удК 517.956

E.A. Калита, канд. физ.-мат. наук (Ин-т прикл. математики и механики АН Украины, Донецк)

О ПОРЯДКЕ ИЗОЛИРОВАННЫХ ОСОБЕННОСТЕЙ РЕШЕНЙ̆ ЭЛЛИПТИЧЕСКИХ СИСТЕМ

Для эллиптических систем второго порядка с естественным энергетическим пространством W_{2}^{1} рассматриваются решения с изолированной особенностью. Если скорость роста решения меньше предельной скорости, определяемой модулем эллиптичности системы, доказано, что или особенность устранима, или ее порядок совпадает с порядком особенности фундаментального решения уравнения Лапласа. Рассмотрены также системы с положительными нелинейными младшими членами, для которых получена полная классификация возможных порядков изолированных особенностеи.
Для еліптичних систем другого порядку з природним енергетичним простором W_{2}^{1} розглядаються розв'язки 3 ізольованою особливістю. Якщо швидкість зростання розв'язку менша за граничну швидкість, яка визначасться модулем еліптичності системи, доведено, що або особливість усувна, або ї порядок збігається з порядком особливості фундаментального розв'язку рівняння Лапласа. Розглянуто також системи з додатніми нелініиними молодшими членами, для яких одержана повна класифікація можливих порядків ізольованих особливостеи.
Особым точкам и особым множествам решений эллиптических уравнений посвящено большое количество работ. Отметим [1], где достаточно полно изучено поведение решений эллиптических уравнений в окрестности особой точки. Переход от уравнений к системам связан с существенными трудностями. Один из подходов к изучению свойств решений эллиптических систем состоит в наложении определенных ограничений на модуль эллиптичности. На этом пути в [2] получены точные условия гельдеровости решений и справедливости теоремы Лиувилля. В данной работе этот подход используется при изучении изолированных особенностей решений. Для систем без младших членов устанавливаются ограничения на порядок роста решения в окрестности особой точки, при которых свойства решения совпадают со свойствами решения модельного уравнения. Эти ограничения зависят от модуля эллиптичности системы. Приведены примеры, показывающие их точность.

В последнее время интенсивно изучаются уравнения с положительными младшими членами вида

$$
\Delta u-u|u|^{q-2}=0, q>2
$$

В $[3,4]$ показано, что уравнение с младшими членами такого типа не имеет изолированных особенностей при $q>2(n-1) /(n-2), n$ - размерность. В [5] при $q<2(n-1) /(n-2)$ получена классификация возможных порядков особенности. В данной работе рассмотрены эллиптические системы с такими младшими членами. Установлено несуществование особых точек при $q \geq q_{0}$, получена классификация возможных порядков особенности при $q \geq q_{1}$, где $q_{0} \in$ $\in(2(n-1) /(n-2) ; 2 n /(n-2)), q_{1} \in(2 n /(n-1) ; 2 n /(n-2))$ зависит от модуля эллиптичности системы.

1. Системы типа главной части. В области $\Omega \subset \mathbb{R}^{n}, n \geq 2$, рассматривается эллиптическая система

$$
\begin{equation*}
D_{k} A_{k}(x, u, D u)=0, \tag{1}
\end{equation*}
$$

где $A_{k}, u-N$-мерные вектор-функции: $A_{k}=\left(A_{k}^{1}, \ldots, A_{k}^{N}\right)$, аналогично u. Предполагается выполненным условие

$$
\begin{equation*}
\exists K<1, \kappa>0:\left[\sum_{i, k}\left(\xi_{k}^{i}-\kappa A_{k}^{i}(x, u, \xi)\right)^{2}\right]^{1 / 2} \leq K|\xi| \tag{2}
\end{equation*}
$$

Оно эквивалентно стандартной паре условий

$$
\begin{equation*}
A_{k}^{i}(x, u, \xi) \xi_{k}^{i} \geq d_{1}|\xi|^{2}, \sum_{i, k}\left(A_{k}^{i}\right)^{2} \leq d_{2}|\xi|^{2} \tag{3}
\end{equation*}
$$

но форма (2) предпочтительнее тем, что для нас существенна величина K. Действительно, из (2) находим

$$
\left(1-K^{2}\right)|\xi|^{2}+\kappa^{2} \sum_{i, k}\left(A_{k}^{i}\right)^{2} \leq 2 \kappa A_{k}^{i} \xi_{k}^{i}
$$

откуда следует первое из условий (3). Второе следует из (2) по неравенству треугольника. В обратную сторону, по (3)

$$
\sum_{i, k}\left(\xi_{k}^{i}-\kappa A_{k}^{i}\right)^{2}=|\xi|^{2}-2 \kappa A_{k}^{i} \xi_{k}^{i}+\kappa^{2}\left(A_{k}^{i}\right)^{2} \leq\left(1-2 \kappa d_{1}+\kappa^{2} d_{2}\right)|\xi|^{2}
$$

откуда при $0<\kappa<d_{1} / d_{2}$ получаем (2). В случае дифференцируемых коэффициентов выражение K через собственные числа $\partial A_{k}^{i} / \partial \xi_{l}^{j}$ как матрицы $N n \times$ $\times N n$ получено в [2, с. 59].

Обозначим $a_{0}=(n-2) \sqrt{1-K^{2}}, a_{1}=\left(1-K^{2}\right)^{-1 / 2}\left(\sqrt{n^{2}-K^{2}(n-2)^{2}}-2 K \sqrt{n-1}\right)$. Отметим, что $a_{1} \in(0, n), a_{1} \rightarrow n$ при $K \rightarrow 0, a_{1} \rightarrow 0$ при $K \rightarrow 1$. Обозначим $E_{R}=\{x: R<r<2 R\}, r=|x|,\|u\|_{E}=\left\|u ; L_{2}(E)\right\|$.

Теорема 1. Пусть $u \in W_{2, \mathrm{loc}}^{1}(\Omega \backslash 0)$-решение (1) с особенностью в нуле, такое, что

$$
\begin{equation*}
\lim _{R \rightarrow 0} \inf R^{\alpha-2}\|u\|_{E_{R}}^{2}=0 \tag{4}
\end{equation*}
$$

с некоторым $a<a_{1}$ при $0<K<\min \left(1,2 \frac{\sqrt{n-1}}{n-2}\right)$ и с $a=a_{0} \quad n р и \quad 2 \frac{\sqrt{n-1}}{n-2} \leq$ $\leq K<1$. Тогда или особая точка устранима, или

$$
\begin{equation*}
R^{\varepsilon}<R^{\frac{n}{2}-2}\|u\|_{E_{R}}<R^{-\varepsilon} \tag{5}
\end{equation*}
$$

$п р и ~ R \rightarrow 0$ и произвольно малом $\varepsilon>0$.
При доказательстве теоремы 1 используются оценки решения в пространствах, отличающихся от основного энергетического пространства W_{2}^{1}. Возможность выбора пробной функции в других пространствах количественно описывают следующие две леммы. Обозначим $D u D v=\sum_{i, k} D_{k} u^{i} D_{k} v^{i}$.

Лемма 1. Пусть $и$ - дифференцируемая почти всюду вектор-функция, $v=$ $=u|u|^{s},-1<s<+\infty$. Тогда

$$
|D u \| D v| \leq \mu(s)^{1 / 2} D u D v, \mu(s)=1+\frac{s^{2}}{4(1+s)}
$$

Доказательство. Обозначая $I=|D u|^{2}|u|^{s}, J=\left|u^{i} D u^{i}\right|^{2}|u|^{s-2}$, имеем

$$
D u D v=I+s J,|u|^{-s}|D v|^{2}=I+\left(2 s+s^{2}\right) J
$$

По неравенству Коши $I \geq J$, так что $D u D v \geq 0$ при $s \geq-1$, и утверждение леммы следует из равенства

$$
\mu(s)(D u D v)^{2}-|D u|^{2}|D v|^{2}=(\mu(s)-1)(I-(2+s) J)^{2} \geq 0
$$

Обозначим через $L_{2, \omega}(E)$ пространство с нормой $\|u\|_{\omega, E}=\left\|\omega^{1 / 2} u ; L_{2}(E)\right\|$. при $\omega \equiv 1$ соответствующий индекс опускаем. При $\omega=r^{a}$ будем писать $L_{2, a}$, а также $\|u\|_{a}$. Обозначим $\omega(r)=\left\{\begin{array}{l}r^{a}, r \leq 1, \\ r^{b}, r \geq 1 .\end{array}\right.$

Лемма 2. Пусть $u \in W_{2}^{1}\left(\mathbb{R}^{n}\right), u=0$ в окрестности $0, \infty$,

$$
\left(\max \left(0, n^{2}-8 n+8\right)\right)^{1 / 2}<a<n, \max (0, a-\delta(a) \varepsilon) \leq b<a,
$$

$\varepsilon>0, \delta(a)$ - положительная невозрастающая функция. Найдется функция v такая, что $D v \in L_{2,1 / \omega}, D v \neq 0$, и выполнено

$$
\begin{gather*}
\|D u\|_{\omega}\|D v\|_{1 / \omega} \leq\left(M_{1}(a)+\varepsilon\right)^{1 / 2} \int D u D v d x, \tag{6}\\
M_{1}(a)=1+a^{2}(n-1)\left(\frac{n^{2}-a^{2}}{4}\right)^{-2} .
\end{gather*}
$$

Доказательство. Представим u в виде $u(x)=u_{0}(r)+u_{1}(x), \int u_{1}(r, \theta) d \theta=0$ $\forall r>0,(r, \theta)$ - полярные координаты, и положим $v=v_{0}+v_{1}, v_{0}(r)=-\int_{r}^{\infty} u_{0}^{\prime}(t) \times$ $\times \omega(t) d t, v_{1}=u_{1} \omega$, штрих обозначает дифференцирование по r.

Обозначая $z=u_{1} \omega^{1 / 2}, z_{0}^{\prime}=u_{0}^{\prime} \omega^{1 / 2}$, имеем

$$
\begin{gathered}
\omega^{1 / 2} D_{k} u=z_{0}^{\prime} r_{k}+D_{k} z-\frac{\tilde{a}}{2} \frac{z}{r} r_{k}, \omega^{-1 / 2} D_{k} v=z_{0}^{\prime} r_{k}+D_{k} z+\frac{\tilde{a}}{2} \frac{z}{r} r_{k}, \\
r_{k}=\frac{x_{k}}{r}, \tilde{a} \equiv \frac{r \omega^{\prime}}{\omega}=\left\{\begin{array}{l}
a, r<1, \\
b, r>1 .
\end{array}\right.
\end{gathered}
$$

Обозначая

$$
I=\int\left(z_{0}^{\prime 2}+|D z|^{2}\right) d x, J=\int\left(\frac{\tilde{a}}{2}\right)^{2} z^{2} r^{-2} d x, S=\int_{r=1} z^{2} d \theta
$$

и учитывая ортогональность на сферах z и константы, находим

$$
\begin{gathered}
\int D u D v d x=I-\frac{a^{2}}{4} J,\|D u\|_{\omega}^{2}=I+\frac{a^{2}}{4} J+\frac{n-2}{2} \int \tilde{a} \frac{z^{2}}{r^{2}} d x-\frac{a-b}{2} S, \\
\|D v\|_{1 / \omega}^{2}=I+\frac{a^{2}}{4} J-\frac{n-2}{2} \int \tilde{a} \frac{z^{2}}{r^{2}} d x+\frac{a-b}{2} S .
\end{gathered}
$$

Оценим снизу I:

$$
I \geq \int\left(z^{\prime 2}+r^{-2}\left|\nabla_{\theta} z\right|^{2}\right) r^{n-1} d r d \theta \geq\left(\left(\frac{n-2}{2}\right)^{2}+n-1\right) \int \frac{z^{2}}{r^{2}} d x
$$

где z^{\prime} оценено по неравенству Харди, а для $\nabla_{\theta^{2}}$, учитывая ортогональность на сферах z и константы, а также то, что первое отличное от нуля собственное число оператора Бельтрами на сфере равно $n-1$, имеем

$$
\begin{equation*}
\int\left|\nabla_{\theta} z(r, \theta)\right|^{2} d \theta \geq(n-1) \int|z(r, \theta)|^{2} d \theta \tag{7}
\end{equation*}
$$

Следовательно,

$$
\begin{equation*}
\int D u D v d x=I-\frac{a^{2}}{4} J \geq \frac{n^{2}-a^{2}}{4} J \geq 0 \tag{8}
\end{equation*}
$$

при $a \leq n$. Поэтому для получения (6) достаточно сравнить квадраты правой и левой части. Находим

$$
\begin{gather*}
M_{1}(a)\left(\int D u D v d x\right)^{2}-\|D u\|_{\omega}^{2}\|D v\|_{1 / \omega}^{2}=\left(I-\frac{n^{2}}{4} J\right)\left\{\left(M_{1}-1\right) I+\right. \\
\left.+\left(\left(M_{1}-1\right) \frac{n^{2}}{4}-\left(M_{1}+1\right) \frac{a^{2}}{2}\right) J\right\}+\left(\frac{n-2}{2} \int \tilde{a} \frac{z^{2}}{r^{2}} d x-\frac{a-b}{2} S\right)^{2}- \\
-\left(\frac{n-2}{2} a J\right)^{2} \geq-\frac{a-b}{2} S(n-2) a \int \frac{z^{2}}{r^{2}} d x, \tag{9}
\end{gather*}
$$

поскольку

$$
\begin{gathered}
\left(M_{1}-1\right) I+\left(\left(M_{1}-1\right) \frac{n^{2}}{4}-\left(M_{1}+1\right) \frac{a^{2}}{4}\right) J= \\
=\left(M_{1}-1\right)\left(I-\frac{n^{2}}{4} J\right)+\frac{a^{2}}{n^{2}-a^{2}}\left(8 n-8-n^{2}+a^{2}\right) J \geq 0
\end{gathered}
$$

при $a^{2} \geq n^{2}-8 n+8$. Используя неравенство Харди в виде

$$
\int_{\alpha}^{\beta} z^{\prime 2} r^{n-1} d r \geq e(n-2-e) \int_{\alpha}^{\beta} z^{2} r^{n-3} d r-\left.e z^{2} r^{n-2}\right|_{\alpha} ^{\beta},
$$

$e \in \mathbb{R}, 0 \leq \alpha<\beta \leq+\infty$. Применяя его на (0,1) с $e=\frac{1}{2}\left(n-2-\sqrt{n^{2}-a^{2}}\right)$ и на $(1, \infty)$ с $e=\frac{1}{2}\left(n-2+\sqrt{n^{2}-a^{2}}\right)$ и учитывая (7), находим

$$
\int D u D v d x \geq \sqrt{n^{2}-a^{2}} S
$$

Вместе с (8), (9) это доказывает (6).
Доказательство теоремы 1. Запишем систему (1) в виде

$$
\Delta u=\Delta u-\kappa D_{k} A_{k}(x, u, D u) .
$$

Из соответствующего интегрального тождества по (2) находим

$$
\begin{equation*}
\int D u D v_{0} d x \leq K \int\left|D u \| D v_{0}\right| d x, v_{0} \in \stackrel{\circ}{W}_{2}^{1} . \tag{10}
\end{equation*}
$$

1. Пусть $K \geq 2 \frac{\sqrt{n-1}}{n-2}(n>6)$. Положим $v=u \min \left(1, \tau^{s}|u|^{s}\right),-1\langle s\langle 0, \tau\rangle$ 0 - константа. Введем срезающую функцию $\varphi \in \dot{C}^{1}\left(F_{R \rho}\right), \varphi=1$ при $\frac{7}{4} R<r<$ $<\frac{5}{4} \rho,|D \varphi| \leq c / R$ в F_{R} и аналогично в $F_{\rho} F_{R}=\left\{x: \frac{5}{4} R<r<\frac{7}{4} R\right\}, F_{R \rho}=\left\{x: \frac{5}{4} R<\right.$ $\left.<r<\frac{7}{4} \rho\right\}, 2 R<\rho, \rho$ столь малое, что решение определено в шаре радиуса 2ρ. Буквой c будем обозначать различные несущественные константы. Полагая $v_{0}=v \varphi$, из (10) по лемме 1 получаем

$$
\begin{gathered}
\left(\mu(s)^{-1 / 2}-K\right) \int_{\Omega_{0}} \varphi\left|D u \left\|\left.D v\left|d x+(1-K) \int_{\Omega_{1}} \varphi\right| D u\right|^{2} d x \leq c R^{-1} \int_{F_{R}}|D u \| v| d x+\text { idem }_{\rho},\right.\right. \\
\Omega_{0}=\left\{x:|u(x)|>\tau^{-1}\right\}, \Omega_{1}=\left\{x:|u(x)|<\tau^{-1}\right\} .
\end{gathered}
$$

Полагая $s=s_{*} \equiv-2\left(\left(1-K^{2}\right)^{-1 / 2}+1\right)^{-1}$, имеем $\mu(s)^{-1 / 2}=K$, и, следовательно,

$$
\begin{equation*}
\int_{\Omega_{1}} \varphi|D u|^{2} d x \leq c \tau^{s} R^{-1} \int_{F_{R}}\left|D u \left\|\left.u\right|^{1+s} d x+c \rho^{-1} \int_{F_{\rho}}|D u \| u| d x\right.\right. \tag{11}
\end{equation*}
$$

По неравенству Гельдера

$$
R^{-1} \int_{F_{R}}\left|D u\left\|\left.u\right|^{1+s} d x \leq c R^{-1-n s / 2}\right\| D u\left\|_{F_{R}}\right\| u \|_{F_{R}}^{1+s}\right.
$$

Учитывая стандартную оценку $\|D u\|_{F_{R}} \leq c R^{-1}\|u\|_{E_{R}}$, по (4) получаем

$$
\lim _{R \rightarrow 0} \inf R^{-1} \int_{F_{R}}|D u \| u|^{1+s} d x=0
$$

Из (11) при $R \rightarrow 0$ и $\tau \rightarrow 0$ получаем $D u \in L_{2}$.
2. Пусть $K<\min \left(1,2 \frac{\sqrt{n-1}}{n-2}\right)$. Положим $\omega(r)=\left\{\begin{array}{c}r^{a} \tau^{b-a}, r \leq \tau \\ r^{b}, r \geq \tau\end{array}, 2 R<\tau<\rho, 0 \leq\right.$ $\leq b<a<n$, и определим v по функции $u_{0}=u \varphi$ так, как в лемме 2 определяли по u, с нормировкой $\|D v\|_{1 / \omega}=\left\|D u_{0}\right\|_{\omega}$. Положим $v_{0}=\left(v-c_{v}\right) \varphi$, константу c_{v} выберем ниже. В (10) имеем

$$
\int D u_{0} D v d x \leq K\left\|D u_{0}\right\|_{\omega}\|D v\|_{1 / \omega}+c R^{-1}\left(\|D u\|\left\|v-c_{v}\right\|+\|u\|\|D v\|\right)_{F_{R}}+\operatorname{idem}_{\rho},
$$

При $a<a_{1}$, учитывая неравенство $M_{1}(a)^{-1 / 2}>K$ для $a<a_{1}$, по лемме 2 получаем

$$
\left\|D u_{0}\right\|_{\omega}^{2} \leq c R^{-1}\left(\|D u\|\left\|v-c_{v}\right\|+\|u\|\|D v\|\right)_{F_{R}}+\operatorname{idem}_{\rho} .
$$

Оценивая $\|D v\|_{F_{R}}$ через $\|D v\|_{1 / \omega, F_{R \rho}}$ и учитывая нормировку v, получаем

$$
\begin{equation*}
\left\|D u_{0}\right\|_{\omega}^{2} \leq c\|u\|_{\omega, F_{R}}^{2}+c\|D u\|_{\omega, F_{R} \cup F_{\rho}}\left\|r^{-1}\left(v-c_{v}\right)\right\|_{1 / \omega, F_{R \rho}}+c_{\rho} . \tag{12}
\end{equation*}
$$

Пусть отрезок $[b, a]$ не содержит точку $n-2$. Используем неравенство Ха́рди в виде

$$
\int_{R}^{2 \rho} z^{\prime 2} \omega r d r \geq e^{2} \int_{R}^{2 \rho} z^{2} \omega r^{-1} d r-\left\{\begin{array}{c}
e(e+1) \rho^{-1} \int_{\rho}^{2 \rho} z^{2} \omega d r, \frac{r \omega^{\prime}}{\omega} \geq 2 e \\
\operatorname{idem}_{R}, \frac{r \omega^{\prime}}{\omega} \leq-2 e
\end{array}\right.
$$

где $e>0$ - произвольная константа, ω - неотрицательный вес (в нашем случае вес имеет вид $r^{n-2} \omega^{-1}$). При $a<n-2$, полагая $e=(n-2-a) / 2$, находим

$$
\left\|r^{-1}\left(v-c_{v}\right)\right\|_{1 / \omega, F_{R \rho}} \leq c\|D v\|_{1 / \omega}+c\left\|r^{-1}\left(v-c_{v}\right)\right\|_{1 / \omega, F_{\rho}},
$$

а при $b>n-2, e=(b+2-n) / 2-$

$$
\left\|r^{-1}\left(v-c_{v}\right)\right\|_{1 / \omega, F_{R \rho}} \leq c\|D v\|_{1 / \omega}+c\left\|r^{-1}\left(v-c_{v}\right)\right\|_{1 / \omega, F_{R}} .
$$

Константу c_{v} определим условием $\int_{F_{\rho}}\left(v-c_{v}\right) d x=0$ при $a<n-2, \int_{F_{R}}\left(v-c_{v}\right) d x=$ $=0$ при $b>n-2$. Применяя неравенство Пуанкаре, из (12) получаем

$$
\left\|D u_{0}\right\|_{\omega}^{2} \leq c R^{a} \tau^{b-a}\left(R^{-2}\|u\|_{F_{R}}^{2}+\|D u\|_{F_{R}}^{2}\right)+c_{\rho}
$$

Учитывая стандартную оценку $\|D u\|_{F_{R}} \leq c R^{-1}\|u\|_{E_{R}}$, по (4) при $R \rightarrow 0$ находим $\left\|D u_{0}\right\|_{\omega} \leq c_{\rho}$, где c_{ρ} не зависит от τ. Отсюда при $\tau \rightarrow 0$ следует $D u \in L_{2, b}, b<$ $<a$. По неравенству Харди получаем $u \in L_{2, b-2}$, откуда по абсолютной непрерывности интеграла вытекает (4) с $a=b$. Повторим описанную процедуру, учитывая, что ограничения леммы 2 на $a-b$ ослабляются с уменьшением a. Если исходное $a>n-2$, мы получим $D u \in L_{2, b}$ с произвольным $b>n-2$. Если исходное $a<n-2$, за конечное число шагов или приходим к $b=0$, или (при $n>6$) к некоторому $b<\left(n^{2}-8 n+8\right)^{1 / 2}$. Тогда по пункту 1 доказательства получаем $D u \in L_{2}$. Отметим еще, что если (4) выполнено с $a>n-2$, и (5) не выполнено, то в (5) не выполнена оценка снизу, так что (4) справедливо с некоторым $a<n-2$.

Осталось проверить выполнение интегрального тождества для решений из W_{2}^{1}. Достаточно рассмотреть пробные функции $v \in \stackrel{\circ}{W_{2}^{1}} \cap L_{\infty}(\Omega)$. Введем срезающую функцию $\psi \in \stackrel{\circ}{C}^{1}\left(B_{R}\right), B_{R}=\{x: r<R\}$ - шар радиуса $R, \psi=1$ в $B_{R / 2}$, $|D \psi| \leq c / R$. Представляя единицу в виде $1=(1-\psi)+\psi$, находим

$$
\begin{aligned}
\left|\int A_{k} D_{k} v d x\right| & =\left|\int A_{k} D_{k}(v \psi) d x\right| \leq c\|D u\|_{B_{R}}\left(\|D v\|_{B_{R}}+\right. \\
& \left.+R^{-1}\|v\|_{B_{R}}\right) \leq c\|D u\|_{B_{R}}\left(\|D v\|_{B_{R}}+R^{\frac{n}{2}-1}\right) \rightarrow 0
\end{aligned}
$$

при $R \rightarrow 0$ по абсолютной непрерывности интеграла.
Примеры неустранимых особенностей. Установим, что показатель a_{1} точный. А именно, при всех $K \in(0,1)$ построим пример системы вида (1), имеющей решение такое, что $R^{a_{1}-2}\|u\|_{E_{R}}^{2}=$ const при $R \rightarrow 0$. На плоскости ($n=2$) показатель a_{1} точен также для одного уравнения.

Рассмотрим систему

$$
\Delta u^{i}+D_{k}\left(B_{i k} B_{j l} D_{l} u^{j}\right)=0,
$$

$B_{i k}=c \delta_{i k}+d x_{i} x_{k}|x|^{-2}, i, j, k, l=1, \ldots, n$, по повторяющимся индексам идет суммирование. Непосредственными вычислениями проверяется, что система имеет решение $u(x)=x|x|^{\alpha}, \alpha=-\frac{1}{2} n-\left(\frac{1}{4} n^{2}-(n-1) d(n c+d)\left(1+(c+d)^{2}\right)^{-1}\right)^{1 / 2}$. Матрица коэффициентов системы симметрическая (в том смысле, что $A_{k l}^{i j}=$ $=A_{l k}^{j i}$), поэтому $K=\frac{\lambda-1}{\lambda+1}$ [2, с. 61], где λ - модуль эллиптичности системы (отношение наибольшего собственного числа матрицы коэффициентов к наименьшему). В данном случае $\lambda=1+c^{2}(n-1)+(c+d)^{2}$ [2, с.152]. Обозначим $c+$ $+d=\rho \cos \varphi, c \sqrt{n-1}=\rho \sin \varphi$, так что $K=\left(1+2 \rho^{-2}\right)^{-1}$. При $\cos 2 \varphi=n^{-2}[2 \times$ $\left.\times \sqrt{n-1}\left(n^{2}-(n-2)^{2} K^{2}\right)^{1 / 2}-(n-2)^{2} K\right], \sin 2 \varphi \geq 0$, непосредственными вычислениями проверяется, что

$$
\alpha=-\frac{n}{2}-\left[\frac{n^{2}}{4}-2 \frac{n-1}{\cos 2 \varphi+1+\rho^{-2}}\left(\cos 2 \varphi+\frac{n-2}{2 \sqrt{n-1}} \sin 2 \varphi\right)\right]^{1 / 2}=
$$

$$
=-\frac{n}{2}-\frac{1}{2 \sqrt{1-K^{2}}}\left[\left(n^{2}-(n-2)^{2} K^{2}\right)^{1 / 2}-2 K \sqrt{n-1}\right]=-\frac{n+a_{1}}{2} .
$$

Следовательно, $R^{a_{1}-2}\|u\|_{E_{R}}^{2}=$ const при $R \rightarrow 0$.
При $n=2$ рассмотрим уравнение

$$
\Delta u+\left(\gamma^{2}-1\right) D_{k}\left(x_{k} x_{l}|x|^{-2} D_{l} u\right)=0,
$$

$\gamma>1 k, l=1,2$. Оно имеет решение $u(x)=x_{1}|x| \alpha, \alpha=-1-1 / \gamma$. Матрица коэффициентов симметрическая, поэтому, как и выше, $K=\frac{\lambda-1}{\lambda+1}$, где $\lambda=\gamma^{2}$. Подставляя это K в формулу для a_{1}, находим $a_{1}=2 / \gamma$. Следовательно, $R^{a_{1}-2}\|u\|_{E_{R}}^{2} \asymp$ \asymp const при $R \rightarrow 0$.
2. Системы с положительными нелинейными младшими членами. В области $\Omega \subset \mathbb{R}^{n}, n \geq 2$, рассматривается система

$$
\begin{equation*}
D_{k} A_{k}(x, u, D u)-A(x, u, D u)=0, \tag{13}
\end{equation*}
$$

A_{k}, a, u - N-мерные вектор-функции. Предполагается выполненным (2), а также

$$
\begin{equation*}
A^{i}(x, u, \xi) u^{i} \geq|u|^{q},\left|A^{i}(x, u, \xi)\right| \leq c_{1}|u|^{q-1}, q>2 \tag{14}
\end{equation*}
$$

Решения (13) предполагаются принадлежащими пространству $W_{2}^{1} \cap L_{q}$.
Обозначим $\quad q_{j}=q_{j}(K)=2 \frac{n+a_{j}}{n+a_{j}-2}, j=0,1, a_{0}=(n-2) \sqrt{1-K^{2}}, a_{1}=(1-$ $\left.-K^{2}\right)^{-1 / 2}\left(\sqrt{n^{2}-K^{2}(n-2)^{2}}-2 K \sqrt{n-1}\right)$. Отметим, что $q_{0} \in\left(2 \frac{n-1}{n-2} ; \frac{2 n}{n-2}\right)$, q_{0} стремится к нижнему концу интервала при $K \rightarrow 0$, и к верхнему при $K \rightarrow 1$; $q_{1} \in\left(\frac{2 n}{n-1} ; \frac{2 n}{n-2}\right)$, поведение q_{1} при $K \rightarrow 0$ и $K \rightarrow 1$ аналогично.

Теорема 2. Пусть $n>2, q \geq q_{0}(K)$. Тогда реиение (13) не может иметь изолированньх особьх точек.

Теорема 3. Пусть $0<K<\min \left(1,2 \frac{\sqrt{n-1}}{n-2}\right), q_{1}(K) \leq q<q_{0}(K), \quad u \in\left(W_{2}^{1} \cap\right.$ $\left.\cap L_{q}\right)_{\mathrm{loc}}(\Omega \backslash 0)$-решение (13) с существенной особенностью в нуле. Тогда $D u \in L_{2, a} n р и \quad a>b, D u \notin L_{2, a} n p u \quad a<b$, где $\quad b \in\left\{n-2, \frac{2 q}{q-2}-n\right\}$, причем равенство $b=n-2$ возможно только при $q \leq 2 \frac{n-1}{n-2}$.

Замечание. Для справедливости теоремы 2 второе из условий (14) не требуется.

Доказательства теорем используют то свойство эллиптических систем с младшими членами вида (14), что их решения допускают оценку сверху, зависящую только от расстояния до множества особенностей и параметров системы. Для одного уравнения это свойство установлено в [3-5] в различных вариантах. Следующая лемма доказывается аналогично [3]. Обозначим

$$
U(x)=|D u(x)|^{2}+|u(x)|^{q}, U(E)=\int_{E} U(x) d x, B_{R}=B(y, R)
$$

- шар радиуса R с центром y.

Лемма 3. Пусть $u \in W_{2}^{1} \cap L_{q}\left(B_{R}\right)$-решение (13) в шаре B_{R}. Тогда

$$
U\left(B_{R / 2}\right) \leq c R^{n-2 q /(q-2)}
$$

где константа с зависит полько от параметров системы и n.
Доказательство. Запишем систему (13) в виде

$$
\begin{equation*}
\Delta u-\kappa A(x, u, D u)=\Delta u-\kappa D_{k} A_{k}(x, u, D u) . \tag{15}
\end{equation*}
$$

Подставим в соответствующее интегральное тождество пробную функцию $u \psi^{t}$, $t \geq \frac{2 q}{q-2}, \psi \in \dot{C}^{1}\left(B_{R}\right)$ - срезающая функция: $\psi=1$ в $B_{R / 2},|D \psi| \leq c / R$. По (2), (14) имеем

$$
\int\left(|D u|^{2}+\kappa|u|^{q}\right) \psi^{t} d x \leq \int\left(K|D u|^{2} \psi^{t}+c|D u \| u| R^{-1} \psi^{t-1}\right) d x .
$$

Учитывая $K<1$, получаем

$$
\int U \psi^{t} d x \leq c R^{-1} \int|D u \| u| \psi^{t-1} d x .
$$

По неравенству Юнга находим

$$
R^{-1}|D u \| u| \psi^{t-1} \leq \varepsilon|D u|^{2} \psi^{t}+\varepsilon|u|^{q} \psi^{t}+c_{\varepsilon} R^{-2 q /(q-2)},
$$

что при достаточно малом $\varepsilon>0$ приводит к утверждению леммы.
Случай $q>q_{0}$ теоремы 2 может быть рассмотрен на основе леммы 1 . При $q=q_{0}$ в дополнение к лемме 1 нам понадобится следующее утверждение. Обозначим $\|u\|_{a}=\left\|r^{a / 2} u ; L_{2}\right\|, r=|x|$.

Лемма 4. Пусть $u \in W_{2}^{1}\left(\mathbb{R}^{n}\right), u=0$ вокрестности $0, \infty, v=$ и $^{a}, 0<a<n-$ -2. Tozдa

$$
\|D u\|_{a}\|D v\|_{-a} \leq M_{0}(a)^{1 / 2} \int D u D v d x, M_{0}(a)=1+\frac{a^{2}}{(n-2)^{2}-a^{2}} .
$$

Доказательство. Обозначая $z=u r^{a / 2}$, имеем

$$
r^{a / 2} D_{k} u=D_{k} z-\frac{a}{2} \frac{z}{r} r_{k}, r^{-a / 2} D_{k} v=D_{k} z+\frac{a}{2} \frac{z}{r} r_{k},
$$

$r_{k}=r^{-1} X_{k}$ Обозначая $I=\|D z\|^{2}, J=\left\|r^{-1} z\right\|^{2}$ и интегрируя по частям, находим

$$
\|D u\|_{a}^{2}=I+\frac{a}{2}\left(\frac{a}{2}+n-2\right) J,\|D v\|_{a}^{2}=I+\frac{a}{2}\left(\frac{a}{2}-n+2\right) J, \int D u D v d x=I-\frac{a^{2}}{4} J .
$$

По неравенству Харди $I \geq\left(\frac{n-2}{2}\right)^{2} J$, так что $\int D u D v d x \geq 0$ при $a \leq n-2$, и утверждение леммы следует из равенства

$$
M_{0}(a)\left(\int D u D v d x\right)^{2}-\|D u\|_{a}^{2}\|D v\|_{-a}^{2}=\left(M_{0}-1\right)\left[I+\left(\frac{a^{2}}{4}-\frac{(n-2)^{2}}{2}\right) J\right]^{2} \geq 0 .
$$

Доказательство теоремы 2 . Пусть 0 - изолированная особая точка решения (13). Определим срезающую функцию $\varphi \in \stackrel{C}{C}^{1}\left(F_{R \rho}\right)$ так же, как при доказательстве теоремы 1. Подставим в интегральное тождество, соответствующее (15), пробную функцию $v \varphi, v=u_{0} r^{a}, u_{0}=u \varphi$. По (2), (14) находим

$$
\begin{gathered}
\int\left(D u_{0} D v+\kappa|u|^{q} r^{a} \varphi^{2}\right) d x \leq K\left\|D u_{0}\right\|_{a}\|D v\|_{-a}+ \\
+c R^{a-1}\|D u\|_{F_{R}}\|u\|_{F_{R}}+\operatorname{idem}_{\rho}
\end{gathered}
$$

Полагая $a=a_{0}$ и учитывая $M_{0}\left(a_{0}\right)^{-1 / 2}=K$, по лемме 4 получаем

$$
\int|u|^{q} r^{a} \varphi^{2} d x \leq c R^{a-1}\|D u\|_{F_{R}}\|u\|_{F_{R}}+\text { idem }_{\rho}
$$

Покрывая F_{R} конечным, зависящим только от n, числом шаров радиуса $R / 2$ так, что концентрические шары радиуса R не содержат точку 0 , по лемме 3 находим

$$
\int|u|^{q} r^{a_{0}} \varphi^{2} d x \leq c R^{a_{0}+n-2 q /(q-2)}+c_{\rho} .
$$

При $q \geq q_{0}$ при $R \rightarrow 0$ отсюда следует $u \in L_{q, a_{0}}$ где $\left\|u ; L_{q, a}\right\|=\left\|\mathrm{r}^{a / q} u ; L_{q}\right\|$.
Подставим теперь в интегральное тождество, соответствующее (15), пробную функцию $v \varphi, v=u \min \left(1, \tau^{s}|u|^{s}\right), \tau>0$ - константа, $s=s_{*}$. Из (2), (14) и леммы 1 получаем

$$
\begin{gathered}
\left(\mu(s)^{-1 / 2}-K\right) \int_{\Omega_{0}}|D u \| D v| \varphi d x+(1-K) \int_{\Omega_{1}}|D u|^{2} \varphi d x+\kappa \int_{\Omega_{1}}|u|^{q} \varphi d x \leq \\
\leq c R^{-1} \int_{F_{R}}|D u \| v| d x+\operatorname{idem}_{\rho,} . \\
\Omega_{0}=\{x:|u(x)|>1 / \tau\}, \Omega_{1}=\{x:|u(x)|<1 / \tau\} .
\end{gathered}
$$

Учитывая $\mu\left(s_{*}\right)^{-1 / 2}=K$, находим

$$
\int_{\Omega_{1}} U \varphi d x \leq c \tau^{s} R^{-1} \int_{F_{R}}\left|D u \left\|\left.u\right|^{1+s} d x+c \rho^{-1} \int_{F_{\rho}}|D u \| u| d x .\right.\right.
$$

Учитывая стандартную оценку $\|D u\|_{F_{R}} \leq c R^{-1}\|u\|_{E_{R}}$, по неравенству Гельдера получаем

$$
\int_{\Omega_{1}} U \varphi d x \leq c \tau^{s} R^{n-2-n \frac{2+s}{q}}\left\|u ; L_{q}\left(E_{a}\right)\right\|^{2+s}+c_{\rho}
$$

По абсолютной непрерывности интеграла $R^{a_{0}}\left\|u ; L_{q}\left(E_{a}\right)\right\|^{q} \rightarrow 0$ при $R \rightarrow 0$ и для $q \geq q_{0}$ получаем $U\left(\Omega_{1} \cap B_{\rho}\right) \leq c_{\rho}$. При $\tau \rightarrow 0$ отсюда следует $U\left(B_{\rho}\right)<\infty$.

Доказательство теоремы 3. Покроем кольца $\left\{x: 2^{-j}<r<2^{-j+1}\right\}$ конечным, зависящим только от n, числом шаров радиуса 2^{-j-1} так, что концентрические шары радиуса $2 \cdot j$ не содержат точку 0 . По лемме 3 для решения (13) с особенностью в нуле получаем $D u \in L_{2, a}$ с любым $a>2 q /(q-2)-n$.

В случае, когда $D u \in L_{2, a}$ с некоторым $a \in(0 ; 2 q /(q-2)-n)$, учитывая $a_{1} \geq$ $\geq 2 q /(q-2)-n$ (по условию теоремы) и применяя неравенство Харди, получаем, что (4) выполнено с некоторым $a<a_{1}$. Дальнейший ход доказательства аналогичен доказательству теоремы 1 . Покажем только, как оцениваются нелинейные младшие члены, которые в системе (1) отсутствовали. Имеем

$$
\left|\kappa \int A(x, u, D u) v_{0} d x\right| \leq c\left(\int_{F_{R \rho}}|u|^{q} \omega d x\right)^{1-1 / q}\left(\int_{F_{R \rho}}\left|v-c_{v}\right|^{q} \omega^{1-q} d x\right)^{1 / q},
$$

обозначения те же, что и при доказательстве теоремы 1. Применяя вложение

пространств Соболева в кольцах $\left\{x: 2^{-j}<r<2^{-j+1}\right\}$, где вес эквивалентен константе, и оценивая младшие члены по неравенству Харди, находим

$$
\begin{aligned}
& \left(\int_{F_{R \rho}}|u|^{q} \omega d x\right)^{1 / q} \leq c\left(\int_{F_{R \rho}}\left(r^{2}|D u|^{2}+|u|^{2}\right)\left(r^{n} \omega\right)^{2 / q} r^{-n} d x\right)^{1 / 2} \leq \\
& \quad \leq c\left(\int_{F_{R \rho}}|D u|^{2}\left(r^{n} \omega\right)^{2 / q} r^{2-n} d x+\int_{F_{R \rho}}|u|^{2}\left(r^{n} \omega\right)^{2 / q} r^{-n} d x\right)^{1 / 2}
\end{aligned}
$$

Если $a-b \leq q-(q-2) \frac{n+a}{2}$, получаем равномерную по $R, \tau>0$ оценку

$$
\left(\int_{F_{R \rho}}|u|^{q} \omega d x\right)^{1 / q} \leq c\left\|D u ; L_{2, a}\right\|+c_{\rho}
$$

Для v аналогично

$$
\begin{aligned}
\left(\int_{F_{R \rho}}\left|v-c_{v}\right|^{q} \omega^{1-q} d x\right)^{1 / q} & \leq c\left(\int_{F_{R \rho}}\left(r^{2}|D v|^{2}+\left|v-c_{v}\right|^{2}\right)\left(r^{n} \omega\right)^{q / 2-1} \omega^{-1} d x\right)^{1 / 2} \leq \\
& \leq c\left(\|D v\|+\left\|r^{-1}\left(v-c_{v}\right)\right\|\right)_{1 / \omega, F_{R \rho}}
\end{aligned}
$$

если $a-\dot{b} \leq 2 q /(q-2)-n-a$. Следовательно,

$$
\left|\int A v_{0} d x\right| \leq c\left(\left\|D u_{0}\right\|_{\omega}+\left\|r^{-1}\left(v-c_{v}\right)\right\|_{1 / \omega, F_{R \rho}}\right)
$$

и добавление таких членов в правую часть (12) не портит дальнейших рассуждений доказательства теоремы 1.

Примеры неустранимьх особенностей. Установим точность слабейшего утверждения теоремы 2 , а именно, покажем, что при любом $q<2 n /(n-2)$ система вида (13) (с некоторым, не квалифицированным K) может иметь изолированную особенность. Для уравнений второго порядка, как известно, изолированные особенности появляются только при $q<2(n-1) /(n-2)$ [3-5]. Рассмотрим систему

$$
\begin{gathered}
\varepsilon \Delta u^{i}+D_{k}\left(B_{i k} B_{j l} D_{l} u^{j}\right)=c u^{i}|u|^{q-2}, \\
\varepsilon>0, B_{i k}=(n-2) \delta_{i k}+n x_{i} x_{k}|x|^{-2}, i, j, k, l=1, \ldots, n .
\end{gathered}
$$

При любых $\varepsilon, q \in \mathbb{R}, q \neq 2$, она имеет решение $u(x)=x|x|^{\alpha}, \alpha=-q /(q-2), c=$ $=(n-1)^{2}(n+2 \alpha)^{2}+\varepsilon \alpha(\alpha+n)$: Если $\alpha \neq-n / 2$, при достаточно малом $\varepsilon>0$ имеем $c>0$. Остается отметить, что особенность будет неустранимой при $\alpha<$ $<-n / 2$, что равносильно $2<q<2 n /(n-2)$.

1. Serrin J. Local behaviour of solutions of quasilinear elliptic equations//Acta math. - 1964. - 111. P. 247-302.
2. Кошелев А. И. Регулярность решений эллиптических уравнений и систем. - М.: Наука, 1986.-240 c.
3. Кондратьев В. А., Ландис Е.М. Полулинейные уравнения второго порядка с неотрицательной характеристической формой// Мат. заметки.- 1988.- 44, № 4.- С. 457-468.
4. Brezis H., Veron L. Removable singularities for some nonlinear elliptic equations // Arch. Ration. Mech. and Anal.- 1980.- 75, N ${ }^{\circ}$ I.- P. 1-6.
5. Veron L. Singular solutions of some nonlinear elliptic equations // Nonlinear Analysis. - 1981. -5, №3.- P. 225-242.

Получено 01.04. 92

