## Удк 517.95

В. В. Курта, канд. физ.-мат. наук (Ин-т прикл. математики и механики АН Украины, Донецк)

## О ТЕОРЕМАХ ФРАГМЕНА-ЛИНДЕЛЕФА ДЛЯ КВАЗИЛИНЕЙНЫХ ЭЛЛИПТИЧЕСКИХ УРРВНЕНИЙ ВТОРОГО ПОРЯДКА

Сформулированы аналоги хорошо известной в теории аналитических функций теоремы Фраг-мена-Линделефа для градиентов решений широкого класса квазилинейных уравнений эллиптического типа. Приведены примеры, иллюстрирующие точность полученных результатов для градиентов решений уравнений вида $\operatorname{div}\left(|\nabla u|^{\alpha-2} \nabla u\right)=f(x, u, \nabla u)$, где $f(x, u, \nabla u)$ - локально ограниченная в $\mathbb{R}^{2 n+1}$. функция, $f(x, 0, \nabla u)=0, u f(x, u, \nabla u) \geq c|u|^{1+q}(1+|\nabla u|)^{\gamma}, \alpha>1, c>$ $>0, q>0, \gamma-$ произвольное действительное число, $n \geq 2$.

Основную роль в используемой в работе технике играет аппарат емкостных характеристик.
Сформульовані аналоги добре відомої в теорії аналітичних функций теореми Фрагмена-Лінделефа для градієнтів розв'язків широкого класу квазілінійних рівнянь еліптичного типу. Наведені приклади, що ілюструють точність одержаних результатів для градієнтів розв'язків рівнянь виду $\operatorname{div}\left(|\nabla u|^{\alpha-2} \nabla u\right)=f(x, u, \nabla u)$, де $f(x, u, \nabla u)$ - локально обмежена в $\mathbb{R}^{2 n+1}$ функція, $f(x, 0, \nabla u)=0$, uf $(x, u, \nabla u) \geq c|u|^{1+q}(1+|\nabla u|)^{\gamma}, \alpha>1, c>0, q>0, \gamma-$ довільне діисне число, $n \geq 2$.

Основну роль у використаній в роботі техніці відіграє апарат ємнісних характеристик.

1. Пусть $D$ - область в $\mathbb{R}^{n}, n \geq 2$, и пусть $A_{i}(x, \xi), i=1,2, \ldots, n$, - измеримые функции, определенные для почти всех $x \in D$ и всех $\xi \in \mathbb{R}^{n}$, и такие, что

$$
\begin{equation*}
(\xi A)=\sum_{i=1}^{n} \xi_{i} A_{i}(x, \xi) \geq 0 \tag{1}
\end{equation*}
$$

Обозначим через $L$ дифференциальный оператор, определенный равенством

$$
\begin{equation*}
L u=\sum_{i=1}^{n} \frac{d}{d x_{i}} A_{i}(x, \nabla u) \tag{2}
\end{equation*}
$$

Будем говорить, следуя [1], что оператор $L$ принадлежит классу $A(\alpha), 1<$ $<\alpha<\infty$, если он удовлетворяет условию (1) и существует постояннаяя $k>0$ такая, что для любых $\xi, \psi \in \mathbb{R}^{n}$ и $x \in D$ выполнено

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \xi_{i} A_{i}(x, \psi)\right)^{\alpha} \leq k|\xi|^{\alpha}\left(\sum_{i=1}^{n} \psi_{i} A_{i}(x, \psi)\right)^{\alpha-1} \tag{3}
\end{equation*}
$$

Рассмотренные в (1) классы $A(\alpha)$ содержат достаточно большой набор линейных и нелинейных операторов. Так, дифференциальные операторы, определенные соотношением (2) и удовлетворяющие условиям

$$
v_{1}|\xi|^{\alpha} \leq \sum_{i=1}^{n} \xi_{i} A_{i}(x, \xi),|A(x, \xi)| \leq v_{2}|\xi|^{\alpha-1}
$$

с некоторыми абсолютными постоянными $v_{1}, v_{2}>0$, принадлежат $A(\alpha)$.
Линейные равномерно эллиптические операторы дивергентного вида с измеримыми коэффициентами принадлежат $A(\alpha)$ при $\alpha=2$.

Не оговаривая особо, будем считать, что оператор $L$ принадлежит фиксированному классу $A(\alpha)$ с произвольным образом выбранным $\alpha \in(1, \infty)$.

Изучаются качественные свойства обобщенных решений уравнения вида

$$
\begin{equation*}
L u=f(x, u, \nabla u), \tag{4}
\end{equation*}
$$

где функция $f(x, u, \nabla u)$ локально ограничена в $\mathbb{R}^{2 n+1}$,

$$
\begin{equation*}
f(x, 0, \xi)=0, u f(x, u, \nabla u) \geq c|u|^{\mid+q}\left(1+|\nabla u|^{\gamma} .\right. \tag{5}
\end{equation*}
$$

$c \geq 0, q \geq 0, \gamma$ - произвольное действительное число.
Список работ, посвященных данной проблематике, достаточно широк (см., например, [2-12]). В частности, из результатов, установленных в [12], элементарно получаем следующее утверждение.

Теорема 1. Пусть $q>\alpha-1, \gamma \geq 0, D$ - неограниченная область в $\mathbb{R}^{n}, u(x)$ обобщенное решение уравнения вида (4) в $D$ (определение см. ниже), обращающееся в нуль на $\partial \mathrm{D}$. Тогда $u(x) \equiv 0$..

В настоящей работе получены аналоги теоремы Фрагмена - Линделефа для градиентов решений уравнения вида (4) в зависимости от параметров $\alpha, q$ и $\gamma$.
2. Пусть $D$ - произвольная область в $\mathbb{R}^{n}$. Обозначим через $W^{1, \infty}(D, E)$ пополнение по норме пространства $W^{1, \infty}(D)$ функций из $C^{\infty}(D)$, равных нулю на $E$. Будем говорить, что $u(x)$ обращается в нуль на $E \subset \partial D$, если для любого $R>0, u(x) \in W^{1, \infty}(D \cap B(0, R), E \cap B(0, R))$. Здесь и ниже через $B$ $(0, R)$ обозначен шар радиуса $R$ с центром в начале координат.

Функцию $u(x)$ будем называть обобщенным решением уравнения вида (4), если $u(x) \in W_{\mathrm{loc}}^{1, \infty}(D)$ и для любой $\varphi(x) \in \stackrel{\circ}{W}^{1, \infty}(D)$ выполняется тождество

$$
\begin{equation*}
-\int_{D} \sum_{i=1}^{n} \frac{\partial \varphi}{\partial x_{i}} A_{i}(x, \nabla u) d x=\int_{D} f(x, u, \nabla u) \varphi(x) d x . \tag{6}
\end{equation*}
$$

На протяжении всей работы мы будем использовать аппарат емкостных характеристик. Приведем сейчас понятие пелинейной вариационной емкости конденсатора и оценку $p$-емкости кольцевой области в $\mathbb{R}^{n}$ в удобном для дальнейшего виде.

Пусть $D$ - область в $\mathbb{R}^{n}, \Delta$ - произвольная подобласть $D, E$ и $F \subset \Delta$ непересекаюшиеся, замкнутые относительно $\Delta$ множества. Всякую тройку $(E, F ; \Delta)$ описанного вида будем называть конденсатором.

Зададим $p \geq 1$. Величину

$$
\operatorname{cap}_{p}(E, F ; \Delta)=\inf \int_{\Delta}|\nabla \psi|^{p} d x .
$$

где infimum берется по всем функциям $\psi(x) \in C^{\infty}(D)$, обращающимся в единицу на $E$, равным нулю на $F$, назовем $p$-емкостью конденсатора ( $E, F ; \Delta$ ).

Обозначим $U_{r}=D \cap B(0, r), C_{r}=D \cap\left(\mathbb{R}^{n} \backslash B(0, r)\right)$ для произвольного неотрицательного $r$.

Обозначения $U_{r}$ и $C_{r}$ явно не зависят от $D$, однако из контекста всегда будет ясно, по отношению к какой области идет речь.

Лемма 1 [13, с. 45]. Пусть $D$ - пеограничениая область в $\mathbb{R}^{n}, R>r>0$. Обозначим через $S_{D}(t)$ пересечение области $D$ с $n$-мерной сферой радиуса $t>0$ с центром в начале координат, а через $\left|S_{D}(t)\right|-$ плоцадь. $S_{D}(t)$. Тогда

$$
\begin{equation*}
\operatorname{cap}_{p}\left(\bar{U}_{r}, \bar{C}_{R} ; D\right) \leq\left(\int_{r}^{R}\left|S_{D}(t)\right|^{-1 /(p-1)} d t\right)^{p-1} . \tag{7}
\end{equation*}
$$

Частным случаем неравенства (7) является хорошо известная оценка $p$-емкости кольцевой области в $\mathbb{R}^{n}$.

Лемма $2\left[14\right.$, с.177]. Пусть $D$ - неограниченная область в $\mathbb{R}^{n}, R>r>0$, p>n.Tozдa

$$
\begin{equation*}
\operatorname{cap}_{p}\left(\bar{U}_{r}, \bar{C}_{R} ; D\right) \leq \omega_{n}\left(1-\left(\frac{r}{R}\right)^{(p-n) /(p-1)}\right)^{1-p} R^{n-p} . \tag{8}
\end{equation*}
$$

где $\omega_{n}$ - площадь поверхности единичного шиара в $\mathbb{R}^{n}$.
 ласти $D \subseteq \mathbb{R}^{n}$ и функции $u(x) \in W^{1, \infty}(D \cap B(0, \mathrm{R}))$.

Лемма 3. Пусть $\alpha-1 \geq q>0, \gamma \neq \alpha-1-q$. $D$ - неограниченная область в $\mathbb{R}^{n}, u(x)$ - решение уравнения (4) в $U_{R}$, обращаюцееся в пуль на $\partial D \cap B(0, R), R>r>0$. Тогда если $0<\alpha \varepsilon<\min \{\gamma-\alpha+1+q, q\}$ при $\gamma>\alpha-$ $-1-q u 0<\alpha \varepsilon<q$ при $\gamma<\alpha-1-q$, то справедливы следуюцце неравенства:

$$
\begin{align*}
& k\left(\frac{1+q}{\varepsilon}\right)^{(1+q) /(1+\varepsilon)}\left(m_{R}\right)^{(\alpha-1-q-\gamma+\alpha \varepsilon)^{+} /(1+\varepsilon)}\left(\operatorname{cap}_{(1+q) / \varepsilon}\left(\bar{U}_{r}, \bar{C}_{R} ; \bar{D}\right)\right)^{\varepsilon /(1+\varepsilon)} \geq \\
& \geq c\left(\int_{U_{r}}|u|^{1+q}(1+|\nabla u|)^{\gamma} d x\right)^{\varepsilon /(1+\varepsilon)},  \tag{9}\\
& k\left(\frac{1+q}{1+\varepsilon}\right)^{(1+q) /(1+\varepsilon)}\left(m_{R}\right)^{(\alpha-1-q-\gamma+\alpha \varepsilon)^{+} /(1+\varepsilon)}\left(\operatorname{cap}_{(1+q) / \varepsilon}\left(\bar{U}_{r}, \bar{C}_{R} ; \bar{D}\right)\right)^{\varepsilon /(1+\varepsilon)} \times \\
& \quad \times\left(\int_{U_{R}}|u|^{1+q}(1+|\nabla u|)^{\gamma} d x\right)^{\varepsilon /(1+\varepsilon)} \geq c \int_{U_{r}}|u|^{1+q}(1+|\nabla u|)^{\gamma} d x .
\end{align*}
$$

(Здесь и ниже через ( ) ${ }^{+}$обозначена пеотрицательная часть числа, заключенного в скобки.)

Доказательство. Пусть $\psi(x)$ - произвольная функция из пространства $\stackrel{\circ}{C}^{1}(B(0, R)), 0 \leq \psi(x) \leq 1$, равная единице на $B(0, r)$.Положив в неравенстве (6) $\varphi(x)=\psi^{s}(x) u(x)$, где $s>1$ будет выбрано ниже, имеем

$$
\begin{align*}
& -\int_{D}\left(u_{x} A\right) \psi^{s} d x-s \int_{D}\left(\psi_{x} A\right) u \psi^{s-1} d x= \\
& \quad=I_{1}+I_{2}=\int_{D} f(x, u, \nabla u) u \psi^{s} d x \tag{11}
\end{align*}
$$

Оценим интеграл. $I_{2}$. Из условия (3) на коэффициенты оператора $L$ получаем

$$
\left|I_{2}\right| \leq s k^{1 / \alpha} \int_{D} \nabla \psi\left|\left(u_{x} A\right)^{(\alpha-1) / \alpha}\right| u \mid \psi^{s-1} d x
$$

и, значит,

$$
\left|I_{2}\right| \leq s k^{1 / \alpha} \int_{D}\left(u_{x} A\right)^{(q-\varepsilon) /(1+q)}\left(u_{x} A\right)^{(\alpha-1-q+\alpha \varepsilon) /(\alpha+\alpha q)}|\nabla \psi \| u| \psi^{s-1} d x
$$

для любого положительного $\varepsilon$, меньшего $q$.
Применяя к полученному соотношению ослабленное неравенство Юнга ( $a b \leq a^{l}+b^{m}$ для положительных чисел $a, b, l, m$, где $l$ и $m$ связаны равенством $1 / l+1 / m=1)$, при $l=(1+q) /(q-\varepsilon)$ и $m=(1+q) /(1+\varepsilon)$ находим

$$
\begin{gather*}
\left|I_{2}\right| \leq \int_{D}\left(u_{x} A\right) \psi^{s} d x+\left(s k^{1 / \alpha}\right)^{(1+q) /(1+\varepsilon)} \times \\
\times \int_{D}\left(u_{x} A\right)^{(\alpha-1-q+\alpha \varepsilon) /(\alpha+\alpha \varepsilon)}(|\nabla \psi \| u|)^{(1+q) /(1+\varepsilon)} \psi^{s-(1+q) /(1+\varepsilon)} d x . \tag{12}
\end{gather*}
$$

Из неравенств (11) и (12) следует

$$
\begin{aligned}
& \left(s k^{1 / \alpha}\right)^{(1+q) /(1+\varepsilon)} \int_{D}\left(u_{x} A\right)^{(\alpha-1-q+\alpha \varepsilon) /(\alpha+\alpha \varepsilon)}|u|^{(1+q)(1+\varepsilon)} \times \\
& \times \psi^{s-(1+q) /(1+\varepsilon)}|\nabla \psi|^{(1+q) /(1+\varepsilon)} d x \geq c \int_{D}|u|^{1+q}(1+\mid \nabla u)^{\gamma} d x .
\end{aligned}
$$

Применяя к предыдущему соотношению неравенство Гельдера с показателями $(1+\varepsilon)^{-1}$ и $\varepsilon /(1+\varepsilon)$, имеем

$$
\begin{gather*}
\left(s k^{1 / \alpha}\right)^{(1+q)(1+\varepsilon)}\left(\int_{D}\left(u_{x} A\right)^{(\alpha-1-q+\alpha \varepsilon) / \alpha}|u|^{1+q} \psi^{s(1+\varepsilon)-(1+q)} d x\right)^{1 /(1+\varepsilon)} \times \\
\times\left(\left.\int_{D} \nabla \psi\right|^{(1+q) / \varepsilon} d x\right)^{\varepsilon /(1+\varepsilon)} \geq c \int_{D}|u|^{1+q}(1+|\nabla u|)^{\gamma} \psi^{s} d x .
\end{gather*}
$$

Полагая в неравенстве (13) $s$ равным сначала $(1+q) / \varepsilon$, а затем $(1+q) /(1+\varepsilon)$, в соответствии с условиями (3), (5) получаем

$$
\begin{gather*}
k\left(\frac{1+q}{\varepsilon}\right)^{(1+q) /(1+\varepsilon)}\left(\int_{D}|\nabla u|^{\alpha-1-q+\alpha \varepsilon}|u|^{1+q} \psi^{(1+q) / \varepsilon} d x\right)^{1 /(1+\varepsilon)}\left(\int|\nabla \psi|^{(1+q) / \varepsilon} d x\right)^{\varepsilon /(1+\varepsilon)} \geq \\
\geq c \int_{D}|u|^{1+q}(1+|\nabla u|)^{\gamma} \psi^{(1+q) / \varepsilon} d x \tag{14}
\end{gather*}
$$

и

$$
\begin{gather*}
k\left(\frac{1+q}{1+\varepsilon}\right)^{(1+q) /(1+\varepsilon)}\left(\int_{D}|\nabla u|^{\alpha-1-q+\alpha \varepsilon}|u|^{1+q} d x\right)^{1 /(1+\varepsilon)}\left(\left.\iint_{D} \nabla \psi\right|^{(1+q) / \varepsilon} d x\right)^{\varepsilon /(1+\varepsilon)} \geq \\
\geq c \int_{D}|u|^{1+q}\left(1+|\nabla u|^{\gamma} \psi^{(1+q)(1+\varepsilon)} d x\right. \tag{15}
\end{gather*}
$$

Так как

$$
|\nabla \stackrel{\nabla}{ }|^{\alpha-1-q+\alpha \varepsilon} \leq(1+|\nabla u|)^{\gamma}(1+|\nabla u|)^{\alpha-1-q+\alpha \varepsilon-\gamma} \leq(1+|\nabla u|)^{\gamma}(1+|\nabla u|)^{(\alpha-1-q+\alpha \varepsilon-\gamma)^{+}}
$$

при $\gamma>\alpha-1-q$ и $0<\alpha \varepsilon<\gamma-\alpha+1+q$ и любых положительных $\varepsilon$ при $\gamma<\alpha-1-q$, то из соотношений (14) и (15) легко следует

$$
\begin{align*}
& k\left(\frac{1+q}{\varepsilon}\right)^{(1+q) /(1+\varepsilon)}\left(m_{R}\right)^{(\alpha-1-q+\alpha \varepsilon)^{+} /(1+\varepsilon)}\left(\int_{D}|\nabla \psi|^{(1+q) / \varepsilon} d x\right)^{\varepsilon /(1+\varepsilon)} \geq \\
& \geq c\left(\int_{D}|u|^{1+q}(1+|\nabla u|)^{\gamma} \psi^{(1+q) / \varepsilon} d x\right)^{\varepsilon /(1+\varepsilon)},  \tag{16}\\
& k\left(-\frac{1+q}{1+\varepsilon}\right)^{(1+q) /(1+\varepsilon)}\left(m_{R}\right)^{(\alpha-1-q+\alpha \varepsilon)^{+} /(1+\varepsilon)}\left(\int_{D}|\nabla \psi|^{(1+q) / \varepsilon} d x\right)^{\varepsilon /(1+\varepsilon)} \times \\
& \times\left(\int_{D}|u|^{1+q}(1+\mid \nabla u)^{\gamma} d x\right)^{1 /(1+\varepsilon)} \geq c \int_{D}|u|^{1+q}(1+|\nabla u|)^{\gamma} \psi^{\frac{1+q}{\varepsilon}} d x .
\end{align*}
$$

Минимизируя теперь левые части неравенств (16) и (17) по всем допустимым функциям $\psi(x)$ указанного вида, легко убеждаемся в справедливости утверждений леммы 3.

Непосредственным следствием леммы 3 является следующее утверждение.
Теорема 2. Пусть $\alpha-1 \geq q>0, \gamma>\alpha-1-q, D-$ неограниченная область в $\mathbb{R}^{n}, u(x)$ - решение уравнения (4) в $D$, обращающееся в нуль на $\partial D$. Тогда $u(x) \equiv 0$.

Доказательство. Выберем число $\varepsilon$ достаточно малым так, чтобы $0<\alpha \varepsilon<$ $<q, \alpha-1-q+\alpha \varepsilon<\gamma$ и $(1+q) / \varepsilon=p>n$. Тогда по формуле (9) при $R=2 r$ получаем

$$
k^{(1+\varepsilon) / \varepsilon} p^{p} \operatorname{cap}_{p}\left(\bar{U}_{r}, \bar{C}_{R} ; \bar{D}\right) \leq c \int_{U_{r}}|u|^{1+q}(1+|\nabla u|)^{\gamma} d x .
$$

Оценивая $p$-емкость конденсатора ( $\bar{U}_{r}, \bar{C}_{R} ; \bar{D}$ ) в предыдущем соотношении по неравенству (8), находим

$$
k^{(1+\varepsilon) / \varepsilon} p^{p} \omega_{n}\left(1-2^{(p-n) /(1-p)}\right)^{1-p} R^{n-p} \geq c \int_{U_{r}}|u|^{1+q}(1+|\nabla u|)^{\gamma} d x .
$$

Переходя в полученной формуле к пределу при $R \rightarrow \infty$, легко выводим $u(x) \equiv 0$.
Теорема 3. Пусть $\alpha-1 \geq q>0, \alpha-1-q>\gamma, D-$ неограниченная область в $\mathbb{R}^{n}, u(x)$-решение уравнения (4) в $D$, обращающееся в нуль на $\partial D$. Тогда либо $u(x) \equiv 0$ в $D$, либо

$$
\begin{equation*}
\lim _{R \rightarrow \infty} m_{R}\left(\beta^{\beta} \operatorname{cap}_{\beta}\left(\bar{U}_{R / 2}, \bar{C}_{R} ; \bar{D}\right)\right)^{Q}>0 \tag{18}
\end{equation*}
$$

если $\beta>\max \left\{n, \alpha \frac{1+q}{q}\right\}, a \quad Q=\frac{1+q}{\beta(\alpha-1-q-\gamma)+\alpha(1+q)}$.
Доказатальство. Предположим противное: $u(x) \neq 0$ и условие (18) не выполнено. Выбирая в неравенстве (9) $R=2 r, \varepsilon=(1+q) / \beta$, получаем противоречие нашему предположению при достаточно больших $R$.

Заметим, что оценка (7) характеризует скорость возрастания величины $m_{R}$ в утверждении теоремы 3 в зависимости от геометрических свойств области $D$.

Теорема 4. Пусть $\alpha-1 \geq q>0, \alpha-1-q>\gamma, D-$ неограниченная область в $\mathbb{R}^{n}, u(x)$-решение уравнения (4) в $D$, обращающееся в нуль на $\partial D$. Тогда либо $u(x) \equiv 0$, либо

$$
\lim _{R \rightarrow \infty} m_{R} R^{-(1+q) /(\alpha-1-q-\gamma)}>0 .
$$

Доказательство. Предположим противное: $u(x) \neq 0$ и $m_{R}=o\left(R^{(1+q) /(\alpha-1-q-\gamma)}\right)$ при $R \rightarrow \infty$. Значит, существует положительное число $\mu$ такое, что

$$
I(r) \equiv \int_{U_{r}}|u|^{1+q}(1+|\nabla u|)^{\gamma} d x=o\left(r^{\mu}\right)
$$

при $r \rightarrow \infty$ и фиксированных $q, \alpha$ и $\gamma$.
С другой стороны, при достаточно больших $r, R=2 r, 0<\alpha \varepsilon<$ $<\min \{q,(1+q) / n\}$ из неравенства (10) имеем

$$
k\left(\frac{1+q}{1+\varepsilon}\right)^{(1+q) /(1+\varepsilon)} m_{R}^{(\alpha-1-q-\gamma+\alpha \varepsilon) /(1+\varepsilon)}\left(\operatorname{cap}_{(1+q) / \varepsilon}\left(\bar{U}_{r}, \bar{C}_{R} ; \bar{D}\right)\right)^{\varepsilon /(1+\varepsilon)} \geq c I_{r} I_{R}^{-1 /(1+\varepsilon)}
$$

Применяя лемму 1 для оценки емкости конденсатора $\left(\bar{U}_{r}, \bar{C}_{R} ; \bar{D}\right)$ при $p=(1+$ $+q) / \varepsilon$, находим

$$
\begin{gathered}
k\left(\frac{1+q}{1+\varepsilon}\right)^{(1+q) /(1+\varepsilon)} m_{R}^{(\alpha-1-q-\gamma+\alpha \varepsilon) /(1+\varepsilon)} \omega_{n}^{\varepsilon /(1+\varepsilon)} \times \\
\times\left(1-2^{(1+q-\varepsilon n) /(\varepsilon-1-q)}\right)^{(\varepsilon-1-q) /(1+\varepsilon)} R^{(n \varepsilon-1-q) /(1+\varepsilon)} \geq c I_{r} I_{R}^{-1 /(1+\varepsilon)} .
\end{gathered}
$$

Переходя здесь к пределу при $\varepsilon \rightarrow 0$, легко получаем

$$
k(2+2 q)^{1+q} m_{R}^{\alpha-1-q-\gamma} R^{-1-q} \geq c I_{r} I_{R}^{-1} .
$$

Исходя из нашего предположения о росте модуля градиента решения $u(t)$, приходим к следующему: $I_{r}$ неограниченно возрастает при $r \rightarrow \infty$. Более того, для любого $\lambda>2^{\mu}$ существует $r(\lambda)$ такое, что при $r>r(\lambda) I_{2 r}>\lambda I_{r}$. Следовательно, $I_{R}>\lambda^{-r(\lambda)} R^{\ln _{2} \lambda}$ для достаточно больших $R$ вида $R=2^{r(\lambda)+N}$, где $N-$ натуральное, большее $r(\lambda)$. Последнее в силу произвольности выбора $\lambda$ противоречит тому, что $m_{R}=o\left(R^{(1+q) /(\alpha-1-q-\gamma)}\right)$ при $R \rightarrow \infty$. Теорема доказана.

Замечание 1. Во всех сформулированных утверждениях область $D$ может совпадать со всем пространством.

Замечание 2. При $\gamma>\alpha-2-2 q$ легко привести примеры, иллюстрирующие точность полученных результатов. Так, функция $u(r)=r^{(\alpha-\gamma) /(\alpha-1-q-\gamma)}+$ $+r^{2}, r=|x|$, является классическим решением неравенства

$$
u \operatorname{div}\left(|\nabla u|^{\alpha-2} \nabla u\right) \geq c|u|^{1+q}(1+|\nabla u|)^{\gamma}
$$

при надлежащем выборе постоянной $c$.
Автор искренне признателен Е.М.Ландису за постоянное внимание и многочисленные полезные обсуждения.

1. Миклюков В.М. Емкость и обобщенный принцип максимума для квазилинейных уравнений эллиптического типа // Докл. АН СССР.-1980.- 250, №6. - С. 1318-1320.
2 Keller J.B. On solutions of $\Delta u=f(u) / /$ Communs Pure and Appl. Math.-1957.- 10, $\mathrm{N}^{2}$ 4. -P.503-510.

3 Osserman $R$. On the inequality $\Delta u \geq f(u) / /$ Pacif. J. Math.-1957.- 7, $N^{\circ} 4 .-$ P.1641-1647.
4 Redheffer $R$. On the inequality $\Delta u \geq f(u, g r a d u) / / \mathrm{J}$. Math. Anal. and Appl.- 1960.- 1.-P.277-299.
5. Похожаев С. И. О краевой задаче для уравнений $\Delta u=u^{2} / /$ Докл. АН СССР.- 1961.-140, N⒊- C.518-521.
6 Veron $L$. Comportement asymptotique des solutions d'equations elliptiques semilinearires dans $\mathbb{R}^{N}$ // Ann. Math. Pure Appl.-1981.- 127.-P.25-50.
7 Brezis H., Veron L. Removable singularities for some nonlinear elliptic equations// Arch. Ration. Mech. and Anal.-1980.- 75,-N ${ }^{2}$ 1.- P.1-6.
8 Chipot N., Weissler F.B. Some blow up results for a nonlinear parabolic equation with a gradient term.-Minneapolls, 1987.-42p.-(IMA Prepr. / Inst. Math. and its Appl., Univ. of Minnesota; N ${ }^{\circ} 298$ ).
9. Кондратьев В. А., Ландис Е. М. Полулинейные уравнения второго порядка с неотрицательной характеристической формой // Мат. заметки.-1988.- 44, №3.-С.457-468.
10. Кондратьев В. А., Ландис Е. М. О качественных свойствах решений одного нелинейного уравнения второго порядка // Мат. с6.-1988.- 135,N 3.-С.346-360.
11. Кристев Д. И. О поведении решений некоторых полулинейных эллиптических и параболических неравенств // Дифференц. уравнения.-1989.- 25, № 8.-С.1368-1374.
12. Курта В. В. О качественных свойствах решений некоторых классов квазилинейных эллиптических уравнений второго порядка // Докл. АН УССР. Сер. А.-1990.-N 12 - - С.12-14.
13. Миклюков В. М.Емкостные методы в задачах нелинейного анализа : Автореф. дис. ... д-ра физ.-мат. наук.-Тюмень, 1980.-22с.
14. Гольдитейн В. М., Решетняк Ю.Г. Введение в теорию функций с обобщенными производными и квазиконформные отображения.-М.: Наука, 1983.-284с.

Получено 01.04. 92

