А. М. Ковалев, д-р физ.-мат. наук, В. Ф. Щербак, канд. физ.-мат. наук (Ин-т прикл. математики и механики АН Украины, Донецк)

УСЛОВИЯ ОДНОЗНАЧНОЙ РАЗРЕШИМОСТИ ОБРАТНЫХ ЗАДАЧ УПРАВЛЯЕМЫХ ДИНАМИЧЕСКИХ СИСТЕМ

Рассмотрены задачи, возникающие в приложенях теории управления динамических систем, когда часть переменных математической модели объекта неизвестна и подлежит определению по информации о выходе системы. Основными среди них являются задачи наблюдения и идентификации, где неизвестны соответственно состояние системы и ее параметры, а также задача обращения системы, в которой ищется управление. На основе анализа отображений, порожденных расширенным вектором измерений, получены условия однозначной разрешимости указанных задач по одной и по множеству траекторий.

Розглянуті задачі, що виникають в застосуваннях теорії керування динамічних систем, коли частина змінних математичної моделі об'єкта невідома і підлягає визначенню за інформацією про вихід системи. Основними серед них є задачі спостереження та ідентифікації, де невідомі відповідно стан системи та її параметри, а також задача обернення системи, в якій шукається керування. На основі аналізу відображень, породжених розширеним вектором вимірювань, одержані умови однозначної розв'язності вказаних задач за однією і за множиною траєкторій.

Уравнения модели и расширенный вектор измерений. Представим модель управляемого объекта в виде системы обыкновенных дифференциальных уравнений

$$\dot{x} = f(x, u), \ x(0) = x_0 \in D \subseteq \mathbb{R}^n, \tag{1}$$

на любой траектории которой известны значения функций

$$y = h(x, u), \tag{2}$$

где $x = (x^1, ..., x^n)$ — вектор состояния, $y = (y^1, ..., y^k)$ — выход системы (1), u = $=(u^1,...,u^m)$ — управление либо неизвестные параметры. Полагаем, что функции f, h, u являются достаточное число раз непрерывно дифференцируемыми функциями своих аргументов, $t \in T = [0, t_k]$.

Наряду с функцией измерений (2) рассмотрим расширенный вектор измерений z_N , составленный из всех компонент выхода h(x, u) и его производных, взятых в силу системы дифференциальных уравнений (1) до некоторого порядка N включительно

$$y^{(0)}(t) = h^{(0)}(x, u) = h(x, u),$$

$$y^{(j)}(t) = h^{(j)}(x, u, \dot{u}, \dots, u^{(j)}) = \frac{\partial h^{(j-1)}(x, u, \dot{u}, \dots, u^{(j-1)})}{\partial x} f(x, u) + \sum_{r=0}^{j-1} \frac{\partial h^{(j-1)}(x, u, \dot{u}, \dots, u^{(j-1)})}{\partial u^{(r)}} u^{(r+1)}.$$
(3)

Обозначив $v_i = (\dot{u}^T, \dots, u^{(i)T})^T$, $z^i = (y^T, \dot{y}^T, \dots, y^{(i)T})^T$, $H_i(x, u, v_i) = (h^{(0)T}(x, u), v_i)^T$ $h^{(1)T}(x, u, v_1), \dots, h^{(i)T}(x, u, v_i)^T$, запишем (3) в виде

$$z_N(t) = H_N(x, u, v_N).$$
 (4)

Возможность решения обратных задач для системы (1), (2) изучается на основе анализа локальной структуры отображения переменных x, u, v_M, порождаемого соотношениями (4). Поэтому полученные результаты справедливы лишь для тех функций $u(\cdot)$, значения которых вместе со значениями производных v(·) принадлежат исследуемой области. Это обстоятельство определяет выбор класса допустимых управлений U посредством задания области

$$D_N \subseteq R^{(N+1)m},$$

$$U(D_N) = \left\{ u(\,\cdot\,) : (u^T(t), v_N^T(t))^T \in D_N, \, t \in T \right\}.$$

Наблюдаемость по части переменных, идентифицируемость, обратимость. Обратные задачи для системы (1), (2) возникают в случаях, когда переменные математической модели x, u неизвестны полностью или частично. Начальное состояние x_0 также может быть неопределенно. Так как выход y(t) — реально измеряемый сигнал, то факт существования решения очевиден и вопрос возможности решения обратной задачи сводится к вопросу о его единственности. Если двум различным значениям неопределенных переменных соответствует один и тот же выход (2), то однозначно восстановить их численным методом невозможно. Поэтому условием разрешимости обратных задач будем считать инъективность отображения, устанавливаемого системой (1), (2) между изучаемой группой неизвестных и множеством сигналов $\{y(\cdot)\}$. С общих позиций основные особенности такого рода передаточных отображений проявляются в задаче наблюдения части фазового вектора, идентификации, а также в задаче обращения системы (1), (2).

 $x=(x_{\alpha}^T,x_{\beta}^T)^T$, по значениям y(t). Для простоты будем полагать, что управление отсутствует. Так как у различных решений системы (1) координаты x_{α} могут совпадать, то в передаточном отображении $\{x_{\alpha}(\,\cdot\,)\} \to \{y(\,\cdot\,)\}$ любому $x_{\alpha}(\,\cdot\,)$ соответствует в общем случае множество решений системы (1) $X_{\alpha}=\{x'(\cdot,x_0): x_0\in D, x'_{\alpha}(t)\equiv x_{\alpha}(t), t\in T\}$, которое функцией измерений (2) переводится во множество выходов $Y_a=\{y(\,\cdot\,): y=h(x), x\in X_{\alpha}\}$. Если любая функция из Y_a соответствует только лишь x_{α} , то x_{α} — наблюдаемая часть переменных.

Определение 1. Система (1), (2) наблюдаема по переменным x_{α} в области $D \times T$, если для любых решений $x_1(t), x_2(t), x_{\alpha 1}(t) \not\equiv x_{\alpha 2}(t), x_1(0), x_2(0) \in$ $\in D$ существует $t \in T$ такой, что $h(x_1(t)) \not\equiv h(x_2(t))$.

Для определения условий наблюдаемости x_{α} воспользуемся следующим соображением. Для любого N вектор функции y(t) взаимно однозначно соответствует $z_N(t) = (y^T(t), \dot{y}^T(t), \dots, y^{(N-1)}(t)^T)^T$. Если для некоторого N равенства (4) $z_N = H_N(x_{\alpha}, x_{\beta})$ определяют неявно однозначную функцию $z_N \to x_{\alpha} = G(z_N)$, то любой $y \in Y_{\alpha}$ также однозначно соответствует x_{α} , следовательно, отображение $\{x_{\alpha}\} \to \{y\}$ инъективно.

Аналогичный способ используется и в задаче идентификации параметров u(t). Передаточное отображение задается следующей схемой: $u(\cdot) \to X_u = \{x(\infty, x_0, u): \dot{x} = f(x, u), x_0 \in D\} \to Y_u = \{y(\cdot): y = h(x, u), x \in X_u\}$. Инъективность этого отображения определяет свойство идентифицируемости.

Определение 2. Система (1), (2) идентифицируема в области $D \times D_N \times T$, если для любых $u_1, u_2 \in U(D_N)$ и любых решений $x_1(t) \in X_{u_1}, x_2(t) \in X_{u_2}$ существует $t \in T$ такой, что $h(x_1(t), u_1(t)) \neq h(x_2(t), u_2(t))$.

Если равенства $z_N = H_N(x, u, v_N)$ определяют однозначную функцию $u = G(z_N)$, то из сопоставления $y \leftrightarrow z_N \to u = G(z_N)$ получаем, что передаточное отображение $\{u\} \to \{y\}$ инъективно.

альных уравнений, у которой вход y(t) порождает на выходе u(t), начальное состояние x_0 известно. В этом случае управлению u(t) соответствует единственный выход $y(t) = h(x(t, x_0, u), u(t))$, следовательно, условием обращения системы (1), (2) можно считать биективность этого соответствия. **Определение 3.** Система (1), (2) обратима в области $D \times D_N \times T$, если

В задаче обращения [1, 2], состоящей в построении системы дифференци-

для любого $x_0 \in D$ и любых $u_1(\cdot), u_2(\cdot) \in U(D_N)$ существует $t \in T$ такой, **umo** $h(x(t, x_0, u_1), u_1(t)) \neq h(x(t, x_0, u_2), u_2(t)).$

Известные [1, 2] критерии обратимости систем, линейных по управлению,

получены с помощью методов дифференциальной геометрии. Ниже будет показано, что для обратимости системы (1), (2) достаточно существования неявной функции типа $u = G(x, z_N)$, описывающей решения уравнения (4). Таким образом, разрешимость обратных задач связана с существованием

неявных функций специального вида $x_{\alpha} = G(z_N)$, $u = G(z_N)$, $u = G(x, z_N)$. Докажем условия наличия такого рода решений у системы (4). Лемма об инъективности дифференцируемого отображения относительно части переменных. Пусть переменные $x \in E \subseteq R^n$, $y \in F \subseteq R^m$, $z \in P \in \mathbb{R}^n$

связаны системой І независимых уравнений $z^{i} - H^{i}(x, y) = 0, i = 1, ..., l,$ (5)

заданных в
$$E \times F \times P$$
, причем $H \in C^{P}(E \times F; P)$ и $z_{0} = H(x_{0}, y_{0})$.

Считая г известным, поставим задачу определения условий, при которых часть неизвестных, а именно вектор x, может быть однозначно определена для

любого вектора z из некоторой окрестности точки z_0 . В частности, при l== n + m по теореме о неявных функциях существуют окрестности S_{x} , S_{y} , S_{z} точек x_0 , y_0 , z_0 соответственно и функции G_x , G_y такие, что все решения (5) $(x,y) \in S_x \times S_y$ определяются для $z \in S_z$ по формулам $x = G_x(z), y = G_y(z)$. При

l < n + + m и постоянстве rank $\partial H(x, y) / \partial (x, y)$ в $S_x \times S_y$ прообраз всякой точки $z \in S_z$ является многообразием размерности n+m-l, описываемым формулами $x_{\alpha} = g_x(z, x_{\beta}, y_{\beta}), y_{\alpha} = g_y(z, x_{\beta}, y_{\beta}),$ (6)

где $x = (x_{\alpha}^T, x_{\beta}^T)^T$, $y = (y_{\alpha}^T, y_{\beta}^T)^T$. Вектор x может быть найден и в этом случае при условии, что структура прообраза всякой точки z имеет вид $x = G_x(z)$, $y_\alpha =$ $= g_{y}(z, x, y)$. Докажем условия такого представления решений системы (5).

Обозначим $J(x, y) = \partial H(x, y) / \partial(x, y), J_x(x, y) = \partial H(x, y) / \partial x, J_y(x, y) = \partial H(x, y) / \partial x$ у)/ду. При сделанных предположениях о дифференцируемости ранги всех яко-

биевых матриц будем считать постоянными в рассматриваемых областях.

Лемма 1. Пусть в области $E \times F \times P$ задана система уравнений (5), причем $\operatorname{rank} J(x_0, y_0) = n + \operatorname{rank} J_{\nu}(x_0, y_0)$. Тогда существуют окрестности S_x, S_{ν}, S_z

точек $x_0, y_0, z_0 = H(x_0, y_0)$ соответственно, функция $G \in C^p(S_z, S_x)$ такие, что для $(x, y, z) \in S_x \times S_y \times S_z$ координаты x множества решений (x, y)

системы (5) описываются формулой x = G(z). Доказательство. Покажем, что rank $J_x(x_0, y_0) = n$. По построению $J = (J_x, J_y)$,

следовательно, rank $J \le \operatorname{rank} J_x + \operatorname{rank} J_y$ или $\operatorname{rank} J_x \ge \operatorname{rank} J - \operatorname{rank} J_y = n$. А так как матрица J_x состоит из n столбцов, то rank $J_x \le n$. Неравенства совместны лишь при rank $J_x = n$.

Обозначим $s = \operatorname{rank} J_y(x_0, y_0) \le m$ и пусть невырожденный минор максимального порядка имеет вид

$$\frac{\partial (H^1, \dots, H^s)}{\partial (y^1, \dots, y^s)}. \tag{7}$$

Тогда для любого $x \in E$ в некоторой окрестности S_y точки y_0 функции $H^1(x,y),...,H^s(x,y)$ независимы как функции переменной y, а остальные зависят от них

$$z^{s+i} = g^{i}(x^{1}, ..., x^{n}, z^{1}, ..., z^{s}), i = 1, n.$$
(8)

Покажем, что rank $\partial(g^1,...,g^n)/\partial(x^1,...,x^n)=n$. С этой целью сделаем в (5) замену переменных $(x,y)\to (\overline{x},\overline{y})$

$$\bar{x}^i = x^i, \bar{y}^j = H^j(x, y), \bar{y}^k = y^k, i = 1, n; j = 1, s; k = s + 1, m.$$
 (9)

В новых координатах равенства (5) примут вид

$$z^i - \overline{y} = 0$$
, $z^j - g^j(\overline{x}^1, \ldots, \overline{x}^n, \overline{y}^1, \ldots, \overline{y}^s) = 0$, $i = 1, s; j = 1, n$,

а матрица J(x, y) преобразуется в $\overline{J}(\overline{x}, \overline{y}) = \partial(z) / \partial(\overline{x}, \overline{y})$:

$$\overline{J}(\overline{x},\overline{y}) = \begin{pmatrix} 0_{s \times n} & E_{s \times s} & 0_{s \times (m-s)} \\ \frac{\partial(g^1,\dots,g^n)}{\partial(x^1,\dots,x^n)} & \frac{\partial(g^1,\dots,g^n)}{\partial(y^1,\dots,y^s)} & 0_{n \times (m-s)} \end{pmatrix}. \tag{10}$$

Так как пребразование невырождено, rank $\overline{J}(\overline{x},\overline{y})=\operatorname{rank} J(x,y)=n+s$. С другой стороны, из вида (10) следует rank $\overline{J}(\overline{x},\overline{y})=\operatorname{rank}\partial(g^1,...,g^n)/\partial(\overline{x}^1,...,\overline{x}^n)+s$, откуда (с учетом $\overline{x}=x$) получаем rank $\partial(g^1,...,g^n)/\partial(x^1,...,x^n)=n$. Последнее по теореме о неявных функциях означает существование окрестностей S_x , S_z точек x_0 , z_0 и функции $G_z \in C^p(S_z; S_x)$ таких, что решения уравнений (8) задаются формулой x=G(z). Лемма доказана.

Условия локальной разрешимости обратных задач. Используя лемму 1, докажем достаточные условия наблюдаемости по части переменных. Предположим, что система (1), (2) не зависит от u_i , следовательно, равенства (4) не содержат u, v_N .

Теорема 1. Пусть для некоторого N в области $D \times T$

rank
$$\partial H_N(x) / \partial x = \dim x_\alpha + \operatorname{rank} \partial H_N(x) / \partial x_\beta$$
.

Тогда система (1), (2) наблюдаема в некоторой области $d \times \tau \subseteq D \times T$ по x_{α} .

Доказательство. По лемме 1 соотношения (4) для данного N определяют неявную функцию $x_{\alpha}=G(z_N)$, где $x\in S_x$, $z\in S_z$. Предположим, что система (1), (2) наблюдаема в области $d\times \tau$, $d\subseteq S_x$, $\tau\subseteq T$ по x_{α} . Тогда существуют два решения $x_1(t), x_2(t)\in S_x, x_{1\alpha}(t) \not\equiv x_{2\alpha}(t), t\in \tau$, таких, что $h(x_1(t))\equiv h(x_2(t))=y(t)$. Так как вектор $z_N(t)$ образован из функции y(t) и ее производных, то $x_{1\alpha}(t)\equiv t$

Аналогично доказываются достаточные условия идентифицируемости.

Теорема 2. Пусть для некоторого N в области $D \times D_N \times T$

 $\equiv x_{2\alpha}(t) = G(z_N(t))$. Полученное противоречие доказывает теорему.

$$\operatorname{rank} \partial H_N(x, u, v_N) / \partial(x, u, v_N) = m + \operatorname{rank} \partial H_N(x, u, v_N) / \partial(x, v_N).$$

Тогда система (1), (2) идентифицируема в некоторой области $d \times d_N \times \tau \subseteq D \times D_N \times T$.

Доказательство. Условия теоремы по лемме 1 определяют в некоторой

области изменения переменных $x \in S_x$, $u \in S_u$, $v_N \in S_v$, $z \in S_z$ однозначную функцию $u = G(z_N)$. Пусть система не является идентифицируемой в области

 $(d \subseteq S_x) \times (d_N \subseteq S_u \times S_v) \times \tau$. Тогда найдутся две функции $u_1(t), u_2(t), u_1(t) \neq 0$ $\neq u_2(t)$, два решения $x_1(t), x_2(t)$, им соответствующие, такие, что для $t \in \tau, x_1(t)$,

 $x_2(t) \in d$, $(u_1^T(t), v_1^T(t))^T$, $(u_2^T(t), v_{2N}^T(t))^T \in d_N$, $h(x_1(t), u_1(t)) \equiv h(x_2(t), u_2(t)) = y(t)$. Поскольку $z_N(t)$ однозначно определяется функцией y(t), то $u_1(t) \equiv u_2(t) =$ $=G(z_N(t))$, что противоречит предположению. Следовательно, система (1), (2)

идентифицируема в $d \times d_N \times \tau$. Условия обратимости системы (1), (2) оказываются более слабыми, чем со-

ответствующие условия идентифицируемости, что свидетельствует о существовании информации об x_0 для восстановления входного воздействия.

Теорема 3. Пусть для некоторого N в области $D \times D_N \times T$

$$\operatorname{rank} \partial H_N(x, u, v_N) / \partial (u, v_N) = m + \operatorname{rank} \partial H_N(x, u, v_N) / \partial v_N.$$

Тогда система (1), (2) обратима в некоторой области $d \times d_N \times \tau \subseteq D \times D_N \times T$.

го $x \in D$ существует функция G и области S_u , S_v , S_z такие, что $u = G(x, z_N)$ для $z \in S_z$, $(u, v) \in S_u \times S_v \subseteq D_N$. Предположим теперь, что система необратима в некоторой области $(d \subseteq D) \times (d_N \subseteq S_u \times S_v) \times (\tau = [0, \varepsilon])$, т. е. существует $x_0 \in D$, функции $u_1(t), u_2(t) \in U(S_u \times S_v), u_1(t) \not\equiv u_2(t), t \in \tau$, такие, что $h(x(t, x_0, u_1), t)$

 $u_1(t)$) $\equiv h(x(t, x_0, u_2), u_2(t)) = y(t)$. Подставим в дифференциальные уравнения (1)

Доказательство. Зафиксируем в (4) переменную х. По лемме 1 для каждо-

вместо
$$u$$
 его выражение через x , z_N :
$$\dot{x} = f(x, G(x, z_N)) = F(x, z_N), x(0) = x_0. \tag{11}$$

По построению $x(t, x_0, u_1), x(t, x_0, u_2)$ являются решениям дифференциальных уравнений (11), им соответствует одна и та же функция времени $z_N(t)$, начальные условия у них совпадают. Следовательно, $x(t, x_0, u_1) \equiv x(t, x_0, u_2)$ для $t \in \tau$. В итоге получаем $u_1(t) = G(x(t, x_0, u_1), z_N(t)) = G(x(t, x_0, u_2), z_N(t)) = u_2(t)$, что противоречит требованию $u_1(t) \neq u_2(t)$. Теорема доказана.

Замечание. Выполнения условий теоремы 3 для некоторого N достаточно

для существования локально обратной системы порядка n + m(N-1) с mмерным входом. Действительно, перепишем (11) в виде

$$\dot{\xi} = F(\xi, \zeta_1, \dots, \zeta_{N-1}, \psi),
\vdots
\dot{\zeta}_1 = \zeta_2, \dots, \dot{\zeta}_{N-2} = \zeta_{N-1}, \dot{\zeta}_{N-1} = \psi,$$
(12)

$$\dot{\zeta}_1 = \zeta_2, \dots, \dot{\zeta}_{N-2} = \zeta_{N-1}, \dot{\zeta}_{N-1} = \psi,$$

$$v = G(\xi, \zeta_1, \dots, \zeta_{N-1}, \psi),$$
(12)

$$v = G(\xi, \zeta_1, ..., \zeta_{N-1}, \psi). \tag{12}$$

Положим $\xi(0) = x_0$, $\zeta_i(0) = y^{(i)}(0)$, $\psi(t) = y^N(t)$. Тогда решением системы дифференциальных уравнений (12) будут функции $\xi(t) = x(t, x_0, u), \zeta_i(t) = y^{(i)}(t), i = 0,$

N-1, а выход (13) совпадет с искомым управлением v=u(t). Таким образом, система (12), (13) восстанавливает по известным $x_0, y^{(i)}(0), i = 0, N-1, y^N(t)$ со-

стояние x(t) и вход u(t), а значит, является обращением системы (1), (2), Используем описанный способ построения обратной системы в задаче функциональной управляемости [2], т.е. в задаче о том, какая функция $\varphi(t)$ может быть выходом системы (1). Для этого введем множество допустимых значений

 $y^{(i)}(0), i = 0, N-1, \ z_{N-1}(D, D_N) = \{H_{N-1}(x_0, u(0), v_{N-1}(0)), \ x_0 \in D, \ u \in \ \in U(D_N)\}.$ Единственным ограничением на выход у(t) в процессе определения посредством (12), (13) порождающего управления u(t) является принадлежность соответствующего вектора $z_{N-1}(0)$ множеству Z_{N-1} . Это обстоятельство позволяет сформулировать следующую теорему.

Теорема 4. Пусть система (1), (2) для некоторогпо N удовлетворяет условиям теоремы 3 и в некоторой области D × D_N × Т является обратимой. Тогда для любой функции $\varphi(t)$ такой, что $(\varphi^T(0), \dot{\varphi}^T(0), \dots, \varphi^{(N-1)}(0)^T) \in Z_{N-1}(D, \dots, \varphi^{(N-1)}(0))$

 D_N), найдутся $x_0 \in D$, $u \in U(D_N)$ такие, что $\varphi(t) \equiv h(x(t,x_0,u),u(t)), t \in T$.

Проверяя для различных $N = 0, 1, \dots$ условия теорем 1-3, можно определить

возможность решения для системы (1), (2) той или иной обратной задачи. Если условия теоремы 1 не выполнены для N = n - 1, а теорем 2, 3 — для N = n + m - 1-1, то система (1), (2) локально не обладает соответственно свойствами наблюдаемости по x_{α} , идентифицируемости, обратимости. Докажем это для задачи

наблюдения части координат. Отсутствие индекса N означает, что N=n-1. **Теорема 5.** Пусть в области $D \times T$ rank $\partial H / \partial x < \dim_{\alpha} + \operatorname{rank} \partial H / \partial x_{\beta}$.

Тогда система (1), (2) наблюдаема по x_{α} в некоторой области $d \times \tau \subseteq D \times T$. Доказательство. Пусть rank $\partial H/\partial x = s < n$. Так как все независимые функции x в совокупности (3) могут содержаться лишь среди первых n-1 производных выхода [3], то

Пусть rank $\partial H / \partial x_{\beta} = r$, dim $x_{\alpha} = \alpha$. Тогда по условию $\alpha < s - r$. Выберем у мат-

$$\dot{z}^{1} = g^{1}(z^{1}, ..., z^{s}),
..., \dot{z}^{s} = g^{s}(z^{1}, ..., z^{s}).$$
(14)

рицы $\partial H / \partial x$ невырожденный минор максимального порядка, взяв в качестве первых r столбцов все независимые столбцы матрицы $\partial H / \partial x_{\rm B}$, а оставшиеся $s-r<\alpha$ — у матрицы $\partial H/\partial x_{\alpha}$, так что det $\partial (H^1,...,H^s)/\partial (x_{\beta 1},x_{\alpha 1}) \neq 0$, где $x_{\alpha} = (x_{\alpha 1}, x_{\alpha 2}), x_{\beta} = (x_{\beta 1}, x_{\beta 2}), x_{\alpha 1} = (x^{1}, \dots x^{s+r}), x_{\beta 1} = (x^{\alpha+1}, \dots, x^{\alpha+r}).$ Прообраз всякой точки z является n-s-мерным многообразием, описываемым функциями $x_{\alpha 2}=g_{\alpha}(z,x_{\alpha 1},x_{\beta 1}), x_{\beta 1}=g_{\beta}(z,x_{\alpha 1},x_{\beta 1}).$ Зафиксируем точку $z=z_0$ и выберем на этом многообразии точки x_1^0 , x_2^0 такие, что $x_{1\alpha}^0 \neq x_{2\alpha}^0$. Пусть $x_1(t), x_2(t)$ — решения системы (1): $x_1(0) = x_1^0, x_2(0) = x_2^0$. Соответствующие им функции $z_1(t), z_2(t)$ по построению удовлетворяют системе дифференциальных уравнений (14), а поскольку $z_1(0) = z_2(0) = z_0$, то существует интервал $\tau =$ $z_1 = [0, ε)$ такой, что $z_1 = z_2$. Так как все компоненты выхода y = h(x) содержатся среди z^1, \dots, z^s , либо функционально через них выражаются, то $h(x_1(t)) =$

 $= h(x_2(t))$. Теорема доказана. Доказательство соответствующих теорем для свойств идентифицируемости и обратимости приведены в [4, 5].

Использование нескольких траекторий. Отсутствие у системы (1), (2) свойства идентифицируемоси в области $D \times D_N \times T$ означает существование u_1, u_2 $\in U(D_N), x_1 \in X_{u_1}, x_2 \in X_{u_2}$ таких, что $h(x_1(t), u_1(t)) \equiv h(x_2(t), u_2(t))$. В то же время может оказаться, что для любых $x_1, x_2 \in X_u$ отображение $u \to (h^T(x_1, u),$ $h^{T}(x_{2}, u))^{T}$ инъективно. В этом случае можно говорить об идентифицируемости

по двум траекториям и т.д. Определение 4. Система (1), (2) идентифицируема в области $D \times D_N \times T$

по λ траекториям, если для любых $u_1, u_2 \in U(D_N)$ и любых решений $x_{11}, \ldots, x_{1\lambda} \in X_{u_1}, x_{21}, \ldots, x_{2\lambda} \in X_{u_2}$ $(h^T(x_{11},u_1),\dots,h^T(x_{1\lambda},u_1)) \not\equiv (h^T(x_2,u_2),\dots,h^T(x_{2\lambda},u_2)), t \in T.$

Определение 5. Система (1), (2) обратима в области $D \times D_N \times T$ по λ

траекториям, если для любых $u_1, u_2 \in U(D_N)$ и любых точек $x_{10}, \dots, x_{\lambda 0} \in D$ $(h^T(x(t,x_{10},u_{,}),u_{1}),\dots,h^T(x(t,x_{\lambda0},u_{,}),u_{1})) \not\equiv$

$$\label{eq:homogeneous} \begin{picture}(t, x_{10}, u_2), u_2), \dots, h^T(x(t, x_{\lambda 0}, u_2), u_2)), t \in T. \end{picture}$$

Рассмотрим систему дифференциальных уравнений порядка N, формально составленную из λ систем (1): $\dot{x}_1 = f(x_1, u),$

$$\dot{x}_{\lambda} = f(x_{\lambda}, u), \quad x_{i}(0) = x_{i_{0}} \in D, \quad i = 1, \lambda,$$
 (15)

и измеряемую функцию размерности λk

 $\eta(t) = (h^T(x_1, u), \dots, h^T(x_2, u)).$ (16)

цируема (обратима) по λ траекториям тогда и только тогда, когда система (15), (16) идентифицируема (обратима) по одной траектории. Тем самым получение

условий разрешимости указанных задач при λ экспериментах (измерениях) сводится к применению теорем 2, 3 к системам (15), (16). Пусть N = n + m - 1.

Теорема 6. Пусть в области $D^{\lambda} \times D_N \times T$

rank
$$\partial (H(x_1, u, v), ..., H(x_{\lambda}, u, v)) / \partial (x_1, ..., x_{\lambda}, u, v) =$$

= $m + \text{rank } \partial (H(x_1, u, v), ..., H(x_{\lambda}, u, v)) / \partial (x_1, ..., x_{\lambda}, u, v).$

Тогда система (1), (2) идентифицируема в некоторой области
$$d \times d_N \times \tau \subseteq$$

 $\subseteq D \times D_N \times T$ по λ траекториям. **Теорема 7.** Пусть в области $D^{\lambda} \times D_N \times T$

 $\operatorname{rank} \partial(H(x_1, u, v), \dots, H(x_{\lambda}, u, v)) / \partial(u, v) = m + \operatorname{rank} \partial(H(x_1, u, v), \dots, H(x_{\lambda}, u, v)) / \partial v.$ Тогда система (1), (2) обратима в некоторой области $d \times d_N \times \tau \subseteq D \times D_N \times T$

по λ траекториям.

Оценим число траекторий, по которому система может быть идентифицируемой. Пусть область D_N содержит 0, тогда неидентифицируемость при u –

- const влечет неидентифицируемость при $u \in C^p(T; \mathbb{R}^m)$.

Положим $u - \text{const}, v_N = 0$. Пусть $\partial H(x, u)/\partial x = s \le n, \partial H(x, u)/\partial (x, u) = r$,

причем $\det \partial (H^1, ..., H^s) / \partial (x^1, ..., x^s) \neq 0$. Тогда $H^{s+i} = g^i(H^i, ..., H^s, u), i = 1$,

r-s. Сделаем замену переменных $x \to \overline{x}$ $\bar{x}^i = H^i(x, u), \ \bar{x}^j = x^j, \ i = 1, s; \ j = s + 1, n.$ (17)

Матрица $\partial H / \partial(x, u)$ преобразуется в матрицу

$$\frac{\partial H(\overline{x}, u)}{\partial (\overline{x}, u)} = \begin{pmatrix} E_{s \times s} & 0_{s \times (n-s)} & 0_{s \times m} \\ X(\overline{x}, u) & 0_{(r-s)(n-s)} & A(\overline{x}, u) \end{pmatrix}, \tag{18}$$

где $X(\overline{x}, u) = \partial(g^1, \dots, g^{r-s})/\partial(\overline{x}^1, \dots, \overline{x}^s), A(\overline{x}, u) = \partial(g^1, \dots, g^{r-s})/\partial u.$

Для (18) всегда выполнено равенство rank $\partial H(\bar{x}, u)/\partial (\bar{x}, u) = s + \text{rank } A(\bar{x}, u)$, поэтому условия теоремы 2 имеют вид rank $A(\bar{x}, u) = m$. Рассматривая систему (1), (2) на λ решениях $x_1, ..., x_{\lambda}$ и преобразуя каждое из них по формулам (17), получаем rank $\partial(H(\overline{x}_1, u), ..., H(\overline{x}_{\lambda}, u) / \partial(\overline{x}_1, ..., \overline{x}_{\lambda}, u) = \lambda s + \text{rank } A_{\lambda}(\overline{x}_1, ...$

 $\ldots, \overline{x}_{\lambda}, u)$, где $A_{\lambda}(\overline{x}_1, \ldots, \overline{x}_{\lambda}; u) = (A^T(\overline{x}_1, u), \ldots, A^T(\overline{x}_{\lambda}, u))^T$. С учетом теоремы

6 достаточным условием идентифицируемости по λ траекториям является условие rank $A_{\lambda}(\bar{x}_1,\ldots,\bar{x}_{\lambda},u)=m$. Используем его для оценки требуемого для идентификации числа траекторий.

При увеличении λ на 1 ранг $A_{\lambda+1}$ либо совпадает с рангом A_{λ} и тогда привлечение новых решений не изменяет свойство идентифицируемости, либо увеличивается на $q, 1 \le q \le \text{rank } A$. Поэтому максимальное число траекторий (q=1) на каждом этапе) $\lambda_{max} = m+1$ – rank A, а минимальное $(q=\operatorname{rank} A)\lambda_{min} = 1$ = [(m-1)/rank A] + 1 где [] — функция Антье. Выразим ранг преобразованной матрицы $A(\overline{x}, u)$ через ранги исходных $\partial H(x, u)/\partial(x, u)$, $\partial H(x, u)/\partial x$. Так как (17) — невырожденное преобразование, то

rank
$$\partial H(x, u) / \partial(x, u) = \operatorname{rank} \partial H(\overline{x}, u) / \partial(\overline{x}, u) = s + \operatorname{rank} A(\overline{x}, u)$$
.

Следовательно, $\alpha = \operatorname{rank} A(x, u) = \partial H(x, u) / \partial (x, u) - \partial H(x, u) / \partial x$. Из изложенного вытекает следующая теорема.

Теорема 8. Пусть область D_N содержит начало координат. Тогда система (1), (2) не может быть идентифицируема по λ < λ_{min} траекторий. Если же она неидентифицируема по $\lambda > \lambda_{max}$ траекторий, то она неидентифицируема по любому числу траекторий. Использование нескольких измерений расширяет возможность восстанов-

ления u(t). В частности, для идентифицируемости любой системы (1) по некоторому числу траекторий достаточно, чтобы h(x, u) = x, если толькоf(x, u) не может быть записана с использованием меньшего числа параметров v(u), dimv < m.

Лемма 2 [4]. Функция f(x, u) непредставима меньшим числом параметров uв области $D \times D_0$ тогда и только тогда, когда для любых λ точек $x_1, \ldots, x_{\lambda} \in$ $\in D$

$$\operatorname{rank}(\partial f(x_1, u) / \partial u, ..., \partial f(x_{\lambda}, u) / \partial u) = m,$$

$$\lambda = m + 1 - \operatorname{rank} \partial f(x_1, u) / \partial u$$

$$\lambda = m + 1 - \operatorname{rank} \partial f(x, u) / \partial u.$$

Изучая идентифицируемость системы (1) при y = x с помощью вектора z = x=(x,f(x,u)), по теореме 6 и лемме 2 получаем, что свойство непредставимости f(x, u) меньшим числом параметров достаточно для определения u(t) $\lambda_{\text{max}} = m + 1 - \text{rank } \partial f(x, u) / \partial u$ траекториям.

- Silvermann L. M. Inversion of multivariable linear systems // IEEE Trans. Automat. Contr. 1969. - AC 14, Nº3. - P.270-276.
- 2 Hirschorn R. M. Invertibility of nonlinear control systems // SIAM J. Contr. and Optim. 1979. –
- 17, Nº2. P.289-297. 3. Ковалев А. М. Нелинейные задачи управления и наблюдения в теории динамических
- систем. Киев: Наук. думка, 1980. 176с. 4. Ковалев А. М., Щербак В. Ф. Условия идентифицируемости нелинейных механических
 - систем // Механика твердого тела. 1984. Вып. 16. С.77-91.

5. Щербак В. Ф. Идентифицируемость механических систем с известным начальным состоянием // Там же. - 1985. - Вып.17. - С.83-87.

Получено 01.04.92