Ю.В. Коломієць, мол. наук. співробітник (Ін-т прикл.математики і механіки АН України, Донецьк)

УСЕРЕДНЕННЯ ДЛЯ РІВНЯНЬ З ЧАСТИННИМИ ПОХІДНИМИ, КОЕФІЦІЄНТИ ЯКИХ ЗБУРЕНІ СТРИБКУВАТИМИ МАРКОВСЬКИМИ ПРОЦЕСАМИ

Розглядасться слабка збіжність у розумінні розподілів розв'язків рівнянь з частинними похідними параболічного типу з періодичними швидкоосцилюючими коефіцієнтами, збуреними стрибкуватими марковськими процесами, що функціонують у "швидкому" часі, з скінченною множиною станів. Доводиться слабка компактність мір, породжених розв'язками рівнянь, і показується слабка збіжність розв'язків до єдиного розв'язку проблеми мартингалів, що відповідає стохастичному рівнянню з частинними похідними.
Рассматривается слабая сходимость в смысле распределений решений уравнений в частных производных параболического типа с периодическими быстроосциллирующими коэффициентами, возмущенными скачкообразными марковскими процессами, которые функционируют в "быстром" времени, с конечным множеством состоянии. Доказывается слабая компактность мер, порождаемых решениями уравнений, и показывается слабая сходимость решений к единственному решению проблемы мартингалов, соответствующей стохастическому уравнению в частных пронзводныхх.

Розглянемо питання про слабку збіжність при $\varepsilon \rightarrow 0$ розв'язків рівняння

$$
\begin{equation*}
\frac{d}{d t} u_{t}^{\varepsilon}+A\left(\frac{t}{\varepsilon^{2}}, Z_{t}^{\varepsilon}\right) u_{t}^{\varepsilon}+\frac{1}{\varepsilon} B\left(\frac{t}{\varepsilon^{2}}, Z_{t}^{\varepsilon}\right) u_{t}^{\varepsilon}=0, u_{0}^{\varepsilon}=h \in H^{1}\left(R^{n}\right) \tag{1}
\end{equation*}
$$

де $Z_{t}^{\varepsilon}=Z_{t / \varepsilon^{2}}$ - стрибкуватий однорідний марковський процес з скінченною множиною станів $Y=(1,2, \ldots, m)$; заданий на ймовірнісному просторі (Ω, F, P); оператори A і B мають вигляд

$$
\begin{gathered}
A(t, z)=-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(\bar{a}_{i j}(t, z, x) \frac{\partial}{\partial x_{i}}(\cdot)\right)+\sum_{i=1}^{n} \bar{a}_{i}(t, z, x) \frac{\partial}{\partial x_{i}}+\bar{a}_{0}(t, z, x) \\
\boldsymbol{B}(t, z)=\sum_{i=1}^{n} \bar{b}_{i}(t, z, x) \frac{\partial}{\partial x_{i}}+\bar{b}_{0}(t, z, x)
\end{gathered}
$$

Процес Z_{t} задається твірним оператором Π, який визначається матрицею

$$
\begin{gather*}
Q=\left(q_{i j}\right)_{i j=1,2, \ldots, m}, q_{i i}<0, q_{i j} \geq 0, i \neq j \\
\sum_{j=1}^{n} q_{i j}=0 \tag{2}
\end{gather*}
$$

Нехай \wp_{Y} - клас всіх підмножин $Y,(\Theta, \mathfrak{F})$ - деякий вимірний простір з σ-скінченною мірою $m(d \theta)$ і $v(d \theta \times d t)$-пуассонова міра з незалежними значеннями на $\Theta \times R^{n}$, для якої $M \vee(d \theta \times d t)=m(d \theta) d t$. Можна побудувати [1] таку $\beta_{Y} \otimes \mathcal{F}$-вимірну функцію $f(z, \theta)$ з $Y \times \Theta$ в Θ, для якої

$$
\begin{gathered}
m\{\theta: f(z, \theta) \neq 0\}=-q_{z z} \\
m\{\theta: f(z, \theta) \in G\}=\sum_{j \in G \backslash \theta\}} q_{z j}, \quad G \in \mathcal{F}, \quad 0 \bar{\in} .
\end{gathered}
$$

Тоді

$$
d Z_{t}=\int_{\Theta} f\left(Z_{t}, \theta\right) v(d \theta \times d t)
$$

Відзначимо, що твірний оператор процесу Z_{t} діє на просторі $\mathbb{B}(Y)$ всіх \varkappa_{Y}-вимірних обмежених дійсних функцій $g(z)$ з нормою $\|g\|=\max _{z}|g(z)|$ так: $\Pi g(z)=\sum_{i=1}^{m} q_{z i} g(i)$. Таким чином,

$$
\begin{gathered}
d Z_{t}^{\varepsilon}=\int_{\Theta} f\left(Z_{t}^{\varepsilon}, \theta\right) v^{\varepsilon}(d \theta \times d t), Z_{0}^{\varepsilon}=Z_{0}, \\
M v^{\varepsilon}(d \theta \otimes d t)=\varepsilon^{-2} m(d \theta) d t .
\end{gathered}
$$

Позначимо через $\hat{\Pi}$ матрицю $\left(\pi_{i j}\right)_{i j=1,2, \ldots, m}$, елементи якої $\pi_{i j}=q_{i j} / q_{i i}$, якщо $i \neq j$, i 0 , якщо $i=j$. Введемо умови:

Z 1. Існує l таке, що $\inf \pi_{i j}^{l}>0$, де $\pi_{i j}^{l}$ - елементи $\hat{\Pi}^{l}$.
Z 2. Рівняння $\operatorname{det}|Q-\lambda E|=0$ не має чисто уявних коренів, які б мали вигляд $i 2 \pi n$, де n-ціле відмінне від нуля число.

Умова Z1 забезпечує існування єдиного розв'язку p_{1}, \ldots, p_{m} [2] системи рівнянь

$$
\begin{equation*}
\sum_{i \neq j}^{m} q_{i j} p_{i}=-q_{j j} p_{j}, \sum_{i=1}^{m} p_{i}=1 . \tag{3}
\end{equation*}
$$

Зауваження 1. Якщо $q_{i j}>0, i \neq j$, то існування єдиного додатного розв’язку системи (3) випливає з теореми Перрона-Фробеніуса [3].

З умови $Z 2$ випливає, що система

$$
\frac{d}{d t} d_{i}(t)-\sum_{j=1}^{m} q_{j i} d_{j}(t)=0
$$

не має 1 -періодичних розв'язків, залежних від t. Тоді якщо $g_{i}(t), i=\overline{1, m},-$ 1-періодичні неперервно диференційовні функції, для яких $\sum \int_{0}^{1} g_{i}(t) p_{i} d t=0$, то система [4]

$$
\frac{d}{d t} h_{i}(t)+\sum_{j=1}^{m} q_{i j} h_{j}(t)=g_{i}(t), \sum_{i=1}^{m} \int_{0}^{1} h_{i}(t) d t=0
$$

має єдиний 1 -періодичний розв’язок. Крім того, існує $C>0$ така, що для кожного $t \in[0 ; 1]$

$$
|h(t)| \leq C|g(t)|_{L^{2}}[0 ; 1] .
$$

Домовимося буквою C позначати різні конссантт, не залежні відц. ε. В одночленах проводиться сумування за повтореними індексами. Через (\cdot,) і $|\cdot|$ позначимо скалярний добуток та норму в гільбертовому просторі $L^{2}\left(R^{n}\right)$, через $\langle\cdot \cdot\rangle$ і $\|\cdot\|$ - відношення двоїстості між гільбертовими просторами $H^{1}\left(R^{n}\right)$ і $H^{-1}\left(R^{n}\right)$ та норму на $H^{1}\left(R^{n}\right)\left(H^{-1}\left(R^{n}\right)\right.$ позначає простір, спряжений до простору Соболєва $H^{1}\left(R^{n}\right)$). Позначимо через $C_{t, x, b}^{k, l}$ клас функцій $f(t, x) k$ раз неперервно диференційовних по t і l раз - по x, обмежених разом з вказаними похідними. Символ " \Rightarrow " використовується для означення слабкої збіжності мір. $\overline{L^{2}\left(R^{n}\right)}$ - простір $L^{2}\left(R^{n}\right)$ з слабкою топологією.

Якщо H - гільбертів простір, то $g \boxtimes h$ - елемент $\mathscr{L}(H)$, який визначається таким чином:

$$
(g \boxtimes h) u=(h, u)_{H} g, u \in H .
$$

Відносно коефіцієнтів операторів A і B введемо умови:
A 1. Коефіцієнти $\bar{b}_{i} \in C_{t, x, b}^{1,3}, \bar{b}_{0} \in C_{t, x, b}^{1,2}, \bar{a}_{i j} \in C_{t, x, b}^{1,1}, \bar{a}_{i}, \bar{a}_{0} \in C_{t, x, b}^{1,0}$, i перioдичні по t з періодом 1 для всіх $z \in Y$.

A 2. Існує $\gamma>0$ така, що $\forall x, \xi \in R^{n}, z \in Y, t \in R_{+}$

$$
\bar{a}_{i j}(t, z, x) \xi_{j} \xi_{j} \geq \gamma|\xi|^{2} .
$$

З цих умов випливає, що

$$
\begin{gathered}
A \in L^{\infty}\left(R_{+} \times Y, \mathfrak{J}\left(H^{1}\left(R^{n}\right) ; H^{-1}\left(R^{n}\right)\right)\right), \\
B \in L^{\infty}\left(R_{+} \times Y ; \mathscr{J}\left(H^{1}\left(R^{n}\right) ; L^{2}\left(R^{n}\right)\right)\right) .
\end{gathered}
$$

та існують константи $\bar{\gamma}>0, \bar{\lambda}>0$ такі, що $\forall u \in H^{1}\left(R^{n}\right), z \in Y, t \in R_{+}$

$$
\begin{equation*}
\langle A(t, z) u, u\rangle+\bar{\lambda}|u|^{2} \geq \bar{\gamma}\|u\|^{2} \tag{4}
\end{equation*}
$$

З [5] випливає, що за цих умов існує єдиний розв'язок рівняння (1) $\forall T>0$

$$
u^{\varepsilon} \in L^{2}(\bar{\Omega} \times] 0, T\left[; H^{1}\left(R^{n}\right)\right) \cap L^{2}\left(\bar{\Omega} ; C\left([0, T], L^{2}\left(R^{n}\right)\right)\right) .
$$

Припустимо ще, що виконусться умова $\boldsymbol{A} Z$:

$$
\sum_{j=1}^{m} p_{j} \int_{0}^{1} \bar{b}_{i}(t, j, x) d t=0, x \in R^{n}, i=0,1, \ldots, n,
$$

де $p_{1}, p_{2}, \ldots, p_{m}$ - єдиний розв'язок системи (3).
Зафіксуємо $T>0$. Визначимо простір $\Omega=C\left([0, T] ; \overline{L^{2}\left(R^{n}\right)}\right) \cap L^{2}(0, T$; $H^{1}\left(R^{n}\right)$) і наділимо його топологією, що є супремумом топології рівномірної збіжності на $C\left([0, T] ; \overline{L^{2}\left(R^{n}\right)}\right.$ і слабкої топології на $L^{2}\left(0, T ; H^{1}\left(R^{n}\right)\right)$. Через \mathcal{F} позначимо борелівську σ-алгебру на Ω. При кожному $\varepsilon>0$ через μ^{ε} будемо позначати ймовірнісну міру Радона на (Ω, \mathcal{F}), породжену $\left\{u_{t}^{\varepsilon}, t \in[0, T]\right\}$.

Покажемо, що сім'я мір $\left\{\mu^{\varepsilon}, \varepsilon>0\right\}$ слабко компактна і будь-яка ії гранична міра μ є розв'язком проблеми мартингалів. З єдиності розв'язку цієї проблеми мартингалів випливає $\mu^{\varepsilon} \Rightarrow \mu$.

Лема 1. Нехай и ${ }^{\varepsilon}$ - розв'язок рівняння (1). Тоді існує $C>0$ така, що для кожного $\varepsilon>0$

$$
M\left[\sup _{0 \leq t \leq T}\left|u_{t}^{\varepsilon}\right|^{4}\right]+M \int_{0}^{T}\left|u_{r}^{\varepsilon}\right|^{2}\left\|u_{r}^{\varepsilon}\right\|^{2} d r \leq C .
$$

Доведення. Візьмемо функцію $\varphi(u)=|u|^{4}, . \varphi^{\prime}(u)=4|u|^{2} u$. Для кожного $k=$ $=0,1, \ldots, n$ визначимо функції $\psi_{k}(t, j, x), j=\overline{1, m}$, як розв'язок системи рівнянь

$$
\begin{gather*}
\frac{\partial}{\partial t} \psi_{k}(t, i, x)+\sum_{j=1}^{m} q_{i j} \psi_{k}(t, j, x)=\bar{b}_{k}(t, i, x), \\
\sum_{j=1}^{m} \int_{0}^{1} \psi_{k}(t, i, x) d t=0 . \tag{5}
\end{gather*}
$$

З умов $Z 1, Z 2, A Z$ випливає, що система (5) має єдиний 1 -періодичний по t розв'язок. Функції $\psi_{k}(t, i, x)$ по x мають ті ж властивості, що й функції $\bar{b}_{k}(t, i, x)$.

Для всіх $z \in Y$ визначимо оператори

$$
\begin{gathered}
F(t, z)=\psi_{k}(t, z, x) \frac{\partial}{\partial x_{k}}+\psi_{0}(t, z, x), \\
D(t, z)=F(t, z)+F^{*}(t, z)=-\frac{\partial}{\partial x_{k}} \psi_{k}(t, z, x)+2 \psi_{0}(t, z, x) .
\end{gathered}
$$

З умов і визначення функцій $\psi_{k}(t, z, x)$ випливає, що існує $C>0$ така, що

$$
\begin{equation*}
|D(t, z) u| \leq C|u|,\|D(t, z) u\| \leq C\|u\| \tag{6}
\end{equation*}
$$

рівномірно по t для всіх $z \in Y$.
Розглянемо.функцію

$$
\bar{F}(t, z, u)=\left(F(t, z) u, \varphi^{\prime}(u)\right)=2(D(t, z) u, u)|u|^{2},
$$

що задовольняє співвідношення

$$
\frac{\partial}{\partial t} \bar{F}(t, i, u)+\sum_{j=1}^{m} q_{i j} \bar{F}(t, j, u)=4(B(t, i) u, u)|u|^{2}, i=\overline{1, m} .
$$

Як і в роботі [2], запишемо приріст функції

$$
\varphi\left(u_{t}^{\varepsilon}\right)+\varepsilon \bar{F}\left(\frac{t}{\varepsilon^{2}}, Z_{t}^{\varepsilon}, u_{t}^{\varepsilon}\right) .
$$

Після скорочення членів порядку ε^{-1} будемо мати

$$
\begin{align*}
& \left|u_{t}^{\varepsilon}\right|^{4}+2 \varepsilon\left(D\left(\frac{t}{\varepsilon^{2}}, Z_{t}^{\varepsilon}\right) u_{t}^{\varepsilon}, u_{t}^{\varepsilon}\right)\left|u_{t}^{\varepsilon}\right|^{2}+4 \int_{0}^{t}\left\langle A\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}\right) u_{r}^{\varepsilon}, u_{r}^{\varepsilon}\right\rangle\left|u_{r}^{\varepsilon}\right|^{2} d r= \\
& =|h|^{4}+2 \varepsilon\left(D\left(0, Z_{0}\right) h, h\right)|h|^{2}-4 \varepsilon \int_{0}^{1}\left\langle A\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}\right) u_{r}^{\varepsilon}, u_{r}^{\varepsilon}\right\rangle\left(D\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}\right) u_{r}^{\varepsilon}, u_{r}^{\varepsilon}\right) d r- \\
& -4 \varepsilon \int_{0}^{t}\left\langle A\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}\right) u_{r}^{\varepsilon}, D\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}\right) u_{r}^{\varepsilon}\right\rangle\left|u_{r}^{\varepsilon}\right|^{2} d r- \\
& -4 \int_{0}^{1}\left(B\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}\right) u_{r}^{\varepsilon}, u_{r}^{\varepsilon}\right)\left(D\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}\right) u_{r}^{\varepsilon}, u_{r}^{\varepsilon}\right) d r-, \\
& -4 \int_{0}^{t}\left(B\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}\right) u_{r}^{\varepsilon} D\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}\right) u_{r}^{\varepsilon}\right)\left|u_{r}^{\varepsilon}\right|^{2} d r+ \\
& +2 \varepsilon \int_{0 \Theta}^{t} \int_{\Theta}\left(\left[D\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}+f\left(Z_{r}^{\varepsilon}, \theta\right)\right)-D\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}\right)\right] u_{r}^{\varepsilon}, u_{r}^{\varepsilon}\right)\left|u_{r}^{\varepsilon}\right|^{2} \chi^{\varepsilon}(d \theta \times d t) \text {, } \tag{7}
\end{align*}
$$

де $\chi^{\varepsilon}(d \theta \times d t)=v^{\varepsilon}(d \theta \times d t)-\varepsilon^{-2} m(d \theta) d t$ - мартингальна міра. Останній доданок в правій частині (7) позначимо через $\varepsilon \alpha_{t}^{\varepsilon}$. Скориставшись співвідношеннями (4) i (6), з (7) одержимо

$$
\begin{aligned}
& \left|u_{t}^{\varepsilon}\right|^{4}(1-C \varepsilon)+4 \bar{\gamma} \int_{0}^{t}\left|u_{r}^{\varepsilon}\right|^{2}\left\|u_{r}^{\varepsilon}\right\|^{2} d r \leq|h|^{4}(1+C \varepsilon)+ \\
& +(C \varepsilon+\bar{\gamma}) \int_{0}^{t}\left|u_{r}^{\varepsilon}\right|^{2}\left\|u_{r}^{\varepsilon}\right\|^{2} d r+(C+4 \bar{\lambda}) \int_{0}^{t}\left|u_{r}^{\varepsilon}\right|^{4} d r+\varepsilon \alpha_{t}^{\varepsilon} .
\end{aligned}
$$

Звідси для достатньо малих ε будемо мати

$$
\begin{align*}
& M\left(\sup _{r \leq t}\left|u_{r}^{\varepsilon}\right|^{4}\right)+\bar{\gamma} M \int_{0}^{t}\left|u_{r}^{\varepsilon}\right|^{2}\left\|u_{r}^{\varepsilon}\right\|^{2} d r \leq C|h|^{4}+ \\
& \quad+C M \int_{0}^{t}\left|u_{r}^{\varepsilon}\right|^{4} d r+\varepsilon C M\left(\sup _{r \leq t}\left|\alpha_{r}^{\varepsilon}\right|\right) \tag{8}
\end{align*}
$$

Процес α_{t}^{ε} є локальним мартингалом, для якого послідовність $\tau_{n}=\inf \{t$: $\left.\left|u_{t}^{\varepsilon}\right|^{4} \geq n\right\} \wedge T$ є локалізуючою.

Використавши нерівність Девіса [6], з (8) одержимо

$$
\begin{aligned}
\frac{1}{2} M\left(\left|u_{r}^{\varepsilon}\right|^{4}\right) \leq & \frac{1}{2} M\left(\sup _{r \leq t}\left|u_{r}^{\varepsilon}\right|^{4}\right)+\bar{\gamma} M \int_{0}^{t}\left|u_{r}^{\varepsilon}\right|^{2}\left\|u_{r}^{\varepsilon}\right\|^{2} d r \leq \\
& \leq C|h|^{4}+C M \int_{0}^{t}\left|u_{r}^{\varepsilon}\right|^{4} d r
\end{aligned}
$$

Застосовуючи тепер лему Гронуолла, завершуємо доведення леми.
Аналогічно доводиться така лема.
Лема 2. Нехай u^{ε} - розв'язок рівняння (1). Тоді існує $C>0$ така, що для кожного $\varepsilon>0$

$$
M \int_{0}^{T}\left\|u_{r}^{\varepsilon}\right\|^{2} d r \leq C
$$

Нехай $\beta \in H^{3}\left(\mathrm{R}^{n}\right)$. Визначимо для $\eta>0, \bar{\omega} \in \bar{\Omega}$ модуль неперервності

$$
\gamma_{\varepsilon}(\bar{\omega}, \eta)=\sup \left\{\left|\left(u_{t}^{\varepsilon}(\bar{\omega}), \beta\right)-\left(u_{s}^{\varepsilon}(\bar{\omega}), \beta\right)\right|,|t-s| \leq \eta, \quad s, t \in[0, T]\right\} .
$$

Лема 3. Існує R_{+}-значна функція $\rho(\nu, \eta)$, визначена для $0<v \leq 1$ i $0<\eta \leq$ $\leq T$ така, цо

1) для всіхфіксованих $v \in] 0,1] п р и ~ \eta \searrow 0 \rho(v, \eta) \searrow 0$;
2) $\left.\left.\left.\left.P\left(\gamma_{\varepsilon}(\bar{\omega}, \eta) \leq \rho(v, \eta), \forall \eta \in\right] 0, T\right]\right) \geq 1-v, \forall \varepsilon>0, v \in\right] 0,1\right]$.

Доведення повторює наведене в [6] доведення твердження 2.4 для функції

$$
x_{t}^{\varepsilon}=\left(u_{t}^{\varepsilon}, \beta\right)-\varepsilon\left(u_{t}^{\varepsilon}, F^{*}\left(\frac{t}{\varepsilon^{2}}, Z_{t}^{\varepsilon}\right) \beta\right)
$$

Як показано в [7], з лем $1-3$ випливає справедливість наступного твердження.

Теорема 1. Сім'я імовірнісних мір $\left\{\mu^{\varepsilon}, \varepsilon>0\right\}$ на (Ω, Ж) слабко компактна.

Визначимо процес $u_{t}(\omega)=\omega(t), t \in[0, T]$. Нехай $\mathcal{F}_{t}=\sigma\left\{u_{r}, r \in[0, t]\right\}$. Тоді $\mathcal{F}_{T}=\mathcal{F}$. Крім того, нехай μ - деяка гранична точка послідовності μ^{ε} на (Ω, \mathcal{F}).

Доведемо, що для всіх $\beta \in H^{4}\left(R^{n}\right)$ для функцій $\varphi(x)=x$ і $\varphi(x)=x^{2}$ вираз

$$
\varphi\left(\left(u_{t}, \beta\right)\right)-\varphi\left(\left(u_{0}, \beta\right)\right)+\int_{0}^{t}\left\langle\hat{A} u_{r}, \beta\right\rangle \varphi^{\prime}\left(\left(u_{r}, \beta\right)\right) d r+\frac{1}{2} \int_{0}^{t}\left(R\left(u_{r}\right) \beta, \beta\right) \varphi^{\prime \prime}\left(\left(u_{r}, \beta\right)\right) d r
$$

$$
\begin{gathered}
\hat{A}=\sum_{k=1}^{m} p_{k} \int_{0}^{1}[A(t, k)+F(t, k) B(t, k)] d t, \\
R(u)=-\sum_{k=1}^{m} p_{k} \int_{0}^{1}(B(t, k) u \boxtimes F(t, k) u+F(t, k) u \boxtimes B(t, k) u) d t .
\end{gathered}
$$

Згідно з [8] це означає, що міра μ є розв'язком проблеми мартингалів з коефіцієнтами \hat{A} і $R(u)$ (скорочено будемо писати: п.м. ($\hat{A}, R(u)$)).

Теорема 2. Міра μ-розв'язок п.м. ($\hat{A}, R(u)$).
Доведення. Нехай $\beta \in H^{4}\left(R^{n}\right), \varphi(x)=x$ або $\varphi(x)=x^{2}$. Визначимо з допомогою оператора $F(t, z)$ (лема 1) функцію

$$
\varphi_{1}(t, z, u)=(F(t, z) u, \beta) \varphi^{\prime}((u, \beta)),
$$

що задовольняє співвідношення

$$
\frac{\partial}{\partial t} \varphi_{1}(t, i, u)+\sum_{j=1}^{m} q_{i j} \varphi_{1}(t, j, u)=(B(t, i) u, \beta) \varphi^{\prime}((u, \beta)), i=\overline{1, m} .
$$

Нехай $U_{r}: \Omega \rightarrow R$ - обмежений неперервний \mathcal{F}_{r}-вимірний функціонал. Тоді для функціі $\varphi((u, \beta))+\varepsilon \varphi_{1}(t, z, u)$ можемо записати

$$
\begin{align*}
& M\left\{U _ { r } (u ^ { \varepsilon }) \left[\varphi\left(\left(u_{t}^{\varepsilon}, \beta\right)\right)-\varphi\left(\left(u_{r}^{\varepsilon}, \beta\right)\right)+\int_{r}^{i}\left\langle\left[A\left(\frac{s}{\varepsilon^{2}}, Z_{s}^{\varepsilon}\right)+\right.\right.\right.\right. \\
& \left.\left.+F\left(\frac{s}{\varepsilon^{2}}, Z_{s}^{\varepsilon}\right) B\left(\frac{s}{\varepsilon^{2}}, Z_{s}^{\varepsilon}\right)\right] u_{t}^{\varepsilon}, \beta\right\rangle \varphi^{\prime}\left(\left(u_{s}^{\varepsilon}, \beta\right)\right) d s+ \\
& \left.\left.+\int_{r}^{t}\left(B\left(\frac{s}{\varepsilon^{2}}, Z_{s}^{\varepsilon}\right) u_{s}^{\varepsilon}, \beta\right)\left(F\left(\frac{s}{\varepsilon^{2}}, Z_{s}^{\varepsilon}\right) u_{s}^{\varepsilon}, \beta\right) \varphi^{\prime \prime}\left(\left(u_{s}^{\varepsilon}, \beta\right)\right) d s\right]\right\}= \\
& = \\
& \quad \varepsilon M\left\{U _ { r } (u ^ { \varepsilon }) \left[\varphi_{1}\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}, u_{r}^{\varepsilon}\right)-\varphi_{1}\left(\frac{t}{\varepsilon^{2}}, Z_{t}^{\varepsilon}, u_{t}^{\varepsilon}\right)-\right.\right. \\
& \quad-\int_{r}^{t}\left\langle A\left(\frac{s}{\varepsilon^{2}}, Z_{s}^{\varepsilon}\right) u_{s}^{\varepsilon}, F^{*}\left(\frac{s}{\varepsilon^{2}}, Z_{s}^{\varepsilon}\right) \beta\right\rangle^{\prime}\left(\left(u_{s}^{\varepsilon}, \beta\right)\right) d s- \tag{9}\\
& \left.\left.-\int_{r}^{t}\left\langle A\left(\frac{s}{\varepsilon^{2}}, Z_{s}^{\varepsilon}\right) u_{s}^{\varepsilon}, \beta\right)\left(F\left(\frac{s}{\varepsilon^{2}}, Z_{s}^{\varepsilon}\right) u_{s}^{\varepsilon}, \beta\right) \varphi^{\prime \prime}\left(\left(u_{s}^{\varepsilon}, \beta\right)\right) d s\right]\right\} .
\end{align*}
$$

Визначимо функції $e_{i j}, c_{i j}, g_{k l}, i, j=\overline{1, n}, k, l=0,1, \ldots, n$ як єдині розв'язки відповідних систем рівнянь

$$
\left\{\begin{aligned}
\frac{\partial}{\partial t} e_{i j}(t, l, x)+ & \sum_{k=1}^{m} q_{l k} e_{i j}(t, k, x)=\sum_{k=1}^{m} p_{k} \int_{0}^{1} \bar{a}_{i j}(t, k, x) d t-\bar{a}_{i j}(t, l, x), \\
& \sum_{k=1}^{m} \int_{0}^{1} e_{i j}(t, k, x) d t=0 \quad \forall x \in R^{n},
\end{aligned}\right.
$$

$$
\left\{\begin{array}{c}
\frac{\partial}{\partial t} c_{i j}(t, l, x)+\sum_{k=1}^{m} q_{l k} c_{i j}(t, k, x)=\sum_{k=1}^{m} p_{k} \int_{0}^{1} \psi_{i}(t, k, x) \bar{b}_{j}(t, k, x) d t-\psi_{i}(t, l, x) \bar{b}_{j}(t, l, x) \\
\sum_{k=1}^{m} \int_{0}^{1} c_{i j}(t, k, x) d t=0 \quad \forall x \in R_{1}^{n}
\end{array}\right.
$$

$$
\left\{\frac{\partial}{\partial t} g_{i j}(t, l, x, y)+\sum_{k=1}^{m} q_{l k} g_{i j}(t, k, x, y)=\sum_{k=1}^{m} p_{k} \int_{0}^{1} \psi_{i}(t, k, x) \bar{b}_{j}(t, k, y) d t-\psi_{i}(t, l, x) \bar{b}_{j}(t, l, y)\right.
$$

$$
\sum_{k=1}^{m} \int_{0}^{1} g_{i j}(t, k, x, \dot{y}) d t=0 \quad \forall x, y \in R^{n}
$$

Аналогічно визначаються функції $e_{i}, c_{i}, i=0,1, \ldots, n$. Введемо оператори

$$
\begin{aligned}
E(t, x) & =-\frac{\partial}{\partial x_{j}}\left[e_{i j}(t, z, x) \frac{\partial}{\partial x_{i}}(\cdot)\right]+e_{i}(t, z, x) \frac{\partial}{\partial x_{i}}+e_{0}(t, z, x) \\
C(t, x) & =\frac{\partial}{\partial x_{j}}\left[c_{i j}(t, z, x) \frac{\partial}{\partial x_{i}}(\cdot)\right]+c_{i}(t, z, x) \frac{\partial}{\partial x_{i}}+c_{0}(t, z, x)
\end{aligned}
$$

Позначимо $u_{i}(x)=\frac{\partial}{\partial x_{i}} u(x), u_{0}(x)=u(x)$. Введемо функцію

$$
\begin{gathered}
H(t, z, x)=\langle[E(, z)+C(t, z)] u, \beta\rangle \varphi^{\prime}((u, \beta))+ \\
+\int_{R^{n}} \int_{R^{n}} \sum_{i, j=0}^{n} g_{i, j}(t, z, x, y) u_{i}(x) u_{j}(y) \beta(x) \beta(y) d x d y \varphi^{\prime \prime}((u, \beta)),
\end{gathered}
$$

що задовольняє співвідношення

$$
\begin{equation*}
\frac{\partial}{\partial t} H(t, i, u)+\sum_{k=1}^{m} q_{i k} H(t, k, u)=\boldsymbol{\mathcal { M }}(t, i, u), \quad i=\overline{1, m} \tag{10}
\end{equation*}
$$

де

$$
\begin{gathered}
\mathcal{M}(t, z, u)=\left\langle\left\{\sum_{k=1}^{m} p_{k} \int_{0}^{1}[A(t, k)+F(t, k) B(t, k)] d t-\right.\right. \\
-[A(t, z)+F(t, z) B(t, z)]\} u, \beta) \varphi^{\prime}((u, \beta))+
\end{gathered}
$$

$$
\begin{equation*}
+\left[\sum_{k=1}^{m} p_{k} \int_{0}^{1}(B(t, k) u, \beta)(F(t, k) u, \beta) d t-(B(t, z) u, \beta)(F(t, z) u, \beta)\right] \varphi^{\prime \prime}((u, \beta)) \tag{11}
\end{equation*}
$$

Запишемо приріст функції $\varepsilon^{2} H\left(\frac{t}{\varepsilon^{2}}, Z_{t}^{\varepsilon}, u_{t}^{\varepsilon}\right), t>s$, скориставшись співвідношенням (10):

$$
\begin{gather*}
\varepsilon^{2} M\left\{U _ { s } (u ^ { \varepsilon }) \left[H\left(\frac{t}{\varepsilon^{2}}, Z_{t}^{\varepsilon}, u_{t}^{\varepsilon}\right)-H\left(\frac{s}{\varepsilon^{2}}, Z_{s}^{\varepsilon}, u_{s}^{\varepsilon}\right)+\int_{s}^{t}\left\langle A\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}\right) u_{r}^{\varepsilon}\right.\right.\right. \\
\left.\left.\left.\frac{\partial}{\partial u} H\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}, u_{r}^{\varepsilon}\right)\right) d r\right]\right\}+\varepsilon M\left\{U_{s}\left(u^{\varepsilon}\right)\left[\int_{s}^{t}\left(B\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}\right) u_{r}^{\varepsilon}, \frac{\partial}{\partial u} H\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}, u_{r}^{\varepsilon}\right)\right) d r\right]\right\}= \\
=M\left\{U_{s}\left(u^{\varepsilon}\right)\left[\int_{s}^{t} \mathcal{M}\left(\frac{r}{\varepsilon^{2}}, Z_{r}^{\varepsilon}, u_{r}^{\varepsilon}\right) d r\right]\right\} \tag{12}
\end{gather*}
$$

Далі, враховуючи (11), (12), із співвідношення (9) одержуємо

$$
\begin{gather*}
M^{\varepsilon}\left\{U _ { s } (u) \left[\varphi\left(\left(u_{t}, \beta\right)\right)-\varphi\left(\left(u_{s}, \beta\right)\right)+\right.\right. \\
+\int_{s}^{t}\left\langle\sum_{k=1}^{m} p_{k} \int_{0}^{1}[A(t, k)+F(t, k) B(t, k)] d t u_{r}, \beta\right\rangle \varphi^{\prime}\left(\left(u_{r}, \beta\right)\right) d r+ \\
\left.\left.+\int_{s}^{t}\left[\sum_{k=1}^{m} p_{k} \int_{0}^{1}\left(B(t, k) u_{r}, \beta\right)\left(F(t, k) u_{r}, \beta\right)\right] \varphi^{\prime \prime}\left(\left(u_{r}, \beta\right)\right) d r\right]\right\}=\varepsilon^{2} M\{\ldots\}+\varepsilon M\{\ldots\} \tag{13}
\end{gather*}
$$

де M^{ε} - математичне сподівання за мірою μ^{ε}.
Нехай μ - деяка гранична міра послідовності μ^{ε}. Використовуючи оцінку леми 1 , перейдемо до границі в рівності (13). Тоді міра μ - розв'язок п.м. (\hat{A}, $R(u)$).

Наведемо допоміжне твердження.
Лема 4. Нехай $u, \beta \in H^{1}\left(R^{n}\right)$. Тодi

$$
(R(u) \beta, \beta)=\sum_{i, j=1}^{m} p_{i} q_{i j} \int_{0}^{1}([F(s, i)+F(s, j)] u, \beta)^{2} d s
$$

Доведення. Скориставшись співвідношеннями (5), будемо мати

$$
\begin{gather*}
-2 \sum_{i=1}^{m} p_{i} \int_{0}^{1}(B(s, i) u, \beta)(F(s, i) u, \beta) d s=-2 \sum_{i=1}^{m} p_{i} \sum_{k, l=0}^{n} \int_{0}^{1} \int_{R^{n}}\left[\frac{\partial}{\partial s} \psi_{k}(s, i, x)+\right. \\
\left.+\sum_{j=1}^{m} q_{i j} \psi_{k}(s, j, x)\right] u_{k}(x) \beta(x) d x \int_{R^{n}} \psi_{l}(s, i, y) u_{l}(y) \beta(y) d y d s= \\
=-2 \sum_{i=1}^{m} p_{i} \int_{0}^{1}\left[\frac{\partial}{\partial s}(F(s, i) u, \beta)\right](F(s, i) u, \beta) d s-2 \sum_{i=1}^{m} p_{i} q_{i i} \int_{0}^{1}(F(s, i) u, \beta)^{2} d s- \\
-2 \sum_{j \neq i} p_{i} q_{i j} \int_{0}^{1}(F(s, j) u, \beta)(F(s, i) u, \beta) d s \tag{14}
\end{gather*}
$$

Перший доданок в правій частині (14) дорівнює нулю, оскільки функції $\psi_{k}(s, i$, x) 1-періодичні по s. Далі, скориставшись співвідношеннями (3), одержимо

$$
\begin{equation*}
-\sum_{i=1}^{m} p_{i} q_{i i} \int_{0}^{1}(F(s, i) u, \beta)^{2} d s=\sum_{i=1}^{m} \sum_{j \neq i} p_{j} q_{j i} \int_{0}^{1}(F(s, i) u, \beta)^{2} d s \tag{15}
\end{equation*}
$$

3 другого боку, використовуючи (2), знаходимо

$$
\begin{equation*}
-\sum_{i=1}^{m} p_{i} q_{i i} \int_{0}^{1}(F(s, i) u, \beta)^{2} d s=\sum_{j=1}^{m} \sum_{i \neq j} p_{j} q_{j i} \int_{0}^{1}(F(s, j) u, \beta)^{2} d s \tag{16}
\end{equation*}
$$

Просумуємо співвідношення (15), (16) і підставимо в (14). Лема доведена.
Теорема 3. П.м. $(\hat{A}, R(u))$ має єдиний розв' язок.
Доведення. Ми маємо міру μ - розв'язок п.м. $(\hat{A}, R(u))$. Тоді [8]. $N_{t}=u_{t}-$ $-h+\int_{0}^{t} \hat{A} u_{r} d r \quad є \mu-\mathcal{F}_{t}$-мартингал в $L^{2}\left(R^{n}\right)$ такий, що $N_{t} \boxtimes N_{t}-\int_{0}^{1} R\left(u_{r}\right) d r-$ мартингал в просторі операторів з скінченним слідом з $L^{2}\left(R^{n}\right)$ в $L^{2}\left(R^{n}\right)$. Зрозуміло, що $R(u)=R^{*}(u)$. 3 леми 4 , додатності p_{i} і невід'ємності $q_{i j}$ випли-

ває $R(u) \geq 0 \quad \forall u \in H^{1}\left(\mathrm{R}^{n}\right)$. Існує $C>0$ така, що

$$
\mathrm{Sp}(R(u))=-2 \sum_{i=1}^{m} p_{i} \int_{0}^{1}(B(s, i) u, F(s, i) u) d s \leq C\|u\|^{2} .
$$

Ядро оператора $R(u)$ має вигляд $\sum_{k, l=0}^{n} u_{k}(x) Q((k, x) ;(l, y)) u_{l}(y)$, де

$$
Q((k, x) ;(l, y))=-\sum_{i=1}^{m} p_{i} \int_{0}^{1}\left[\bar{b}_{k}(s, i, x) \psi_{l}(s, i, y)+\bar{b}_{l}(s, i, y) \psi_{k}(s, i, x)\right] d s
$$

- додатнє симетричне ядро. В [7] показано, що в цьому випадку існує $K(u) \in$ ஓ($\left.L^{2}\left(R^{\eta}\right)\right)$ такий, що $R(u)=K(u) K^{*}(u)$ і відображення $u \rightarrow K(u)$ лінійне.

Нехай S - ядерний симетричний невід'ємний оператор на $L^{2}\left(R^{n}\right)$ і $0<$ $<\mathrm{Sp}(S)<\infty$. Тоді [5] на деякому ймовірнісному просторі можна побудувати відповідний йому вінеровський процес W_{s}. Визначимо $L(u)=K(u) S^{-1 / 2}$. Тоді $R(u)=L(u) S L^{*}(u)$ і $N_{t}=\int_{0}^{t} L\left(u_{r}\right) d W_{r}$. Таким чином, u_{t} припускає зображення у вигляді розв'язку стохастичного рівняння з частинними похідними

$$
\begin{equation*}
u_{t}+\int_{0}^{t} \hat{A} u_{r} d r=h+\int_{0}^{t} L\left(u_{r}\right) d W_{r} \tag{17}
\end{equation*}
$$

Далі існує $C>0$ така, що

$$
\begin{gather*}
\left|2 \sum_{i=1}^{m} p_{i} \int_{0}^{1}\langle F(s, i) B(s, i) u, u\rangle d s-\operatorname{Sp}(R(u))\right|= \\
=2\left|\sum_{i=1}^{m} p_{i} \int_{0}^{1}\left(B(s, i) u,\left[F^{*}(s, i)+F(s, i)\right] u\right) d s\right| \leq C\|u\| u \mid . \tag{18}
\end{gather*}
$$

З умови А 2 і співвідношень (18) випливає, що існують $k>0, \alpha>0$ такі, що

$$
-2\langle\hat{A} u, u\rangle+\operatorname{Sp}(R(u))+\alpha\|u\|^{2}<k|u|^{2} .
$$

Звідси і з лінійності операторів $\hat{A}, R(u)$ випливає існування єдиного розв'язку рівняння (17) [5]. Теорема доведена.

3 теорем 1-3 випливає така теорема.
Теорема 4. При $\varepsilon \rightarrow 0 \mu^{\varepsilon} \Rightarrow \mu-є д и н о г о ~ р о з в ' ~ я з к у ~ п . м . ~(~(\hat{A}, R(u))$.

1. Гихман И. И., Скороход А. В. Стохастические дифференциальные уравнения и их приложения. - Киев: Наук. думка, 1982. -61 lc.
2. Скороход А. В. Асимптотические методы теории стохастических дифференциальных уравнений. - Киев: Наук. думка, 1987. - 328с.
3. Evaus L. C., SouganidisP. E. A PDE approach to certain large deviation problems for systems of parabolic equations // Ann. Inst. H. Poincaré. - 1989. - N ${ }^{\circ}$ 6. - P.229-258.
4. Якубович В. А., Старжинский В. М. Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения. - М.: Наука, 1973. - 718c.
5. Крылов Н. В., Розовский Б. Л. Об эволюционных стохастических уравнениях. // Итоги науки и техники. Совр. пробл. математики / ВИНИТИ. - 1979. - 14. - С.72-147.
6. Липцер Р. Ш., Ширяев А. Н. Теория мартингалов. - М.: Наука, 1986. - 512с.
7. Bouc R., Pardoux E. Asymptotic analysis of P.D.E.s with wideband noise disturbances, and expansion of the moments // Stochast. Anal. and Appl. - 1984. - 2, No 4. - P.369-422.
8. Viot M. Solutionce et unicite de diffusions a valeurs dans un espace de Hilbert // Ann. Inst. H. Poincaré. - 1974. - $\mathrm{N}^{\mathrm{o}} 10$. - 152p.

Одержано 05.02.91

