В. В. Курта, канд. физ.-мат. наук (Ин-т прикл. математики и механики АН Украины, Донецк)

О ТЕОРЕМАХ ФРАГМЕНА—ЛИНДЕЛЕФА ДЛЯ КВАЗИЛИНЕЙНЫХ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА

Сформулированы аналоги хорошо известной в теории аналитических функций теоремы Фрагмена-Линделефа для градиентов решений широкого класса квазилинейных уравнений эллиптического типа. Приведены примеры, иллюстрирующие точность полученных результатов для градиентов решений уравнений вида $\operatorname{div}(|\nabla u|^{\alpha-2}\nabla u) = f(x, u, \nabla u)$, где $f(x, u, \nabla u)$ – локально ограниченная в \mathbb{R}^{2n+1} функция, $f(x,0,\nabla u)=0$, $uf(x,u,\nabla u)\geq c|u|^{1+q}(1+|\nabla u|)^{\gamma}$, $\alpha>1$, c>> 0, q > 0, γ − произвольное действительное число, $n \ge 2$.

Основную роль в используемой в работе технике играет аппарат емкостных характеристик.

Сформульовані аналоги добре відомої в теорії аналітичних функций теореми Фрагмена-Лінделефа для градієнтів розв'язків широкого класу квазілінійних рівнянь еліптичного типу. Наведені приклади, що ілюструють точність одержаних результатів для градієнтів розв'язків рівнянь виду $\operatorname{div}(|\nabla u|^{\alpha-2}\nabla u)=f(x,u,\nabla u)$, де $f(x,u,\nabla u)$ – локально обмежена в \mathbb{R}^{2n+1} функція, $f(x,0,\nabla u) = 0$, $uf(x,u,\nabla u) \ge c |u|^{1+q} (1+|\nabla u|)^{\gamma}$, $\alpha > 1$, c > 0, q > 0, γ – довільне дійсне число, $n \ge 2$.

Основну роль у використаній в роботі техніці відіграє апарат ємнісних характеристик.

1. Пусть D— область в \mathbb{R}^n , $n \ge 2$, и пусть $A_i(x, \xi)$, i = 1, 2, ..., n, — измеримые функции, определенные для почти всех $x \in D$ и всех $\xi \in \mathbb{R}^n$, и такие, что

$$(\xi A) = \sum_{i=1}^{n} \xi_i A_i(x, \xi) \ge 0.$$
 (1)

Обозначим через L дифференциальный оператор, определенный равенством

$$Lu = \sum_{i=1}^{n} \frac{d}{dx_i} A_i(x, \nabla u). \tag{2}$$

Будем говорить, следуя [1], что оператор L принадлежит классу $A(\alpha)$, 1 < $< \alpha < \infty$, если он удовлетворяет условию (1) и существует постоянная k > 0такая, что для любых ξ , $\psi \in \mathbb{R}^n$ и $x \in D$ выполнено

$$\left(\sum_{i=1}^{n} \xi_{i} A_{i}(x, \psi)\right)^{\alpha} \leq k \left|\xi\right|^{\alpha} \left(\sum_{i=1}^{n} \psi_{i} A_{i}(x, \psi)\right)^{\alpha - 1} \tag{3}$$

Рассмотренные в (1) классы $A(\alpha)$ содержат достаточно большой набор линейных и нелинейных операторов. Так, дифференциальные операторы, определенные соотношением (2) и удовлетворяющие условиям

$$|v_1|\xi|^{\alpha} \le \sum_{i=1}^n \xi_i A_i(x,\xi), \ |A(x,\xi)| \le |v_2|\xi|^{\alpha-1}$$

с некоторыми абсолютными постоянными $v_1, v_2 > 0$, принадлежат $A(\alpha)$.

Линейные равномерно эллиптические операторы дивергентного вида с измеримыми коэффициентами принадлежат $A(\alpha)$ при $\alpha = 2$.

Не оговаривая особо, будем считать, что оператор L принадлежит фиксированному классу $A(\alpha)$ с произвольным образом выбранным $\alpha \in (1, \infty)$.

Изучаются качественные свойства обобщенных решений уравнения вида

$$Lu = f(x, u, \nabla u), \tag{4}$$

1376

где функция $f(x, u, \nabla u)$ локально ограничена в \mathbb{R}^{2n+1} ,

$$f(x, 0, \xi) = 0, \quad uf(x, u, \nabla u) \ge c|u|^{1+q} (1 + |\nabla u|)^{\gamma}.$$
 (5)

 $c \ge 0, q \ge 0, \gamma$ — произвольное действительное число.

Список работ, посвященных данной проблематике, достаточно широк (см., например, [2–12]). В частности, из результатов, установленных в [12], элементарно получаем следующее утверждение.

Теорема 1. Пусть $q > \alpha$ -1, $\gamma \ge 0$, D — неограниченная область в \mathbb{R}^n , u(x) — обобщенное решение уравнения вида (4) в D (определение см. ниже), обращающееся в нуль на ∂D . Тогда $u(x) \equiv 0$..

В настоящей работе получены аналоги теоремы Фрагмена - Линделефа для градиентов решений уравнения вида (4) в зависимости от параметров α , q и γ .

2. Пусть D – произвольная область в \mathbb{R}^n . Обозначим через $W^{1, \infty}(D, E)$ пополнение по норме пространства $W^{1, \infty}(D)$ функций из $C^{\infty}(D)$, равных нулю на E. Будем говорить, что u(x) обращается в нуль на $E \subset \partial D$, если для любого R > 0, $u(x) \in W^{1, \infty}(D \cap B(0, R), E \cap B(0, R))$. Здесь и ниже через B (0, R) обозначен шар радиуса R с центром в начале координат.

Функцию u(x) будем называть обобщенным решением уравнения вида (4),

если $u\left(x\right)\in W_{\mathrm{loc}}^{1,\infty}(D)$ и для любой $\varphi(x)\in \overset{\circ}{W}^{1,\infty}(D)$ выполняется тождество

$$-\int_{D} \sum_{i=1}^{n} \frac{\partial \varphi}{\partial x_{i}} A_{i}(x, \nabla u) dx = \int_{D} f(x, u, \nabla u) \varphi(x) dx.$$
 (6)

На протяжении всей работы мы будем использовать аппарат емкостных характеристик. Приведем сейчас понятие нелинейной вариационной емкости конденсатора и оценку p-емкости кольцевой области в \mathbb{R}^n в удобном для дальнейшего виде.

Пусть D — область в \mathbb{R}^n , Δ — произвольная подобласть D, E и $F \subseteq \Delta$ — непересекающиеся, замкнутые относительно Δ множества. Всякую тройку $(E,F;\Delta)$ описанного вида будем называть конденсатором.

Зададим $p \ge 1$. Величину

$$\operatorname{cap}_{p}(E, F; \Delta) = \inf \int_{\Delta} |\nabla \psi|^{p} dx,$$

где infimum берется по всем функциям $\psi(x) \in C^{\infty}(D)$, обращающимся в единицу на E, равным нулю на F, назовем p-емкостью конденсатора $(E, F; \Delta)$.

Обозначим $U_r = D \cap B(0,r), C_r = D \cap (\mathbb{R}^n \setminus B(0,r))$ для произвольного неотрицательного r.

Обозначения U_r и C_r явно не зависят от D, однако из контекста всегда будет ясно, по отношению к какой области идет речь.

Лемма 1 [13, с. 45]. Пусть D — неограниченная область в \mathbb{R}^n , R>r>0. Обозначим через $S_D(t)$ пересечение области D с n-мерной сферой радиуса t>0 с центром в начале координат, а через $\left|S_D(t)\right|$ — площадь. $S_D(t)$. Тогда

$$\operatorname{cap}_{p}(\overline{U}_{r}, \overline{C}_{R}; D) \leq \left(\int_{r}^{R} \left| S_{D}(t) \right|^{-1/(p-1)} dt \right)^{p-1}. \tag{7}$$

Частным случаем неравенства (7) является хорошо известная оценка p-ем-кости кольцевой области в \mathbb{R}^n .

Лемма 2 [14, с.177]. Пусть D – неограниченная область в \mathbb{R}^n , R > r > 0, p > n. Тогда

$$\operatorname{cap}_{p}(\overline{U}_{r}, \overline{C}_{R}; D) \leq \omega_{n} \left(1 - \left(\frac{r}{R} \right)^{(p-n)/(p-1)} \right)^{1-p} R^{n-p}, \tag{8}$$

где ω_n – площадь поверхности единичного шара в \mathbb{R}^n .

3. Пусть $m_R = \mathop{\mathrm{ess~sup}}_{D \cap B(0,R)} (1 + |\nabla u|)$ для произвольных неотрицательных R, об-

ласти $D \subseteq \mathbb{R}^n$ и функции $u(x) \in W^{1,\infty}(D \cap B(0,\mathbb{R}))$.

Лемма 3. Пусть $\alpha - 1 \ge q > 0$, $\gamma \ne \alpha - 1 - q$, D — неограниченная область в \mathbb{R}^n , u(x) — решение уравнения (4) в U_R , обращающееся в нуль на $\partial D \cap B(0,R)$, R > r > 0. Тогда если $0 < \alpha \varepsilon < \min \{ \gamma - \alpha + 1 + q, \ q \}$ при $\gamma > \alpha - 1 - q$ и $0 < \alpha \varepsilon < q$ при $\gamma < \alpha - 1 - q$ и $0 < \alpha \varepsilon < q$ при $\gamma < \alpha - 1 - q$, то справедливы следующие неравенства:

$$k\left(\frac{1+q}{\varepsilon}\right)^{(1+q)/(1+\varepsilon)} (m_R)^{(\alpha-1-q-\gamma+\alpha\varepsilon)^+/(1+\varepsilon)} \left(\operatorname{cap}_{(1+q)/\varepsilon}(\overline{U}_r, \overline{C}_R; \overline{D})\right)^{\varepsilon/(1+\varepsilon)} \ge$$

$$\ge c \left(\int_{U_r} |u|^{1+q} \left(1+|\nabla u|\right)^{\gamma} dx\right)^{\varepsilon/(1+\varepsilon)}, \qquad (9)$$

$$k\left(\frac{1+q}{1+\varepsilon}\right)^{(1+q)/(1+\varepsilon)} (m_R)^{(\alpha-1-q-\gamma+\alpha\varepsilon)^+/(1+\varepsilon)} \left(\operatorname{cap}_{(1+q)/\varepsilon}(\overline{U}_r, \overline{C}_R; \overline{D})\right)^{\varepsilon/(1+\varepsilon)} \times$$

$$\times \left(\int_{U_R} |u|^{1+q} \left(1+|\nabla u|\right)^{\gamma} dx\right)^{\varepsilon/(1+\varepsilon)} \ge c \int_{U_r} |u|^{1+q} \left(1+|\nabla u|\right)^{\gamma} dx. \qquad (10)$$

(Здесь и ниже через ()+ обозначена неотрицательная часть числа, заключенного в скобки.)

Доказательство. Пусть $\psi(x)$ – произвольная функция из пространства $\overset{\circ}{C}{}^{1}(B(0,R)), \ 0 \leq \psi(x) \leq 1$, равная единице на B(0,r). Положив в неравенстве (6) $\phi(x) = \psi^{s}(x) u(x)$, где s > 1 будет выбрано ниже, имеем

$$-\int_{D} (u_x A) \psi^s dx - s \int_{D} (\psi_x A) u \psi^{s-1} dx =$$

$$= I_1 + I_2 = \int_{D} f(x, u, \nabla u) u \psi^s dx.$$
(11)

Оценим интеграл I_2 . Из условия (3) на коэффициенты оператора L получаем

$$\left| I_2 \right| \le s k^{1/\alpha} \iint_D \nabla \psi \left| (u_x A)^{(\alpha - 1)/\alpha} \right| u \left| \psi^{s - 1} dx$$

и, значит,

$$\left|I_{2}\right| \leq s k^{1/\alpha} \int_{D} (u_{x} A)^{(q-\varepsilon)/(1+q)} (u_{x} A)^{(\alpha-1-q+\alpha\varepsilon)/(\alpha+\alpha q)} \left|\nabla \psi\right| \left|u\right| \psi^{s-1} dx$$

для любого положительного ε , меньшего q.

Применяя к полученному соотношению ослабленное неравенство Юнга $(ab \le a^l + b^m$ для положительных чисел a, b, l, m, где l и m связаны равенством 1/l + 1/m = 1), при $l = (1 + q)/(q - \varepsilon)$ и $m = (1 + q)/(1 + \varepsilon)$ находим

$$\times \int_{D} (u_{x} A)^{(\alpha-1-q+\alpha\epsilon)/(\alpha+\alpha\epsilon)} (|\nabla \psi||u|)^{(1+q)/(1+\epsilon)} \psi^{s-(1+q)/(1+\epsilon)} dx.$$
 Из неравенств (11) и (12) следует
$$(sk^{1/\alpha})^{(1+q)/(1+\epsilon)} \int (u_{x} A)^{(\alpha-1-q+\alpha\epsilon)/(\alpha+\alpha\epsilon)} |u|^{(1+q)(1+\epsilon)} \times$$

$$\times \psi^{s-(1+q)/(1+\epsilon)} |\nabla \psi|^{(1+q)/(1+\epsilon)} dx \ge c \int_{D} |u|^{1+q} (1+|\nabla u|)^{\gamma} dx$$
.

 $\left|I_2\right| \leq \int_{\Omega} (u_x A) \psi^s dx + (s k^{1/\alpha})^{(1+q)/(1+\varepsilon)} \times$

 $(1+\varepsilon)^{-1}$ и $\varepsilon/(1+\varepsilon)$, имеем

$$(sk^{1/\alpha})^{(1+\epsilon)/(1+\epsilon)} \left(\int_{D} (u_x A)^{(\alpha-1-q+\alpha\epsilon)/\alpha} |u|^{1+q} \psi^{s(1+\epsilon)-(1+q)} dx \right)^{1/(1+\epsilon)} \times$$

$$(sk^{1/\alpha})^{(1+q)/(1+\varepsilon)} \left(\int_{D} (u_x A)^{(\alpha-1-q+\alpha\varepsilon)/\alpha} |u|^{1+q} \psi^{s(1+\varepsilon)-(1+q)} dx \right)^{1/(1+\varepsilon)} \times$$

$$(sk^{1/\alpha})^{(1+q)/(1+\varepsilon)} \left(\int_{D} (u_x A)^{(\alpha-1-q+\alpha\varepsilon)/\alpha} |u|^{1+q} \psi^{s(1+\varepsilon)-(1+q)} dx \right)^{q/(1+\varepsilon)} \times$$

$$\times \left(\int |\nabla \psi|^{(1+q)/\varepsilon} dx \right)^{\varepsilon/(1+\varepsilon)} \ge c \int |u|^{1+q} (1+|\nabla u|)^{\gamma} \psi^{s} dx .$$

$$(13)$$

$$\times \left(\iint_{D} \nabla \psi \, |^{(1+q)/\varepsilon} \, dx \right)^{\varepsilon/(1+\varepsilon)} \ge c \iint_{D} |u|^{1+q} (1+|\nabla u|)^{\gamma} \psi^{s} dx \,. \tag{13}$$

$$\times \left(\iint_{D} \nabla \psi \, \Big|^{(1+q)/\varepsilon} \, dx \right)^{\varepsilon/(1+\varepsilon)} \ge c \int_{D} |u|^{1+q} (1+|\nabla u|)^{\gamma} \, \psi^{s} dx \,. \tag{13}$$

$$\times \left(\iint_{D} \psi \psi^{-1} dx \right) = 2c \iint_{D} |u| \cdot (1+|vu|) \cdot \psi^{-1} dx$$
. (13) олагая в неравенстве (13) s равным сначала $(1+q)/\epsilon$, а затем $(1+q)/(1+\epsilon)$, пответствии с условиями (3), (5) получаем

вответствии с условиями (3), (5) получаем
$$k \left(\frac{1+q}{\varepsilon}\right)^{(1+q)/(1+\varepsilon)} \left(\iint_{D} |\nabla u|^{\alpha-1-q+\alpha\varepsilon} |u|^{1+q} \psi^{(1+q)/\varepsilon} dx\right)^{1/(1+\varepsilon)} \left(\iint_{D} |\nabla \psi|^{(1+q)/\varepsilon} dx\right)^{\varepsilon/(1+\varepsilon)} \ge 0$$

$$\geq c \iint_{D} |u|^{1+q} (1+|\nabla u|)^{\gamma} \psi^{(1+q)/\varepsilon} dx \tag{1}$$

$$k\left(\frac{1+q}{1+\varepsilon}\right)^{(1+q)/(1+\varepsilon)} \left(\int\limits_{D} |\nabla u|^{\alpha-1-q+\alpha\varepsilon} |u|^{1+q} dx\right)^{1/(1+\varepsilon)} \left(\int\limits_{D} |\nabla \psi|^{(1+q)/\varepsilon} dx\right)^{\varepsilon/(1+\varepsilon)} \ge$$

$$(1+\varepsilon) \qquad \binom{J}{D} \qquad \binom{J}{D} \qquad \binom{J}{D} \qquad 2 c \int_{D} |u|^{1+q} (1+|\nabla u|)^{\gamma} \psi^{(1+q)/(1+\varepsilon)} dx. \qquad (15)$$

$$D$$
 Так как

$$|\nabla u|^{\alpha - 1 - q + \alpha \varepsilon} \le (1 + |\nabla u|)^{\gamma} (1 + |\nabla u|)^{\alpha - 1 - q + \alpha \varepsilon - \gamma} \le (1 + |\nabla u|)^{\gamma} (1 + |\nabla u|)^{(\alpha - 1 - q + \alpha \varepsilon - \gamma)^{+}}$$

ои
$$\gamma > \alpha - 1 - q$$
 и $0 < \alpha \varepsilon < \gamma - \alpha + 1 + q$ и любых положительных ε при $\gamma < \alpha - 1 - q$, о из соотношений (14) и (15) легко следует
$$(1 + q)^{(1+q)/(1+\varepsilon)} = (\alpha - 1 - q + \alpha \varepsilon)^{+}/(1+\varepsilon) \left(\alpha - \frac{1}{2} + \frac{1}{2$$

$$k\left(\frac{1+q}{\varepsilon}\right)^{(1+q)/(1+\varepsilon)} \left(m_R\right)^{(\alpha-1-q+\alpha\varepsilon)^+/(1+\varepsilon)} \left(\iint_D \nabla \psi \Big|^{(1+q)/\varepsilon} dx\right)^{\varepsilon/(1+\varepsilon)} \ge$$

 $\geq c \left(\int\limits_{D} |u|^{1+q} (1+|\nabla u|)^{\gamma} \psi^{(1+q)/\varepsilon} dx \right)^{\varepsilon/(1+\varepsilon)},$

 $k\left(\frac{1+q}{1+\varepsilon}\right)^{(1+q)/(1+\varepsilon)}\left(m_R\right)^{(\alpha-1-q+\alpha\varepsilon)^+/(1+\varepsilon)}\left(\iint\limits_{D}\nabla\psi\,\Big|^{(1+q)/\varepsilon}\,dx\right)^{\varepsilon/(1+\varepsilon)}\times$

$$\times \left(\int_{D} |u|^{1+q} (1+|\nabla u|)^{\gamma} dx \right)^{1/(1+\varepsilon)} \ge c \int_{D} |u|^{1+q} (1+|\nabla u|)^{\gamma} \psi^{\frac{1+q}{\varepsilon}} dx.$$
ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, N° 10

(12)

Минимизируя теперь левые части неравенств (16) и (17) по всем допустимым функциям $\psi(x)$ указанного вида, легко убеждаемся в справедливости ут-

верждений леммы 3.

Непосредственным следствием леммы 3 является следующее утверждение.

Теорема 2. Пусть $\alpha - 1 \ge q > 0$, $\gamma > \alpha - 1 - q$, D - неограниченная область

в \mathbb{R}^n , u(x) – решение уравнения (4) в D, обращающееся в нуль на ∂D . Тогда $u(x) \equiv 0$.

Доказательство. Выберем число ε достаточно малым так, чтобы 0 < αε < < q, $\alpha - 1 - q + \alpha \varepsilon < \gamma$ и $(1 + q)/\varepsilon = p > n$. Тогда по формуле (9) при R = 2rполучаем

получаем
$$k^{(1+\epsilon)/\epsilon}p^p\operatorname{cap}_p(\overline{U}_r,\overline{C}_R;\overline{D}) \le c\int\limits_U \left|u\right|^{1+q} \left(1+\left|\nabla u\right|\right)^{\gamma} dx\,.$$

Оценивая p-емкость конденсатора $(\overline{U}_r,\overline{C}_R;\overline{D})$ в предыдущем соотношении по неравенству (8), находим

$$k^{(1+\varepsilon)/\varepsilon} p^p \omega_n \Big(1 - 2^{(p-n)/(1-p)} \Big)^{1-p} R^{n-p} \ge c \int_{U_r} |u|^{1+q} \Big(1 + |\nabla u| \Big)^{\gamma} dx.$$

Переходя в полученной формуле к пределу при $R \to \infty$, легко выводим $u(x) \equiv 0$. **Теорема 3.** Пусть $\alpha - 1 \ge q > 0$, $\alpha - 1 - q > \gamma$, D - неограниченная область

(18)

в \mathbb{R}^n , u(x) – решение уравнения (4) в D , обращающееся в нуль на ∂D . Тогда либо $u(x) \equiv 0$ в D, либо

$$\underline{\lim}_{R\to\infty} m_R \left(\beta^{\beta} \operatorname{cap}_{\beta}(\overline{U}_{R/2}, \overline{C}_R; \overline{D}) \right)^Q > 0,$$

если $\beta > \max\left\{n, \alpha \frac{1+q}{q}\right\}$, a $Q = \frac{1+q}{\beta(\alpha-1-q-\gamma)+\alpha(1+q)}$. Доказательство. Предположим противное: $u(x) \neq 0$ и условие (18) не вы-

чие нашему предположению при достаточно больших R. Заметим, что оценка (7) характеризует скорость возрастания величины m_p в утверждении теоремы 3 в зависимости от геометрических свойств области D.

полнено. Выбирая в неравенстве (9) R = 2 r, $\varepsilon = (1 + q)/\beta$, получаем противоре-

Теорема 4. Пусть $\alpha - 1 \ge q > 0$, $\alpha - 1 - q > \gamma$, D — неограниченная

область в \mathbb{R}^n , u(x) – решение уравнения (4) в D , обращающееся в нуль на ∂D . Тогда либо $u(x) \equiv 0$, либо

$$\varliminf_{R\to\infty} m_R\,R^{-(1+q)/(\alpha-1-q-\gamma)}>0\,.$$
 Доказательство. Предположим противное: $u(x)$ $\equiv 0$ и $m_R=o\left(R^{(1+q)/(\alpha-1-q-\gamma)}\right)$

при $R \to \infty$. Значит, существует положительное число μ такое, что

$$I(r) \equiv \int_{U_{-}}^{1} |u|^{1+q} (1+|\nabla u|)^{\gamma} dx = o(r^{\mu})$$

при $r \to \infty$ и фиксированных q, α и γ .

С другой стороны, при достаточно больших r, R = 2r, $0 < \alpha \epsilon <$ $< \min \{q, (1+q)/n\}$ из неравенства (10) имеем

$$k\left(\frac{1+q}{1+\varepsilon}\right)^{(1+q)/(1+\varepsilon)} m_R^{(\alpha-1-q-\gamma+\alpha\varepsilon)/(1+\varepsilon)} \left(\operatorname{cap}_{(1+q)/\varepsilon}(\overline{U}_r, \overline{C}_R; \overline{D})\right)^{\varepsilon/(1+\varepsilon)} \ge c I_r I_R^{-1/(1+\varepsilon)}$$

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 10 1380

Применяя лемму 1 для оценки емкости конденсатора $(\overline{U}_r, \overline{C}_R; \overline{D})$ при p = (1 + $+q)/\varepsilon$, находим

$$\begin{split} k \bigg(\frac{1+q}{1+\varepsilon}\bigg)^{(1+q)/(1+\varepsilon)} m_R^{(\alpha-1-q-\gamma+\alpha\varepsilon)/(1+\varepsilon)} \omega_n^{\varepsilon/(1+\varepsilon)} \times \\ \times \left(1-2^{(1+q-\varepsilon n)/(\varepsilon-1-q)}\right)^{(\varepsilon-1-q)/(1+\varepsilon)} R^{(n\varepsilon-1-q)/(1+\varepsilon)} \geq c \, I_r \, I_R^{-1/(1+\varepsilon)}. \end{split}$$

Переходя здесь к пределу при $\varepsilon \to 0$, легко получаем

$$k(2+2q)^{1+q} m_R^{\alpha-1-q-\gamma} R^{-1-q} \ge c I_r I_R^{-1}.$$

Исходя из нашего предположения о росте модуля градиента решения u(t), приходим к следующему: I_r неограниченно возрастает при $r \to \infty$. Более того, для любого $\lambda > 2^{\mu}$ существует $r(\lambda)$ такое, что при $r > r(\lambda)$ $I_{2r} > \lambda I_r$. Следовательно, $I_R > \lambda^{-r(\lambda)} R^{\ln_2 \lambda}$ для достаточно больших R вида $R = 2^{r(\lambda)+N}$, где Nнатуральное, большее $r(\lambda)$. Последнее в силу произвольности выбора λ противоречит тому, что $m_R = o(R^{(1+q)/(\alpha-1-q-\gamma)})$ при $R \to \infty$. Теорема доказана.

Замечание 1. Во всех сформулированных утверждениях область D может совпадать со всем пространством.

Замечание 2. При $\gamma > \alpha - 2 - 2q$ легко привести примеры, иллюстрирующие точность полученных результатов. Так, функция $u(r) = r^{(\alpha-\gamma)/(\alpha-1-q-\gamma)} +$ $+ r^2$, r = |x|, является классическим решением неравенства

$$u\operatorname{div}(|\nabla u|^{\alpha-2}\nabla u) \ge c|u|^{1+q}(1+|\nabla u|)^{\gamma}$$

при надлежащем выборе постоянной с.

Автор искренне признателен Е.М.Ландису за постоянное внимание и многочисленные полезные обсуждения.

- 1. Миклюков В.М. Емкость и обобщенный принцип максимума для квазилинейных уравнений эллиптического типа // Докл. АН СССР.-1980.- 250, №6. - C.1318-1320.
- 2 Keller J.B. On solutions of $\Delta u = f(u)$ // Communs Pure and Appl. Math.-1957.- 10, N° 4. -P.503-510.
- Osserman R. On the inequality $\Delta u \ge f(u)$ // Pacif. J. Math. -1957. -7, No 4. P.1641-1647.
- 4 Redheffer R. On the inequality $\Delta u \ge f(u, \text{grad}u) // J$. Math. Anal. and Appl. –1960. 1.—P.277–299.
- 5. Похожаев С. И. О краевой задаче для уравнений $\Delta u = u^2 /\!\!/$ Докл. АН СССР.— 1961.—140,
- Nº3.- C.518-521. 6 Veron L. Comportement asymptotique des solutions d'equations elliptiques semilinearires dans R^N
- // Ann. Math. Pure Appl.-1981.- 127.-P.25-50.
- Brezis H., Veron L. Removable singularities for some nonlinear elliptic equations// Arch. Ration. Mech, and Anal.-1980.- 75,-Nº 1.- P.1-6.
- Chipot N., Weissler F.B. Some blow up results for a nonlinear parabolic equation with a gradient
- term.-Minneapolls, 1987.-42p.-(IMA Prepr. / Inst. Math. and its Appl., Univ. of Minnesota; N°298).
- 9. Кондратьев В. А., Ландис Е. М. Полулинейные уравнения второго порядка с неотрица-
- тельной характеристической формой // Мат. заметки.-1988.- 44, №3.-С.457-468. 10. Кондратьев В. А., Ландис Е. М. О качественных свойствах решений одного нелинейного
- уравнения второго порядка // Мат. сб.-1988.- 135,№ 3.-С.346-360. 11. Кристев Д. И. О поведении решений некоторых полулинейных эллиптических и параболи-
- ческих неравенств // Дифференц. уравнения.-1989.- 25,№ 8.-C.1368-1374. 12. Курта В. В. О качественных свойствах решений некоторых классов квазилинейных эллип-
- тических уравнений второго порядка // Докл. АН УССР. Сер. А.-1990.-№12. С.12-14.
- 13. Миклюков В. М.Емкостные методы в задачах нелинейного анализа: Автореф. дис. ... д-ра физ.-мат. наук.-Тюмень, 1980.-22с.
- 14. Гольдштейн В. М., Решетняк Ю. Г. Введение в теорию функций с обобщенными производными и квазиконформные отображения.-М.: Наука, 1983.-284с.

Получено 01. 04. 92