощью функции $V_{1}(t, x)=v(t, x) \exp \beta_{1}(t)$ можно показать, что если при $t \geq p T$ траектория находится на множестве $S\left(M_{t}, \delta_{1}\right)$, то во все последующее время движения она не выйдет из области $S\left(M_{t}, \varepsilon_{1}\right)$. Докажем, что действительно при достаточно большом значении t траектория попадает в область $S\left(M_{t}, \delta_{1}\right)$. Предположим противное: при любом $t>T p$ выполняется условие

$$
\begin{equation*}
x\left(t, t_{0}, x_{0}\right) \in S\left(M_{l}, \varepsilon\right) \backslash S\left(M_{t}, \delta_{1}\right) \tag{26}
\end{equation*}
$$

При выполнении включения (26) имеем оценку

$$
\begin{equation*}
\left.\dot{V}_{1}(t, x)\right|_{(8)} \leq V_{1}(t, x)\left[\dot{\beta}_{1}(t)-\frac{c\left(\delta_{1}\right)}{b(\varepsilon)}+\frac{n N}{a\left(\delta_{1}\right)} \varphi(t)\right] \leq V_{1}(t, x)\left[-\psi_{1}(t)-\frac{c\left(\delta_{1}\right)}{2 b(\varepsilon)}\right], \tag{27}
\end{equation*}
$$

полученную с использованием (25). В то же время из набора функций $\omega_{1}(t)$, $\beta_{1}(t)$ следуют неравенства $\left|\beta_{1}(t)\right|<1, a\left(\delta_{1}\right) e^{-1} \leq e^{-1} v(t, x) \leq V_{1}(t, x) \leq e v(t, x) \leq$ $\leq e b(\varepsilon)$, которые совместно с неравенствами (27) противоречат исходному предположению, а это и доказывает соотношение (24).

Покажем теперь справедливость второго утверждения теоремы. Если условие (23) выполняется равномерно по T, то

$$
\int_{0}^{\infty} \varphi(t) d t=L<\infty .
$$

Пусть $T>0$ - произвольное число, а δ и η - такие положительные числа, что при выполнении условий $x_{0} \in S\left(M_{t_{0}}, \delta\right)$ и (9) $x\left(t, t_{0}, x_{0}\right)$ принадлежит области $S\left(M_{t}, \varepsilon\right)$ при $t>t_{0} \geq 0$. Существование таких чисел установлено теоремой 4. Докажем что для любого сколь угодно малого $\sigma>0$ ($\sigma<\varepsilon$) существует $\tau=\tau(\sigma)$ такое, что при любых $t_{0} \geq 0, t \geq \tau$

$$
\begin{equation*}
x\left(t_{0}+t, t_{0}, x_{0}\right) \in S\left(M_{t_{0}+1}, \sigma\right) \tag{28}
\end{equation*}
$$

Обозначим через $\tau_{1}=\tau_{1}(\sigma)>0$ такое число, что

$$
\begin{equation*}
\int_{\tau_{1}}^{\infty} \varphi(t) d t \leq \frac{(1-q) a(\rho) c(\rho) T}{n N b(\sigma)}, \tag{29}
\end{equation*}
$$

где $\rho=b^{-1}\left[\frac{1}{2} e^{-2} a(\sigma)\right]$, а $q \in(0 ; 1)$ удовлетворяет неравенству $2(1-q) c(\rho) T<$ $<b(\sigma)$. Из доказательства теоремы 4 следует: если траектория $x(t)=x\left(t, t_{0}, x_{0}\right)$ при $t \geq \tau_{1}$ попадает в область $S\left(M_{v}, \rho\right)$,то в дальнейшем она не покидает области $\mathrm{S}\left(M_{v}, \sigma\right)$. Оценим время, в течение которого она может находиться во множестве

$$
\begin{equation*}
S\left(M_{t}, \varepsilon\right) \backslash S\left(M_{l}, \rho\right) . \tag{30}
\end{equation*}
$$

В области (30)

$$
\left.\dot{v}(t, x)\right|_{(8)}=\left.\dot{v}(t, x)\right|_{(1)}+\frac{\partial v}{\partial x} R \leq-c(\rho)+N n \varphi(t),
$$

откуда $v(t, x(t))-v\left(t_{0}, x_{0}\right) \leq-c(\rho)\left(t-t_{0}\right)+L N n$. Из последнего неравенства заключаем, что промежуток времени, в течение которого траектория $x(t)$ может быть расположена в области (30), не превышает τ_{2}, где

$$
\begin{equation*}
\tau_{2}=\frac{1}{c(\rho)}[L N n+b(\varepsilon)-a(\rho)] . \tag{31}
\end{equation*}
$$

Прй фиксированном значении ε величина ρ зависит лишь от σ, следовательно, τ_{2} зависит только от σ. Таким образом, справедливость включения (28) установлена для любого $t \geq \tau(\sigma)$, где $\tau(\sigma)=\tau_{1}(\sigma)+\tau_{2}(\sigma)$, а τ_{1} и τ_{2} определены соответственно выражениями (29) и (31). Теорема доказана.

В качестве примера можно рассмотреть систему

$$
\begin{align*}
& \dot{x}=-y+\frac{1}{2} x\left(2+\sin t+\frac{\cos t}{2+\sin t}-x^{2}-y^{2}\right), \\
& \dot{y}=x+\frac{1}{2} y\left(2+\sin t+\frac{\cos t}{2+\sin t}-x^{2}-y^{2}\right) . \tag{32}
\end{align*}
$$

Множество

$$
\begin{equation*}
x^{2}+y^{2}=2+\sin t \tag{33}
\end{equation*}
$$

является интегральным для уравнений (32). В качестве функции v рассмотрим $v=\frac{1}{2}\left(x^{2}+y^{2}-2-\sin t\right)^{2}$. Ее производная в силу системы (32) равна

$$
\dot{v}=\left(x^{2}+y^{2}-2-\sin t\right)^{2}\left(-\left(x^{2}+y^{2}\right)+\frac{\cos t}{2+\sin t}\right)
$$

При этом она определенно-отрицательна в окрестности интегрального множества (33). Следовательно, множество (33) равномерно асимптотически устойчиво и устойчиво при п. д. в., ограниченных в среднем.

1. Плисс В. А. Интегральные множества периодических систем дифференциальныых уравне-нии.--М.: Наука, 1977.-304c.
2. Самойленко А. М. Элементы математическои теории многочастотных колебаний.-М.: Наука, 1987.- 304с.
3. Митропольский Ю. А., Лыкова О. Б. Интегральные многообразия в нелинеиной механи-ке.-М.: Наука, 1973.-512с.
4. Руш ., Абетс П., Лалуа М. Прямой метод Ляпунова в теории устоичивости.- М.: Мир, 1980.-300c.
5. Гермаидзе В. Е., Красовский Н. Н. Об устоичивости при постоянно денствующих возмущениях // Прикл. математика и механика.- 1957.- 21,N6.- С.769-774.
6. Красовский Н. Н. Некоторые задачи теории устойчивости движения.-М.: Физматгиз, 1959.211 c .
7. Савченко А. Я., Игнатьев А. О. Некоторые задачи устоичивости неавтономных динамических систем.- Киев: Наук. думка, 1989.-208с.

Получено 01.04.92

