А. М. Ковалев, д-р физ.-мат. наук, В. Ф. Щербак, канд. физ.-мат. наук (Ин-т прикл. математики и механики АН Украины, Донецк)

УСЛОВИЯ ОДНОЗНАЧНОЙ РАЗРЕШИМОСТИ ОБРАТНЫХ ЗАДАЧ УПРАВЛЯЕМЫХ ДИНАМИЧЕСКИХ СИСТЕМ

Рассмотрены задачи, возникающие в приложенях теории управления динамических систем, когда часть переменных математической модели объекта неизвестна и подлежит определению по информации о выходе системы. Основными среди них являются задачи наблюдения и идентификации, где неизвестны соответственно состояние системы и ее параметры, а также задача обращения системы, в которой ищется управление. На основе анализа отображений, порожденных расширенным вектором измерений, получены условия однозначной разрешимости указанных задач по одной и по множеству траекторий.
Розглянуті задачі, що виникають в застосуваннях теоріі керування динамічних систем, коли частина змінних математичної моделі об'єкта невідома і підлягає визначенню за інформацією про вихід системи. Основними серед них є задачі спостереження та ідентифікації, де невідомі відповідно стан системи та ї параметри, а також задача обернення системи, в якій шукається керування. На основі аналізу відображень, породжених розширеним вектором вимірювань, одержані умови однозначної розв'язності вказаних задач за однією і за множиною траєкторіи.

Уравнения модели и расииренный вектор измерений. Представим модель управляемого об́ъекта в виде системы обыкновенных дифференциальных уравнений

$$
\begin{equation*}
\dot{x}=f(x, u), x(0)=x_{0} \in D \subseteq R^{n} \tag{1}
\end{equation*}
$$

на любой траектории которой известны значения функций

$$
\begin{equation*}
y=h(x, u) \tag{2}
\end{equation*}
$$

где $x=\left(x^{1}, \ldots, x^{n}\right)$ - вектор состояния, $y=\left(y^{1}, \ldots, y^{k}\right)$ - выход системы (1), $u=$ $=\left(u^{1}, \ldots, u^{m}\right)$ - управление либо неизвестные параметры. Полагаем, что функции f, h, u являются достаточное число раз непрерывно дифференцируемыми функциями своих аргументов, $t \in T=\left[0, t_{k}\right]$.

Наряду с функцией измерений (2) рассмотрим расширенный вектор измерений z_{N}, составленный из всех компонент выхода $h(x, u)$ и его производных, взятых в силу системы дифференциальных уравнений (1) до некоторого порядка N включительно

$$
\begin{gather*}
y^{(0)}(t)=h^{(0)}(x, u)=h(x, u) \\
y^{(j)}(t)=h^{(j)}\left(x, u, \dot{u}, \ldots, u^{(j)}\right)=\frac{\partial h^{(j-1)}\left(x, u, \dot{u}, \ldots, u^{(j-1)}\right)}{\partial x} f(x, u)+ \\
+\sum_{r=0}^{j-1} \frac{\partial h^{(j-1)}\left(x, u, \dot{u}, \ldots, u^{(j-1)}\right)}{\partial u^{(r)}} u^{(r+1)} \tag{3}
\end{gather*}
$$

Обозначив $v_{i}=\left(\dot{u}^{T}, \ldots, u^{(i) T}\right)^{T}, z^{i}=\left(y^{T}, \dot{y}^{T}, \ldots, y^{(i) T}\right)^{T}, H_{i}\left(x, u, v_{i}\right)=\left(h^{(0) T}(x, u)\right.$, $\left.h^{(1) T}\left(x, u, v_{1}\right), \ldots, h^{(i) T}\left(x, u, v_{i}\right)\right)^{T}$, запишем (3) в виде

$$
\begin{equation*}
z_{N}(t)=H_{N}\left(x, u, v_{N}\right) \tag{4}
\end{equation*}
$$

Возможность решения обратных задач для системы (1), (2) изучается на основе анализа локальной структуры отображения переменных x, u, v_{N}, порождаемого соотношениями (4). Поэтому полученные результаты справедливы лишь для тех функций $u(\cdot)$, значения которых вместе со значениями производных $v(\cdot)$ принадлежат исследуемой области. Это обстоятельство определяет выбор класса допустимых управлений U посредством задания области

$$
\begin{gathered}
D_{N} \subseteq R^{(N+1) m}, \\
U\left(D_{N}\right)=\left\{u(\cdot):\left(u^{T}(t), v_{N}^{T}(t)\right)^{T} \in D_{N}, t \in T\right\} .
\end{gathered}
$$

Наблюдаемость по части переменньх, идентифицируемость, обратимость. Обратные задачи для системы (1), (2) возникают в случаях, когда переменные математической модели x, u неизвестны полностью или частично. Начальное состояние x_{0} также может быть неопределенно. Так как выход $y(t)$ - реально измеряемый сигнал, то факт существования решения очевиден и вопрос возможности решения обратной задачи сводится к вопросу о его единственности. Если двум различным значениям неопределенных переменных соответствует один и тот же выход (2), то однозначно восстановить их численным методом невозможно. Поэтому условием разрешимости обратных задач будем считать инъективность отображения, устанавливаемого системой (1), (2) между изучаемой группой неизвестных и множеством сигналов $\{y(\cdot)\}$. С общих позиций основные особенности такого рода передаточных отображений проявляются в задаче наблюдения части фазового вектора, идентификации, а также в задаче обращения системы (1), (2).

Рассмотрим первую из них, состоящую в определении значений $x_{\alpha}(t)$, где $x=\left(x_{\alpha}^{T}, x_{\beta}^{T}\right)^{T}$, по значениям $y(t)$. Для простоты будем полагать, что управление отсутствует. Так как у различных решений системы (1) координаты x_{α} могут совпадать, то в передаточном отображении $\left\{x_{\alpha}(\cdot)\right\} \rightarrow\{y(\cdot)\}$ любому $x_{\alpha}(\cdot)$ соответствует в общем случае множество решений системы (1) $X_{\alpha}=\left\{x^{\prime}\left(\cdot, x_{0}\right)\right.$: $\left.x_{0} \in D, x_{\alpha}^{\prime}(t) \equiv x_{\alpha}(t), t \in T\right\}$, которое функцией измерений (2) переводится во множество выходов $Y_{a}=\left\{y(\cdot): y=h(x), x \in X_{\alpha}\right\}$. Если любая функция из Y_{a} соответствует только лишь x_{α}, то x_{α} - наблюдаемая часть переменных.

Определение 1. Система (1), (2) наблюдаема по переменным x_{α} в области $D \times T$, если для пюбых решений $x_{1}(t), x_{2}(t), x_{\alpha 1}(t)$ 三 $x_{\alpha 2}(t), x_{1}(0), x_{2}(0) є$ $\in D$ существует $t \in T$ такой, что $h\left(x_{1}(t)\right) \neq h\left(x_{2}(t)\right)$.

Для определения условий наблюдаемости x_{α} воспользуемся следующим соображением. Для любого N вектор функции $y(t)$ взаимно однозначно соответствует $z_{N}(t)=\left(y^{T}(t), \dot{y}^{T}(t), \ldots, y^{(N-1)}(t)^{T}\right)^{T}$. Если для некоторого N равенства (4) $z_{N}=H_{N}\left(x_{\alpha}, x_{\beta}\right)$ определяют неявно однозначную функцию $z_{N} \rightarrow x_{\alpha}=G\left(z_{N}\right)$, то любой $y \in Y_{\alpha}$ также однозначно соответствует x_{α}, следовательно, отображение $\left\{x_{\alpha}\right\} \rightarrow\{y\}$ инъективно.

Аналогичный способ используется и в задаче идентификации параметров $u(t)$. Передаточное отображение задается следующей схемой: $u(\cdot) \rightarrow X_{u}=$ $\left\{x\left(\infty, x_{0}, u\right): \dot{x}=f(x, u), x_{0} \in D\right\} \rightarrow Y_{u}=\left\{y(\cdot): y=h(x, u), x \in X_{u}\right\}$. Инъективность этого отображения определяет свойство идентифицируемости.

Определение 2. Система (1), (2) идентифицируема в области $D \times D_{N} \times$ $\times T$, если для любых $u_{1}, u_{2} \in U\left(D_{N}\right)$ и лобых решений $x_{1}(t) \in X_{u_{1}}, x_{2}(t) \in X_{u_{2}}$ существует $t \in T$ такой, что $h\left(x_{1}(t), u_{1}(t)\right) \neq h\left(x_{2}(t), u_{2}(t)\right.$.

Если равенства $z_{N}=H_{N}\left(x, u, v_{N}\right)$ определяют однозначную функцию $u=$ $=G\left(z_{N}\right)$, то из сопоставления $y \leftrightarrow z_{N} \rightarrow u=G\left(z_{N}\right)$ получаем, что передаточное отображение $\{u\} \rightarrow\{y\}$ инъективно.

В задаче обращения [1, 2], состоящей в построении системы дифференциальных уравнений, у которой вход $y(t)$ порождает на выходе $u(t)$, начальное состояние x_{0} известно. В этом случае управлению $u(t)$ соответствует единственный выход $y(t)=h\left(x\left(t, x_{0}, u\right), u(t)\right)$, следовательно, условием обращения системы (1), (2) можно считать биективность этого соответствия.

Определение 3. Система (1), (2) обратима в области $D \times D_{N} \times T$, если для любого $x_{0} \in D$ и любьх $u_{1}(\cdot), u_{2}(\cdot) \in U\left(D_{N}\right)$ существует $t \in T$ такой, что $h\left(x\left(t, x_{0}, u_{1}\right), u_{1}(t)\right) \neq h\left(x\left(t, x_{0}, u_{2}\right), u_{2}(t)\right)$.

Известные [1, 2] критерии обратимости систем, линейных по управлению, получены с помощью методов дифференциальной геометрии. Ниже будет показано, что для обратимости системы (1), (2) достаточно существования неявной функции типа $u=G\left(x, z_{N}\right)$, описывающей решения уравнения (4).

Таким образом, разрешимость обратных задач связана с существованием неявных функций специального вида $x_{\alpha}=G\left(z_{N}\right), u=G\left(z_{N}\right), u=G\left(x, z_{N}\right)$. Докажем условия наличия такого рода решений у системы (4).

Лемма об инъективности дифференцируемого отображения относительно части переменньх. Пусть переменные $x \in E \subseteq R^{n}, y \in F \subseteq R^{m}, z \in P \in \in R^{l}$ связаны системой l независимых уравнений

$$
\begin{equation*}
z^{i}-H^{i}(x, y)=0, i=1, \ldots, l \tag{5}
\end{equation*}
$$

заданных в $E \times F \times P$, причем $H \in C^{p}(E \times F ; P)$ и $z_{0}=\cdot H\left(x_{0}, y_{0}\right)$.
Считая z известным, поставим задачу определения условий, при которых часть неизвестных, а именно вектор x, может быть однозначно определена для любого вектора z из некоторой окрестности точки z_{0}. В частности, при $l=$ $=n+m$ по теореме о неявных функциях существуют окрестности S_{x}, S_{y}, S_{z} точек x_{0}, y_{0}, z_{0} соответственно и функции G_{x}, G_{y} такие, что все решения (5) $(x, y) \in S_{x} \times S_{y}$ определяются для $z \in S_{z}$ по формулам $x=G_{x}(z), y=G_{y}(z)$. При $l<n++m$ и постоянстве $\operatorname{rank} \partial H(x, y) / \partial(x, y)$ в $S_{x} \times S_{y}$ прообраз всякой точки $z \in \in S_{z}$ является многообразием размерности $n+m-l$, описываемым формулами

$$
\begin{equation*}
x_{\alpha}=g_{x}\left(z, x_{\beta}, y_{\beta}\right), y_{\alpha}=g_{y}\left(z, x_{\beta}, y_{\beta}\right), \tag{6}
\end{equation*}
$$

где $x=\left(x_{\alpha}^{T}, x_{\beta}^{T}\right)^{T}, y=\left(y_{\alpha}^{T}, y_{\beta}^{T}\right)^{T}$. Вектор x может быть найден и в этом случае при условии, что структура прообраза всякой точки z имеет вид $x=G_{x}(z), y_{\alpha}=$ $=g_{y}(z, x, y)$. Докажем условия такого представления решений системы (5).

Обозначим $J(x, y)=\partial H(x, y) / \partial(x, y), J_{x}(x, y)=\partial H(x, y) / \partial x, J_{y}(x, y)=\partial H(x$, $y) / \partial y$. При сделанных предположениях о дифференцируемости ранги всех якобиевых матриц будем считать постоянными в рассматриваемых областях.

Лемма 1. Пусть в области $E \times F \times P$ задана система уравнений (5), причем rank $J\left(x_{0}, y_{0}\right)=n+\operatorname{rank} J_{y}\left(x_{0}, y_{0}\right)$. Тогда существуют окрестности S_{x}, S_{y}, S_{z} точек $x_{0}, y_{0}, z_{0}=H\left(x_{0}, y_{0}\right)$ соответственно, функция $G \in C^{p}\left(S_{z}, S_{x}\right)$ такие, что для $(x, y, z) \in S_{x} \times S_{y} \times S_{z}$ координаты x множества решений (x, y) системы (5) описываются формулой $x=G(z)$.

Доказательство. Покажем, что rank $J_{\lambda}\left(x_{0}, y_{0}\right)=n$. По построению $J=\left(J_{x}, J_{y}\right)$, следовательно, $\operatorname{rank} J \leq \operatorname{rank} J_{x}+\operatorname{rank} J_{y}$ или $\operatorname{rank} J_{x} \geq \operatorname{rank} J-\operatorname{rank} J_{y}=n$. А так как матрица J_{x} состоит из n столбцов, то rank $J_{x} \leq n$. Неравенства совместны лишь при rank $J_{x}=n$.

Обозначим $s=\operatorname{rank} J_{y}\left(x_{0}, y_{0}\right) \leq m$ и пусть невырожденный минор максимального порядка имеет вид

$$
\begin{equation*}
\partial\left(H^{1}, \ldots, H^{s}\right) / \partial\left(y^{1}, \ldots, y^{s}\right) . \tag{7}
\end{equation*}
$$

Тогда для любого $x \in E$ в некоторой окрестности S_{y} точки y_{0} функции $H^{1}(x, y), \ldots, H^{s}(x, y)$ независимы как функции переменной y, а остальные зависят от них

$$
\begin{equation*}
z^{s+i}=g^{i}\left(x^{1}, \ldots, x^{n}, z^{1}, \ldots, z^{s}\right), i=1, n . \tag{8}
\end{equation*}
$$

Покажем, что rank $\partial\left(g^{1}, \ldots, g^{n}\right) / \partial\left(x^{1}, \ldots, x^{n}\right)=n$. С этой целью сделаем в (5) замену переменных $(x, y) \rightarrow(\bar{x}, \bar{y})$

$$
\begin{equation*}
\bar{x}^{i}=x^{i}, \bar{y}^{j}=H^{j}(x, y), \bar{y}^{k}=y^{k}, i=1, n ; j=1, s ; k=s+1, m . \tag{9}
\end{equation*}
$$

В новых координатах равенства (5) примут вид

$$
z^{i}-\bar{y}=0, z^{j}-g^{j}\left(\bar{x}^{1}, \ldots, \bar{x}^{n}, \bar{y}^{1}, \ldots, \bar{y}^{5}\right)=0, i=1, s ; j=1, n,
$$

а матрица $J(x, y)$ преобразуется в $\bar{J}(\bar{x}, \bar{y})=\partial(z) / \partial(\bar{x}, \bar{y})$:

$$
\bar{J}(\bar{x}, \bar{y})=\left(\begin{array}{ccc}
0_{s \times n} & E_{s \times s} & 0_{s \times(m-s)} \tag{10}\\
\frac{\partial\left(g^{1}, \ldots, g^{n}\right)}{\partial\left(x^{1}, \ldots, x^{n}\right)} & \frac{\partial\left(g^{1}, \ldots, g^{n}\right)}{\partial\left(y^{1}, \ldots, y^{s}\right)} & 0_{n \times(m-s)}
\end{array}\right) .
$$

Так как пребразование невырождено, $\operatorname{rank} \bar{J}(\bar{x}, \bar{y})=\operatorname{rank} J(x, y)=n+s$. С другой стороны, из вида (10) следует $\operatorname{rank} \bar{J}(\bar{x}, \bar{y})=\operatorname{rank} \partial\left(g^{1}, \ldots, g^{n}\right) / \partial\left(\bar{x}^{1}, \ldots, \bar{x}^{n}\right)+s$, откуда (с учетом $\bar{x}=x$) получаем rank $\partial\left(g^{1}, \ldots, g^{n}\right) / \partial\left(x^{1}, \ldots, x^{n}\right)=n$. Последнее по теореме о неявных функциях означает существование окрестностей $S_{x} S_{z}$ точек x_{0}, z_{0} и функции $G_{z} \in C^{p}\left(S_{z} ; S_{x}\right)$ таких, что решения уравнений (8) задаются формулой $x=G(z)$. Лемма доказана.

Условия локальной разрешимости обратных задач. Используя лемму 1, докажем достаточные условия наблюдаемости по части переменных. Предположим, что система (1), (2) не зависит от u_{i}, следовательно, равенства (4) не содержат u, v_{N}.

Tеорема 1. Пусть для некоторого N в области $D \times T$

$$
\text { rank } \partial H_{N}(x) / \partial x=\operatorname{dim} x_{\alpha}+\operatorname{rank} \partial H_{N}(x) / \partial x_{\beta} .
$$

Тогда система (1), (2) наблюдаема в некоторой области $d \times \tau \subseteq D \times T$ по x_{α}.
Доказательство. По лемме 1 соотношения (4) для данного N определяют неявную функцию $x_{\alpha}=G\left(z_{N}\right)$, где $x \in S_{x} ; z \in S_{z}$. Предположим, что система (1), (2) наблюдаема в области $d \times \tau, d \subseteq S_{x}, \tau \subseteq T$ по x_{α}. Тогда существуют два решения $x_{1}(t), x_{2}(t) \in S_{x}, x_{1 \alpha}(t)$ 末 $x_{2 \alpha}(t), t \in \tau$, таких, что $h\left(x_{1}(t)\right) \equiv h\left(x_{2}(t)\right)=y(t)$. Так как вектор $z_{N}(t)$ образован из функции $y(t)$ и ее производных, то $x_{1 \alpha}(t) \equiv$ $\equiv x_{2 \alpha}(t)=G\left(z_{N}(t)\right.$. Полученное противоречие доказывает теорему.

Аналогично доказываются достаточные условия идентифицируемости.
Теорема 2. Пусть для некоторого N в области $D \times D_{N} \times T$

$$
\operatorname{rank} \partial H_{N}\left(x, u, v_{N}\right) / \partial\left(x, u, v_{N}\right)=m+\operatorname{rank} \partial H_{N}\left(x, u, v_{N}\right) / \partial\left(x, v_{N}\right) .
$$

Тогда система (1), (2) идентифицируема є некоторой области $d \times d_{N} \times \tau \varsigma$ $\subseteq D \times D_{N} \times T$.

Доказательстєо. Условия теоремы по лемме 1 определяют в некоторой

области изменения переменных $x \in S_{x}, u \in S_{u}, v_{N} \in S_{v}, z \in S_{z}$ однозначную функцию $u=G\left(z_{N}\right)$ ．Пусть система не является идентифицируемой в области $\left(d \subset S_{x}\right) \times\left(d_{N} \subseteq S_{u} \times S_{v}\right) \times \tau$ ．Тогда найдутся две функции $u_{1}(t), u_{2}(t), u_{1}(t)$ 丰末 $u_{2}(t)$ ，два решения $x_{1}(t), x_{2}(t)$ ，им соответствующие，такие，что для $t \in \tau, x_{1}(t)$ ， $x_{2}(t) \in d,\left(u_{1}^{T}(t), v_{1}^{T}(t)\right)^{T},\left(u_{2}^{T}(t), v_{2 N}^{T}(t)\right)^{T} \in d_{N}, h\left(x_{1}(t), u_{1}(t)\right) \equiv h\left(x_{2}(t), u_{2}(t)\right)=y(t)$ ． Поскольку $z_{N}(t)$ однозначно определяется функцией $y(t)$ ，то $u_{1}(t) \equiv u_{2}(t)=$ $=G\left(z_{N}(t)\right)$ ，что противоречит предположению．Следовательно，система（1），（2） идентифицируема в $d \times d_{N} \times \tau$ ．

Условия обратимости системы（1），（2）оказываются более слабыми，чем со－ ответствующие условия идентифицируемости，что свидетельствует о суще－ ствовании информации об x_{0} для восстановления входного воздействия．

Теорема 3．Пусть для некоторого N вобласти $D \times D_{N} \times T$

$$
\operatorname{rank} \partial H_{N}\left(x, u, v_{N}\right) / \partial\left(u, v_{N}\right)=m+\operatorname{rank} \partial H_{N}\left(x, u, v_{N}\right) / \partial v_{N}
$$

Тогда система（1），（2）обратима в некоторой области $d \times d_{N} \times \tau \subseteq D \times D_{N} \times T$ ．
Доказательство．Зафиксируем в（4）переменную x ．По лемме 1 для каждо－ го $x \in D$ существует функция G и области S_{u}, S_{v}, S_{z} такие，что $u=G\left(x, z_{N}\right)$ для $z \in S_{z}^{;},(u, v) \in S_{u} \times S_{v} \subseteq D_{N}$ ．Предположим теперь，что система необратима в не－ которой области $(d \subseteq D) \times\left(d_{N} \subseteq S_{u} \times S_{v}\right) \times(\tau=[0, \varepsilon])$ ，т．е．существует $x_{0} \in D$ ， функции $u_{1}(t), u_{2}(t) \in U\left(S_{u} \times S_{v}\right), u_{1}(t) \neq u_{2}(t), t \in \tau$ ，такие，что $h\left(x\left(t, x_{0}, u_{1}\right)\right.$ ， $\left.u_{1}(t)\right) \equiv h\left(x\left(t, x_{0}, u_{2}\right), u_{2}(t)\right)=y(t)$ ．Подставим в дифференциальные уравнения（1） вместо u его выражение через x, z_{N} ：

$$
\begin{equation*}
\dot{x}=f\left(x, G\left(x, z_{N}\right)\right)=F\left(x, z_{N}\right), x(0)=x_{0} . \tag{11}
\end{equation*}
$$

По построению $x\left(t, x_{0}, u_{1}\right), x\left(t, x_{0}, u_{2}\right)$ являются решениям дифференциаль－ ных уравнений（11），им соответствует одна и та же функция времени $z_{N}(t)$ ，на－ чальные условия у них совпадают．Следовательно，$x\left(t, x_{0}, u_{1}\right) \equiv x\left(t, x_{0}, u_{2}\right)$ для $t \in \tau$ ．В итоге получаем $u_{1}(t)=G\left(x\left(t, x_{0}, u_{1}\right), z_{N}(t)\right)=G\left(x\left(t, x_{0}, u_{2}\right), z_{N}(t)\right)=u_{2}(t)$ ， что противоречит требованию $u_{1}(t)$ 丰 $u_{2}(t)$ ．Теорема доказана．

Замечание．Выполнения условий теоремы 3 для некоторого N достаточно для существования локально обратной системы порядка $n+m(N-1)$ с m－ мерным входом．Действительно，перепишем（11）в виде

$$
\begin{gather*}
\dot{\xi}=F\left(\xi, \zeta_{1}, \ldots, \zeta_{N-1}, \psi\right), \\
\dot{\zeta}_{1}=\ddot{\zeta}_{2}, \ldots, \dot{\zeta}_{N-2}=\zeta_{N-1}, \dot{\zeta}_{N-1}=\psi, \tag{12}\\
v=G\left(\xi, \zeta_{1}, \ldots, \zeta_{N-1}, \psi\right) . \tag{13}
\end{gather*}
$$

Положим $\xi(0)=x_{0}, \zeta_{i}(0)=y^{(i)}(0), \psi(t)=y^{N}(t)$ ．Тогда решением системы диффе－ ренциальных уравнений（12）будут функции $\xi(t)=x\left(t, x_{0}, u\right), \zeta_{i}(t)=y^{(i)}(t), i=0$ ， $N-1$ ，а выход（13）совпадет с искомым управлением $v=u(t)$ ．Таким образом，си－ стема（12），（13）восстанавливает по известным $x_{0}, y^{(i)}(0), i=0, N-1, y^{N}(t)$ со－ стояние $x(t)$ и вход $u(t)$ ，а значит，является обращением системы（1），（2）．

Используем описанный способ построения обратной системы в задаче фун－ кциональной управляемости［2］，т．е．в задаче о том，какая функция $\varphi(t)$ может быть выходом системы（1）．Для этого введем множество допустимых значений

$$
y^{(i)}(0), i=0, N-1, z_{N-1}\left(D, D_{N}\right)=\left\{H_{N-1}\left(x_{0}, u(0), v_{N-1}(0)\right), x_{0} \in D, u \in \in U\left(D_{N}\right)\right\} .
$$ Единственным ограничением на выход $y(t)$ в процессе определения посредством (12), (13) порождающего управления $u(t)$ является принадлежность соответствующего вектора $z_{N-1}(0)$ множеству Z_{N-1}. Это обстоятельство позволяет сформулировать следующую теорему.

Теорема 4. Пусть система (1), (2) для некоторогпо N удовлетворяет условиям теоремы 3 и в некоторой области $D \times D_{N} \times T$ является обратимой. Тогда для любой функции $\varphi(t)$ такой, что $\left(\varphi^{T}(0), \dot{\varphi}^{T}(0), \ldots, \varphi^{(N-1)}(0)^{T}\right) \in Z_{N-1}(D$, $\left.D_{N}\right)$, найдутся $x_{0} \in D, u \in U\left(D_{N}\right)$ такие, что $\varphi(t) \equiv h\left(x\left(t, x_{0}, u\right), u(t)\right), t \in T$.

Проверяя для различных $N=0,1, \ldots$ условия теорем $1-3$, можно определить возможность решения для системы (1), (2) той или иной обратной задачи. Если условия теоремы 1 не выполнены для $N=n-1$, а теорем 2,3 - для $N=n+m-$ -1 , то система (1), (2) локально не обладает соответственно свойствами наблюдаемости по x_{α}, идентифицируемости, обратимости. Докажем это для задачи наблюдения части координат. Отсутствие индекса N означает, что $N=n-1$.

Теорема 5. Пусть в области $D \times T$ rank $\partial H / \partial x<\operatorname{dim} x_{\alpha}+\operatorname{rank} \partial H / \partial x_{\beta}$. Тогда система (1), (2) наблюдаема по x_{α} в некоторой области $d \times \tau \subseteq D \times T$.

Доказательство. Пусть $\operatorname{rank} \partial H / \partial x=s<n$. Так как все независимые функции x в совокупности (3) могут содержаться лишь среди первых $n-1$ производных выхода [3], то

$$
\begin{gather*}
\dot{z}^{1}=g^{1}\left(z^{1}, \ldots, z^{s}\right), \\
\dot{z}^{s}=g^{s}\left(z^{1}, \ldots, z^{s}\right) . \tag{14}
\end{gather*}
$$

Пусть rank $\partial H / \partial x_{\beta}=r, \operatorname{dim} x_{\alpha}=\alpha$. Тогда по условию $\alpha<s-r$. Выберем у матрицы $\partial H / \partial x$ невырожденный минор максимального порядка, взяв в качестве первых r столбцов все независимые столбцы матрицы $\partial H / \partial x_{\beta}$, а оставшиеся $s-r<\alpha-$ у матрицы $\partial H / \partial x_{\alpha}$, так что $\operatorname{det} \partial\left(H^{1}, \ldots, H^{s}\right) / \partial\left(x_{\beta 1}, x_{\alpha 1}\right) \neq 0$, где $x_{\alpha}=\left(x_{\alpha 1}, x_{\alpha 2}\right), x_{\beta}=\left(x_{\beta 1}, x_{\beta 2}\right), x_{\alpha 1}=\left(x^{1}, \ldots x^{s r}\right), x_{\beta 1}=\left(x^{\alpha+1}, \ldots, x^{\alpha+\gamma}\right)$. Прообраз всякой точки z является $n-s$-мерным многообразием, описываемым функциями $x_{\alpha 2}=g_{\alpha}\left(z, x_{\alpha 1}, x_{\beta 1}\right), x_{\beta 1}=g_{\beta}\left(z, x_{\alpha 1}, x_{\beta 1}\right)$. Зафиксируем точку $z=z_{0}$ и выберем на этом многообразии точки x_{1}^{0}, x_{2}^{0} такие, что $x_{1 \alpha}^{0} \neq x_{2 \alpha}^{0}$. Пусть $x_{1}(t), x_{2}(t)$ - решения системы (1): $x_{1}(0)=x_{1}^{0}, x_{2}(0)=x_{2}^{0}$. Соответствующие им функции $z_{1}(t), z_{2}(t)$ по построению удовлетворяют системе дифференциальных уравнений (14), а поскольку $z_{1}(0)=z_{2}(0)=z_{0}$, то существует интервал $\tau=$ $=[0, \varepsilon)$ такой, что $z_{1} \equiv z_{2}$. Так как все компоненты выхода $y=h(x)$ содержатся среди z^{1}, \ldots, z^{s}, либо функционально через них выражаются, то $\dot{h}\left(x_{1}(t)\right)=$ $=h\left(x_{2}(t)\right)$. Теорема доказана.

Доказательство соответствующих теорем для свойств идентифицируемости и обратимости приведены в [4, 5].

Использование нескольких траекторий. Отсутствие у системы (1), (2) свойства идентифицируемоси в области $D \times D_{N} \times T$ означает существование u_{1}, u_{2}. $\in U\left(D_{N}\right), x_{1} \in X_{u_{1}}, x_{2} \in X_{u_{2}}$ таких, что $h\left(x_{1}(t), u_{1}(t)\right) \equiv h\left(x_{2}(t), u_{2}(t)\right)$. В то же время может оказаться, что для любых $x_{1}, x_{2} \in X_{u}$ отображение $u \rightarrow\left(h^{T}\left(x_{1}, u\right)\right.$, $\left.h^{T}\left(x_{2}, u\right)\right)^{T}$ инъективно. В этом случае можно говорить об идентифицируемости

по двум траекториям и т.д.

Определение 4. Система (1), (2) идентифицируема в области $D \times D_{N} \times T$ по λ траекториям, если для пюбых $u_{1}, u_{2} \in U\left(D_{N}\right)$ и любых решений $x_{11}, \ldots, x_{1 \lambda} \in X_{u_{1}}, x_{21}, \ldots, x_{2 \lambda} \in X_{u_{2}}$

$$
\left(h^{T}\left(x_{11}, u_{1}\right), \ldots, h^{T}\left(x_{1 \lambda}, u_{1}\right)\right) \equiv\left(h^{T}\left(x_{2}, u_{2}\right), \ldots, h^{T}\left(x_{2 \lambda}, u_{2}\right)\right), t \in T .
$$

Понятие обратимости обобщается и на случай нескольких траекторий.
Определение 5. Система (1), (2) обратима в области $D \times D_{N} \times T$ по λ траекториям, если для любьх $u_{1}, u_{2} \in U\left(D_{N}\right)$ и любых точек $x_{10}, \ldots, x_{\lambda 0} \in D$

$$
\begin{aligned}
& \left(h^{T}\left(x\left(t, x_{10}, u_{1}\right), u_{1}\right), \ldots, h^{T}\left(x\left(t, x_{\lambda 0}, u_{1}\right), u_{1}\right)\right) \equiv \\
\text { 三 } & \left(h^{T}\left(x\left(t, x_{10}, u_{2}\right), u_{2}\right), \ldots, h^{T}\left(x\left(t, x_{\lambda 0}, u_{2}\right), u_{2}\right)\right), t \in T .
\end{aligned}
$$

Рассмотрим систему дифференциальных уравнений порядка N, формально составленную из λ систем (1):

$$
\begin{gather*}
\dot{x}_{1}=f\left(x_{1}, u\right), \\
\cdots \cdots \cdots \cdots \cdots \tag{15}\\
\dot{x}_{\lambda}=f\left(x_{\lambda}, u\right), \quad x_{i}(0)=\dot{x}_{i_{0}} \in D, \quad i=1, \lambda,
\end{gather*}
$$

и измеряемую функцию размерности λk

$$
\begin{equation*}
\eta(t)=\left(h^{T}\left(x_{1}, u\right), \ldots, h^{T}\left(x_{\lambda}, u\right)\right) . \tag{16}
\end{equation*}
$$

Непосредственно из определении 2-5 следует, что система (1), (2) идентифицируема (обратима) по λ траекториям тогда и только тогда, когда система (15), (16) идентифицируема (обратима) по одной траектории. Тем самым получение условий разрешимости указанных задач при λ экспериментах (измерениях) сводится к применению теорем 2,3 к системам (15), (16). Пусть $N=n+m-1$.

Теорема 6. Пусть в области $D^{\lambda} \times D_{N} \times T$

$$
\begin{aligned}
& \operatorname{rank} \partial\left(H\left(x_{1}, u, v\right), \ldots, H\left(x_{\lambda}, u, v\right)\right) / \partial\left(x_{1} \ldots, x_{\lambda}, u, v\right)= \\
= & m+\operatorname{rank} \partial\left(H\left(x_{1}, u, v\right), \ldots, H\left(x_{\lambda}, u, v\right)\right) / \partial\left(x_{1} \ldots, x_{\lambda}, u, v\right) .
\end{aligned}
$$

Тогда система (1), (2) идентифицируема в некоторой области $d \times d_{N} \times \tau \subseteq$ $\subseteq D \times D_{N} \times T$ по λ траекториям.

Теорема 7. Пусть в области $D^{\lambda} \times D_{N} \times T$
$\operatorname{rank} \partial\left(H\left(x_{1}, u, v\right), \ldots, H\left(x_{\lambda}, u, v\right)\right) / \partial(u, v)=m+\operatorname{rank} \partial\left(H\left(x_{1}, u, v\right), \ldots, H\left(x_{\lambda}, u, v\right)\right) / \partial v$. Тогда система (1), (2) обратима в некоторой области $d \times d_{N} \times \tau \subseteq D \times D_{N} \times T$ по λ траекториям.

Оценим число траекторий, по которому система может быть идентифицируемой. Пусть область D_{N} содержит 0 , тогда неидентифицируемость при u -- const влечет неидентифицируемость при $u \in C^{p}\left(T ; R^{m}\right)$.

Положим u-const, $v_{N}=0$. Пусть $\partial H(x, u) / \partial x=s \leq n, \partial H(x, u) / \partial(x, u)=r$, причем $\operatorname{det} \partial\left(H^{1} \ldots, H^{s}\right) / \partial\left(x^{1}, \ldots, x^{s}\right) \neq 0$. Тогда $H^{s+i}=g^{i}\left(H^{i}, \ldots, H^{s}, u\right), i=1$, $r-s$. Сделаем замену переменных $x \rightarrow \bar{x}$

$$
\begin{equation*}
\bar{x}^{i}=H^{i}(x, u), \bar{x}^{j}=x^{j}, i=1, s ; j=s+1, n . \tag{17}
\end{equation*}
$$

Матрица $\partial H / \partial(x, u)$ преобразуется в матрицу

$$
\frac{\partial H(\bar{x}, u)}{\partial(\bar{x}, u)}=\left(\begin{array}{ccc}
E_{s \times s} & 0_{s \times(n-s)} & 0_{s \times m} \tag{18}\\
X(\bar{x}, u) & 0_{(r-s)(n-s)} & A(\bar{x}, u)
\end{array}\right),
$$

где $X(\bar{x}, u)=\partial\left(g^{1}, \ldots, g^{r-s}\right) / \partial\left(\bar{x}^{1}, \ldots, \bar{x}^{s}\right), A(\bar{x}, u)=\partial\left(g^{1}, \ldots, g^{r-s}\right) / \partial u$.
Для (18) всегда выполнено равенство $\operatorname{rank} \partial H(\bar{x}, u) / \partial(\bar{x}, u)=s+\operatorname{rank} A(\bar{x}, u)$, поэтому условия теоремы 2 имеют вид $\operatorname{rank} A(\bar{x}, u)=m$. Рассматривая систему (1), (2) на λ решениях $x_{1}, \ldots, x_{\lambda}$ и преобразуя каждое из них по формулам (17), получаем $\operatorname{rank} \partial\left(H\left(\bar{x}_{1}, u\right), \ldots, H\left(\bar{x}_{\lambda}, u\right) / \partial\left(\bar{x}_{1}, \ldots, \bar{x}_{\lambda}, u\right)=\lambda s+\operatorname{rank} A_{\lambda}\left(\bar{x}_{1}, \ldots\right.\right.$ $\left.\ldots, \bar{x}_{\lambda}, u\right)$, где $A_{\lambda}\left(\bar{x}_{1}, \ldots, \bar{x}_{\lambda} ; u\right)=\left(A^{T}\left(\bar{x}_{1}, u\right), \ldots, A^{T}\left(\bar{x}_{\lambda}, u\right)\right)^{T}$. С учетом теоремы 6 достаточным условием идентифицируемости по λ траекториям является условие $\operatorname{rank} A_{\lambda}\left(\bar{x}_{1}, \ldots, \bar{x}_{\lambda}, u\right)=m$. Используем его для оценки требуемого для идентификации числа траекторий.

При увеличении λ на 1 ранг $A_{\lambda+1}$ либо совпадает с рангом A_{λ} и тогда привлечение новых решений не изменяет свойство идентифицируемости, либо увеличивается на $q, 1 \leq q \leq \operatorname{rank} A$. Поэтому максимальное число траекторий ($q=1$ на каждом этапе) $\lambda_{\max }=m+1-\operatorname{rank} A$, а минимальное $(q=\operatorname{rank} A) \lambda_{\min }=$ $=[(m-1) /$ rank $A]+1$ где [] - функция Антье. Выразим ранг преобразованной матрицы $A(\bar{x}, u)$ через ранги исходных $\partial H(x, u) / \partial(x, u), \partial H(x, u) / \partial x$. Так как (17) - невырожденное преобразование, то

$$
\operatorname{rank} \partial H(x, u) / \partial(x, u)=\operatorname{rank} \partial H(\bar{x}, u) / \partial(\bar{x}, u)=s+\operatorname{rank} A(\bar{x}, u) .
$$

Следовательно, $\alpha=\operatorname{rank} A(x, u)=\partial H(x, u) / \partial(x, u)-\partial H(x, u) / \partial x$. Из изложенного вытекает следующая теорема.

Теорема 8. Пусть область D_{N} содержит начало координат. Тогда систє'ма (1), (2) не может быть идентифицируема по $\lambda<\lambda_{\min }$ траекторий. Если же она неидентифицируема по $\lambda>\lambda_{\max }$ траекторий, то она неидентифицируема по любому числу траекторий.

Использование нескольких измерений расширяет возможность восстановления $u(t)$. В частности, для идентифицируемости любой системы (1) по некоторому числу траекторий достаточно, чтобы $h(x, u)=x$, если только $f(x, u)$ не может быть записана с использованием меньшего числа параметров $v(u), \operatorname{dim} v<m$.

Лемма 2 [4]. Функция $f(x, u)$ непредставима меньиим числом параметров и в области $D \times D_{0}$ тогда и только тогда, когда для любых λ точек $x_{1}, \ldots, x_{\lambda} \in$ $\in D$

$$
\begin{gathered}
\operatorname{rank}\left(\partial f\left(x_{1}, u\right) / \partial u, \ldots, \partial f\left(x_{\lambda}, u\right) / \partial u\right)=m, \\
\lambda=m+1-\operatorname{rank} \partial f(x, u) / \partial u .
\end{gathered}
$$

Изучая идентифицируемость системы (1) при $y=x$ с помощью вектора $z=$ $=(x, f(x, u)$), по теореме 6 и лемме 2 получаем, что свойство непредставимости $f(x, u)$ меньшим числом параметров достаточно для определения $u(t)$ по $\lambda_{\text {max }}=m+1-\operatorname{rank} \partial f(x, u) / \partial u$ траекториям.

1. Silvermann L. M. Inversion of multivariable linear systems // IEEE Trans. Automat. Contr. - 1969. - AC 14, N 3 3. - P. 270-276.

2 Hirschorn R. M. Invertibility of nonlinear control systems // SIAM J. Contr. and Optim. - 1979. 17, №2. - P. 289-297.
3. Ковалев А. М. Нелинейные задачи управления и наблюдения в теории динамических систем. - Киев: Наук. думка, 1980. - 176с.
4. Ковалев А. М., Щербак В. Ф. Условия идентифицируемости нелинейных механических систем // Механика твердого тела. - 1984. - Вып.16. - С.77-91.
5. Щербак В. Ф. Идентифицируемость механических систем с известным начальным состоянием // Там же. - 1985. - Вып.17. - С.83-87.

