Ю.Н. Линьков, д-р физ.-мат.наук (Ин-т прикл. математики и механики АН Украины, Донецк), Мунир аль ІІахф, асп. (Донец. ун-т)

АСИМПТОТИЧЕСКОЕ РАЗЛИЧЕНИЕ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ

Доказаны предельные теоремы для логарифма отношения правдоподобия и с их помощью установлена скорость убывания вероятности ошибки 2 -го рода критерия Неймана-Пирсона.
Доведені граничні теореми для логарифму відношення правдоподібності та з іх допомогою встановлена швидкість спадання ймовірності похибки 2-го роду критерію Неймана-Пірсона.

1. Введение. Методам статистики считающих процессов, основанных на использовании асимптотических свойств отношения правдоподобия, посвящено достаточно много работ (см. обзор [1]). Важный подкласс считающих процессов образуют процессы восстановления $[2,3]$. В данной работе рассмотрим задачу проверки двух простых гипотез для процессов восстановления при растущей длительности наблюдений. Исследование основано на асимптотических свойствах отношения правдоподобия. Близкие результаты имеются в работе [1].
2. Процесс локальной плотности мер. Пусть $(\Omega, \mathcal{F}, \boldsymbol{F}, \boldsymbol{P}, \tilde{\boldsymbol{P}})$ - стохастический базис с двумя вероятностными мерами \boldsymbol{P} и $\tilde{\boldsymbol{P}}, \boldsymbol{P}^{t}$ и $\tilde{\boldsymbol{P}}^{t}$ - сужения мер \boldsymbol{P} и $\tilde{\boldsymbol{P}}$ на σ-аліебру $\mathcal{F}_{t}, t \in R_{+}$. Пусть $\xi=\left(\xi_{t}\right)_{\geq 0}$ - считающий процесс, распределение которого задается мерой \boldsymbol{P} (соответственно $\tilde{\boldsymbol{P}})$, если верна гипотеза \boldsymbol{H} (соответственно $\tilde{\boldsymbol{H}}$). Рассмотрим задачу проверки гипотез \boldsymbol{H} и $\tilde{\boldsymbol{H}}$ по наблюдениям $\xi^{t}=\left(\xi_{s}\right)_{0 \leq s \leq}$ процесса ξ. Если $\tilde{\boldsymbol{P}}^{t} \ll \boldsymbol{P}^{t}$ для всех $t \in R_{+}(\tilde{\boldsymbol{P}} \ll \boldsymbol{P})$, то процесс $z=\left(z_{t}\right)_{t \geq 0}$ называется процессом локальной плотности меры $\tilde{\boldsymbol{P}}$ относительно меры \boldsymbol{P} (или отношением правдоподобия). Получим здесь вид процесса z в случае процессов восстановления.

Пусть $T_{n}=\sum_{k=1}^{n} \tau_{k}, n=1,2, \ldots$, - моменты скачков считающего процесса ξ, где $\tau_{1}, \tau_{2}, \ldots$ - независимые положительные случайные величины с функциями распределения $F_{k}(t)=\boldsymbol{P}\left\{\tau_{k} \leq t\right\}$ или $\tilde{F}_{k}(t)=\tilde{\boldsymbol{P}}\left\{\tau_{k} \leq t\right\}$. В данном случае процесс ξ называется процессом восстановления $[2,3]$.

Хорошо известно [4], что $\boldsymbol{P}-$ и $\quad \tilde{\boldsymbol{P}}$-компенсаторы считающего процесса $\boldsymbol{\xi}$ имеют вид

$$
v_{t}=\sum_{k=1}^{\infty} \int_{t \wedge T_{k-1}}^{t \wedge T_{k}} \frac{d \varphi_{k}(s)}{1-\varphi_{k}(s-)}, \tilde{v}_{t}=\sum_{k=1}^{\infty} \int_{t \wedge T_{k-1}}^{t \wedge T_{k}} \frac{d \tilde{\varphi}_{k}(s)}{1-\tilde{\varphi}_{k}(s-)}
$$

где $T_{0}=0$, а $\varphi_{k}(s)$ и $\tilde{\varphi}_{k}(s)$ - условные функции распеределения вида

$$
\varphi_{k}(s)=\boldsymbol{P}\left\{T_{k} \leq s / T_{1}, \ldots, T_{k-1}\right\}, \quad \tilde{\varphi}_{k}(s)=\tilde{\boldsymbol{P}}\left\{T_{k} \leq s / T_{1}, \ldots, T_{k-1}\right\}
$$

В силу независимости случайных величин $\tau_{1}, \tau_{2}, \ldots$ имеем $\varphi_{k}(s)=F_{k}\left(s-T_{k-1}\right)$, $\tilde{\varphi}_{k}(s)=\tilde{F}_{k}\left(s-T_{k-1}\right)$. Отсюда получаем представления для компенсаторов:

$$
\begin{align*}
& v_{t}=\sum_{k=1}^{\xi_{t-}} \pi_{k}\left(\tau_{k}\right)+\pi_{\xi_{t-1}+1}\left(t-T_{\xi_{t-}}\right) \tag{1}\\
& \tilde{\mathrm{v}}_{t}=\sum_{k=1}^{\xi_{t-}} \tilde{\pi}_{k}\left(\tau_{k}\right)+\tilde{\pi}_{\xi_{t-1}+1}\left(t-T_{\xi_{t-}}\right) \tag{2}
\end{align*}
$$

где $\sum_{k=1}^{0}=0$ и

$$
\begin{equation*}
\pi_{k}(t)=\int_{0}^{t} \frac{d F_{k}(s)}{1-F_{k}(s-)}, \quad \tilde{\pi}_{k}(t)=\int_{0}^{t} \frac{d \tilde{F}_{k}(s)}{1-\tilde{F}_{k}(s-)} \tag{3}
\end{equation*}
$$

Введём следующие условия:

I. Существует неотрицательный предсказуемый процесс $\lambda=\left(\lambda_{t}\right)_{t \geq 0}$ такой, что $\tilde{\mathrm{v}}_{t}=\lambda \circ \mathrm{v}_{t}(\tilde{\boldsymbol{P}}$-п.н.) для всех $t<\infty$.
II. Если $\Delta \mathrm{v}_{t}=1$, то $\Delta \tilde{\mathrm{v}}_{t}=1(\tilde{\boldsymbol{P}}$-п.н. $)$.
III. $(1-\sqrt{\lambda})^{2} \circ \mathrm{v}_{t}+\sum_{s \leq t}\left(\sqrt{1-\Delta \mathrm{v}_{s}}-\sqrt{1-\Delta \tilde{\mathrm{v}}_{s}}\right)^{2}<\infty(\tilde{\boldsymbol{P}}$-п.н.) $\forall t<\infty$.

Здесь $f \circ v_{t}=\int_{0}^{t} f_{s} d v_{s}$ - интеграл Лебега-Стильтьеса. Будем предполагать, что для рассматриваемых считающих прочессов $T_{n} \rightarrow \infty$ (\boldsymbol{P}-п.н.) при $n \rightarrow \infty$ и $v_{t}<\infty$ (\boldsymbol{P}-п.н.) для всех $t<\infty$.

Известно [5], что в данном случае (при условиях I - III) $\tilde{\boldsymbol{P}} \stackrel{\text { loc }}{\ll \boldsymbol{P}}$ и

$$
\begin{equation*}
z_{t}=\exp \left\{\ln \lambda \circ \xi_{t}+(1-\lambda) \circ v_{c}^{t}+\sum_{s \leq t}\left(1-\Delta \xi_{s}\right) \ln \frac{1-\Delta \tilde{v}_{s}}{1-\Delta v_{s}}\right\} \tag{4}
\end{equation*}
$$

где \mathbf{v}^{c} - непрерывная часть компенсатора v и $0 / 0=1$.
Пусть распределение $\tilde{F}_{k}(t)$ абсолютно непрерывно относительно распределения $F_{k}(t)$ (будем писать $\left.\tilde{F}_{k} \ll F_{k}\right)$ и $\rho_{k}(t)=d \tilde{F}_{k} / d F_{k}(t)$ - соответствующая плотность. Тогда $\tilde{\pi}_{k} \ll \pi_{k}$,

$$
\begin{equation*}
l_{k}(t)=\frac{d \tilde{\pi}_{k}}{d \pi_{k}}(t)=\frac{1-F_{k}(t-)}{1-\tilde{F}_{k}(t-)} \rho_{k}(t), t \in R_{+}, \tag{5}
\end{equation*}
$$

и, значит, выполняется условие I, причем в силу (1) и (2)

$$
\begin{equation*}
\lambda_{t}=d \tilde{v} / d v(t)=l_{\xi_{t-}+1}\left(t-T_{\xi_{t-}}\right), t \in R_{+} \tag{6}
\end{equation*}
$$

Далее, будем предполагать, что при всех $k=1,2, \ldots$, если $\Delta F_{k}(s)>0$ и $\Delta F_{k}(s)=1-F_{k}(s-)$, то и $\Delta \tilde{F}_{k}(s)=1-\tilde{F}_{k}(s-)>0$, т.е. если $\Delta \pi_{k}(s)=1$, то и $\Delta \tilde{\pi}_{k}(s)=1$. Значит, в силу (1) - (3) выполняется условие II.

В силу равенств (1) и (6) получаем неравенство

$$
\begin{equation*}
(1-\sqrt{\lambda})^{2} \circ v_{t} \leq \sum_{k=1}^{\xi_{t}+1} \int_{0}^{T_{k}}\left(1-\sqrt{l_{k}(s)}\right)^{2} d \pi_{k}(s) \tag{7}
\end{equation*}
$$

Будем считать, что $F_{k}(0)=0 \quad \forall k$ (а тогда $\tilde{F}_{k}(0)=0 \quad \forall k$), откуда следует, что $\xi_{t_{-}}<\infty$ (\boldsymbol{P}-п.н.) и ($\tilde{\boldsymbol{P}}-$ п.н.) $\forall t<\infty$. Также будем считать, что $\tau_{k}<\infty$ ($\boldsymbol{P}-$ п. н.) и ($\tilde{P}-$ п. н.) $\forall k$. Полагая теперь

$$
\int_{0}^{t}\left(1-\sqrt{l_{k}(s)}\right)^{2} d \pi_{k}(s)<\infty \quad \forall k, \forall t<\infty
$$

в силу (7) имеем $(1-\sqrt{\lambda})^{2} \circ v_{t}<\infty(\boldsymbol{P}$-п.н.) и ($\tilde{\boldsymbol{P}}$-п.і.) $\forall t<\infty$. В силу (1)-(3)

$$
\sum_{s \leq t}\left(\sqrt{1-\Delta v_{s}}-\sqrt{1-\Delta \tilde{v}_{s}}\right)^{2} \leq \sum_{k=1}^{\xi_{t}++1} \sum_{s \leq \tau_{k}}\left(\sqrt{1-\Delta \pi_{k}(s)}-\sqrt{1-\Delta \tilde{\pi}_{k}(s)}\right)^{2} .
$$

Отсюда, считая, что

$$
\sum_{s \leq t}\left(\sqrt{1-\Delta \pi_{k}(s)}-\sqrt{1-\Delta \tilde{\pi}_{k}(s)}\right)^{2}<\infty \quad \forall k, \forall t<\infty
$$

выводим, что (Р -п.н.) и ($\tilde{\boldsymbol{P}}$-п.н.)

$$
\sum_{s \leq t}\left(\sqrt{1-\Delta v_{s}}-\sqrt{1-\Delta \tilde{\mathrm{v}}_{s}}\right)^{2}<\infty \quad \forall t<\infty .
$$

Таким образом, убеждаемся в справедливости условия III при сделанных предположениях. Итак, имеем следующую теорему.

Теорема 1. Пусть выполняотся условия:

1) $F_{k}(0)=\tilde{F}_{k}(0)=0, F_{k}(\infty-)=\tilde{F}_{k}(\infty-)=1$ u $\tilde{F}_{k} \ll F_{k} \forall k$;
2) если $\Delta F_{k}(s)>0$ и $\Delta F_{k}(s)=1-F_{k}(s-)$ для некоторых k и s, то и $\Delta \tilde{F}_{k}(s)=1-\tilde{F}_{k}(s-)>0$;
3) для любого $t<\infty$ и всех $k=1,2, \ldots$

$$
\int_{0}^{t}\left(1-\sqrt{l_{k}(s)}\right)^{2} d \pi_{k}(s)+\sum_{s \leq t}\left(\sqrt{1-\Delta \pi_{k}(s)}-\sqrt{1-\Delta \tilde{\pi}_{k}(s)}\right)^{2}<\infty
$$

4) для любого $t<\infty$ и всех $k=1,2, \ldots$

$$
\int_{0}^{t}\left|\ln l_{k}(s)\right| d \pi_{k}(s)+\sum_{s \leq t}\left|\ln \frac{1-\Delta \tilde{\pi}_{k}(s)}{1-\Delta \pi_{k}(s)}\right|<\infty .
$$

Тогда $\tilde{\boldsymbol{P}} \stackrel{\text { loc }}{\ll \boldsymbol{P} \text { и процесс z имеет представление } \text { о }}$

$$
\begin{gather*}
z=\exp \{M-V\}, \tag{8}\\
M=g \cdot(\xi-v) \in \mu_{\mathrm{loc}}(F, P), \tag{9}\\
V=(\lambda-1-\ln \lambda) \circ v^{c}+\sum_{s \leq \bullet} f\left(\Delta{\left.v_{s}, \Delta \tilde{\mathrm{v}}_{s}\right) \in V(F, P),}^{g=\ln \left(\lambda \frac{1-\Delta \tilde{v}}{1-\Delta v}\right), f(x, y)=x \ln \frac{x}{y}+(1-x) \ln \frac{1-x}{1-y}, 0 \leq x, y \leq 1 .} .\right. \tag{10}
\end{gather*}
$$

Доказательство. Доказано, что из условий I - III следует, что $\tilde{\boldsymbol{P}} \lll \boldsymbol{P}$ и справедлива формула (4). Теперь в силу условия 4 из формулы (4) легко выводим представление (8) - (10).

Заметим, что $f \cdot(\xi-v)$ означает стохастический интеграл по локальному мартингалу $\xi-v$.

Всюду ниже предполагаем, что условия $1-4$ теоремы 1 выполняются и считаем, что случайные величины $\tau_{1}, \tau_{2}, \ldots$ одинаково распределены. Также будем считать, что условия теоремы 1 выполняются после замены местами F_{k} и \tilde{F}_{k}, т.е. ниже имеем $\boldsymbol{P} \underset{\sim}{\text { loc }} \tilde{\boldsymbol{P}}$. Далее, будем обозначать

$$
\begin{gathered}
F(t)=F_{k}(t), \tilde{F}(t)=\tilde{F}_{k}(t), \pi(t)=\pi_{k}(t), \\
\tilde{\pi}(t)=\tilde{\pi}_{k}(t), \rho(t)=\rho_{k}(t), l(t)=l_{k}(t) .
\end{gathered}
$$

3. Предельные теоремы. Первая предельная теорема представляет собой закон больших чисел для $\Lambda_{t}=\ln z_{t}$ при $t \rightarrow \infty$. Введем обозначение

$$
\delta_{i}=\int_{0}^{\tau_{i}}(l(s)-1-\ln l(s)) d \pi^{c}(s)+\sum_{s \leq \tau_{i}} f(\Delta \pi(s), \Delta \tilde{\pi}(s))
$$

где π^{c} - непрерывная часть функции π, а $f(x, y)$ - функция, определяемая равенством (11). Заметим, что

$$
E \delta_{i}=\int_{0}^{\infty}(l(s)-1-\ln l(s)) d F^{c}(s)+\sum_{0<s<\infty} f(\Delta \pi(s), \Delta \tilde{\pi}(s))(1-F(s-)),
$$

где F^{c} - непрерывная часть F.
Теорема 2. Пусть выполняются условия:

1) $0<\boldsymbol{E} \tau_{1}=a<\infty$;
2) $b=\boldsymbol{E} \delta_{1}<\infty, \boldsymbol{E}\left|\ln \left[l\left(\tau_{1}\right)\left(1-\Delta \pi\left(\tau_{1}\right)\right) /\left(1-\Delta \tilde{\pi}\left(\tau_{1}\right)\right)\right]\right|<\infty$.

Тогда для любого $s \in(0, \infty)$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \psi_{t}^{-1} \Lambda_{s t}=-s \text { (} \boldsymbol{P} \text {-п.н.), } \psi_{t}=a^{-1} b t . \tag{12}
\end{equation*}
$$

Доказательстөо. Очевидно, верны неравенства

$$
\begin{equation*}
\sum_{k=1}^{\xi_{t-}} \delta_{k} \leq V_{t} \leq \sum_{k=1}^{\xi_{t}++} \delta_{k} \tag{13}
\end{equation*}
$$

Рассмотрим представление

$$
\begin{equation*}
\psi_{t}^{-1} \sum_{k=1}^{\xi_{s s-}} \delta_{k}=\left(\psi_{t}^{-1} \xi_{s t-}\right) \xi_{s t-}^{-1} \sum_{k=1}^{\xi_{s t}} \delta_{k} . \tag{14}
\end{equation*}
$$

В силу условия 1 имеем

$$
\begin{equation*}
\left.\lim _{t \rightarrow \infty} t^{-1} \xi_{t-}=a^{-1} \text { (} \boldsymbol{P} \text {-п.н. }\right), \tag{15}
\end{equation*}
$$

и, значит, $\xi_{t-} \rightarrow \infty$ (\boldsymbol{P}-п.н.) при $t \rightarrow \infty$. В силу условия 2 и усиленного закона больших чисел

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \xi_{t-}^{-1} \sum_{k=1}^{\xi_{t-1}} \delta_{k}=b \quad(\boldsymbol{P}-\text { п.н. }) . \tag{16}
\end{equation*}
$$

Объединяя (13) - (16), получаем

$$
\begin{equation*}
\left.\lim _{t \rightarrow \infty} \psi_{t}^{-1} V_{s t}=s \text { (} \boldsymbol{P} \text {-п.н. }\right) \tag{17}
\end{equation*}
$$

В силу условия 4 теоремы 1 имеем

$$
\begin{equation*}
M_{t}=\left(A_{i,+}-A_{t,-}\right)-\left(\tilde{A}_{t,+}-\tilde{A}_{t,-}\right), \tag{18}
\end{equation*}
$$

где

$$
A_{t, \pm}=g^{ \pm} \circ \xi_{t}, \tilde{A}_{t, \pm}=g^{ \pm} \circ v_{t} .
$$

Учитывая представление

$$
\psi_{t}^{-1} A_{t, \pm}=\left(\psi_{t}^{-1} \xi_{t}\right) \xi_{t}^{-1} \sum_{k=1}^{\xi_{t}} \ln ^{ \pm}\left(l\left(\tau_{k}\right) \frac{1-\Delta \pi\left(\tau_{k}\right)}{1-\Delta \tilde{\pi}\left(\tau_{k}\right)}\right),
$$

аналогично из условий 1 и 2 получаем

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \psi_{t}^{-1} A_{s t, \pm}=s c_{ \pm} / b \quad \text { (} \boldsymbol{P} \text {-п.н.) }, \tag{19}
\end{equation*}
$$

где

$$
c_{ \pm}=\boldsymbol{E} \ln ^{ \pm}\left(l\left(\tau_{1}\right)\left(1-\Delta \pi\left(\tau_{1}\right)\right) /\left(1-\Delta \tilde{\pi}\left(\tau_{1}\right)\right)\right) .
$$

Далее, справедливо представление

$$
\tilde{A}_{t, \pm}=\sum_{k=1}^{\xi_{t-1}} \int_{0}^{\tau_{k}} \ln ^{ \pm}\left(l(s) \frac{1-\Delta \pi(s)}{1-\Delta \tilde{\pi}(s)}\right) d \pi(s)+t-\int_{0}^{1-T_{\xi_{t-}}} \ln ^{ \pm}\left(l(s) \frac{1-\Delta \pi(s)}{1-\Delta \tilde{\pi}(s)}\right) d \pi(s),
$$

где, очевидно,

$$
E \int_{0}^{\tau_{1}} \ln ^{ \pm}\left(l(s) \frac{1-\Delta \pi(s)}{1-\Delta \tilde{\pi}(s)}\right) d \pi(s)=c_{ \pm}
$$

Используя оценки сверху и снизу для $\tilde{A}_{t, \pm}$, аналогичные (13), отсюда получаем

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \psi_{t}^{-1} \tilde{A}_{s t, \pm}=s c_{ \pm} / b \quad(\boldsymbol{P} \text {-п.н.) } \tag{20}
\end{equation*}
$$

Объединяя (18) - (20), имеем

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \psi_{t}^{-1} M_{s t}=0 \quad \text { (} \boldsymbol{P} \text {-п.Н.) } \tag{21}
\end{equation*}
$$

И наконец, из (8), (17) и (21) вытекает (12).
Введем теперь для функции $F(t)$ следующее условие:

$$
\begin{equation*}
1-F(t)=t^{-p} h(t), t \rightarrow \infty, \tag{22}
\end{equation*}
$$

где $0<p<2$, а $h(t)$ - медленно меняющаяся функция, т.е.

$$
\begin{equation*}
\lim _{t \rightarrow \infty} h(c t) / h(t)=1 \forall c>0 \tag{23}
\end{equation*}
$$

Обозначим через $G_{p}(x)$ функцию распределения устойчивого закона с параметром p. Заметим, что в случае $0<p<1$ имеем $G_{p}(x)=0$ при $x \leq 0$, в то время как $G_{p}(x)>0$ для всех $x \in R$ в случае $1 \leq p<2$.

Теорема 3. Пусть выполняется условие 2 теоремы 2 и условия (22), (23) при $0<p<1$. Тогда для любого $s \in(0, \infty)$ выполняется соотношение

$$
\begin{equation*}
\psi_{t}^{-1} \Lambda_{s t} \xrightarrow{d}-\gamma s^{p}, t \rightarrow \infty, \tag{24}
\end{equation*}
$$

относительно меры \boldsymbol{P}, где \xrightarrow{d} означает сходимость распределений, $\psi_{t}=$ $=b t^{p} / h(t)$, а γ - положительная случайная величина с распределением

$$
\begin{equation*}
P\{\gamma>x\}=G_{p}\left(x^{-1 / p}\right), x>0 \tag{25}
\end{equation*}
$$

Доказательство. Известно [6], что при $0<p<1$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \boldsymbol{P}\left\{\xi_{t} \geq x / c_{t}\right\}=G_{p}\left(x^{-1 / p}\right), x>0 \tag{26}
\end{equation*}
$$

где $c_{t}=1-F(t)$. Используем рассуждения доказательства теоремы 2 , внеся соответствующие изменения. Из (26) следует, что $\quad \xi_{t} \rightarrow \infty \quad$ (\boldsymbol{P}-п.н.) при $t \rightarrow \infty$. Как и при доказательстве соотношения (17) из оценок (13), используя (26) и конечность $\boldsymbol{E} \delta_{1}=b$, выводим

$$
\begin{equation*}
\psi_{t}^{-1} V_{s t} \xrightarrow{d} \gamma s^{p}, t \rightarrow \infty, \tag{27}
\end{equation*}
$$

относительно меры \boldsymbol{P}. Применяя теперь рассуждения из доказательства соотношения (21), получаем

$$
\lim _{t \rightarrow \infty} \xi_{t}^{-1} M_{t}=0 \quad(P-\text { п.н. })
$$

откуда в силу равенства

$$
\psi_{t}^{-1} M_{s t}=s^{p} \frac{h(t)}{h(s t)} \frac{\xi_{s t} h(s t)}{b(s t)^{p}} \frac{M_{s t}}{\xi_{s t}}
$$

учитывая (23) и (26), получаем для любого $s \in(0, \infty)$

$$
\begin{equation*}
\boldsymbol{P}-\lim _{t \rightarrow \infty} \psi_{t}^{-1} M_{s t}=0 \tag{28}
\end{equation*}
$$

Наконец, из (8), (27) и (28) вытекает соотношение (24).
Теорема 4. Пусть выполняются условия (22), (23) с $1<p<2$ и конечны вепичины $b=\boldsymbol{E} \delta_{1}, \boldsymbol{E} \delta_{1}^{2} \quad$ и $\quad d=\boldsymbol{E} \ln ^{2}\left[l\left(\tau_{1}\right)\left(1-\Delta \pi\left(\tau_{1}\right)\right) /\left(1-\Delta \tilde{\pi}\left(\tau_{1}\right)\right)\right]\left(1-\Delta \pi\left(\tau_{1}\right)\right)$. Tọza

$$
\begin{equation*}
\psi_{t}^{-1}\left(\Lambda_{t}+\varphi_{t}\right) \xrightarrow{d} b \gamma_{p}, t \rightarrow \infty, \tag{29}
\end{equation*}
$$

где γ_{p}-случайная величина с функцией распределения $G_{p}(x)$ и

$$
\varphi_{t}=a^{-1} t, a=E \tau_{1}, \psi_{t}=a^{-1-1 / p} b_{t}, 1-F\left(b_{t}\right) \sim t^{-1} .
$$

Доказательство. Известно [6], что при $1<p<2$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} P\left\{\xi_{t} \geq a^{-1} t-x b_{t} / a^{1+1 / p}\right\}=G_{p}(x), x \in R . \tag{30}
\end{equation*}
$$

Очевидно, справедливо представление

$$
\begin{equation*}
\psi_{t}^{-1}\left(V_{t}-\varphi_{t}\right)=\psi_{t}^{-1}\left(\xi_{t-}-a^{-1} t\right) \xi_{t-}^{-i} V_{t}+a^{-1} t \xi_{t-}^{-1} \psi_{t}^{-1}\left(V_{t}-\xi_{t-} b\right) \tag{31}
\end{equation*}
$$

Так как $b=\boldsymbol{E} \delta_{1}<\infty$, то $\xi_{t-}^{-1} V_{t} \rightarrow b$ ($\boldsymbol{P}-$ п.н.) при $t \rightarrow \infty$. Учитывая теперь соотношение (30), отсюда получаем, что при $t \rightarrow \infty$.

$$
\begin{equation*}
\psi_{t}^{-1}\left(\xi_{t-}-a^{-1} t\right) \xi_{t-}^{-1} V_{t} \xrightarrow{d}-b \gamma_{p} \tag{32}
\end{equation*}
$$

относительно меры \boldsymbol{P}. Далее, справедлива оценка

$$
\begin{equation*}
\psi_{t}^{-1}\left(V_{t}-\xi_{t-} b\right) \leq \psi_{t}^{-1} \sum_{k=1}^{\xi_{t}+1}\left(\delta_{k}-b\right)+\psi_{t}^{-1} b \tag{33}
\end{equation*}
$$

Так как $E \delta_{1}^{2}<\infty$, то в силу тождества Вальда

$$
\begin{equation*}
\boldsymbol{E}\left(\psi_{t}^{-1} \sum_{k=1}^{\xi_{t}+1}\left(\delta_{k}-b\right)\right)^{2}=\psi_{t}^{-2} \boldsymbol{E}\left(\xi_{t-}+1\right) \boldsymbol{E}\left(\delta_{1}-b\right)^{2} \tag{34}
\end{equation*}
$$

В силу теоремы восстановления $t^{-1} \boldsymbol{E} \xi_{t-} \rightarrow a^{-1}$ при $t \rightarrow \infty$, и, значит, $\Psi_{t}^{-2} \boldsymbol{E} \xi_{t-} \rightarrow 0$ при $t \rightarrow \infty$. Таким образом, из (33) и (34) получаем

$$
\begin{equation*}
\boldsymbol{P}-\lim _{t \rightarrow \infty} \psi_{t}^{-1}\left(V_{t}-b \xi_{t-}\right)=0 \tag{35}
\end{equation*}
$$

Объединяя (31), (32) и (35), имеем

$$
\begin{equation*}
\psi_{t}^{-1}\left(V_{t}-\varphi_{t}\right) \xrightarrow{d}-b \gamma_{p}, t \rightarrow \infty, \tag{36}
\end{equation*}
$$

относительно меры \boldsymbol{P}.
Далее, в силу конечности d имеем $M \in \bar{\mu}^{2}(\boldsymbol{F}, \boldsymbol{P})$ и

$$
\langle M\rangle_{t}=g^{2}(1-\Delta v) \circ v_{t} \leq \sum_{k=1}^{\xi_{1}+1} \int_{0}^{\tau_{k}} \ln ^{2}\left(l(s) \frac{1-\Delta \pi(s)}{1-\Delta \tilde{\pi}(s)}\right)(1-\Delta \pi(s)) d \pi(s)
$$

Отсюда, учитывая соотношение

$$
\lim _{t \rightarrow \infty} \frac{1}{} \frac{\xi_{k}}{\xi_{k=1}} \int_{0}^{\tau_{k}} \ln ^{2}\left(l(s) \frac{1-\Delta \pi(s)}{1-\Delta \tilde{\pi}(s)}\right)(1-\Delta \pi(s)) d \pi(s)=\frac{d}{a}(\boldsymbol{P}-\text { п.н. })
$$

получаем

$$
\begin{equation*}
P-\lim _{t \rightarrow \infty} \psi_{t}^{-1} M_{t}=0 \tag{37}
\end{equation*}
$$

Объединяя (8), (36) и (37), получаем соотношение (29).
4. Асимптотические свойства критерия Неймана - Пирсона. Пусть δ_{t} - критерий Неймана-Пирсона уровня $\alpha_{t} \in(0,1)$ для различения гипотез \boldsymbol{H} и $\tilde{\boldsymbol{H}}$ по наблюдению $\xi^{t}[7]$. Обозначим через β_{t} вероятность ошибки 2 -го рода критерия δ_{t}. Рассмотрим поведение β_{t} при $t \rightarrow \infty$ в зависимости от поведения уровня α_{t} и отношения правдоподобия z_{t}.

Теорема 5. Пусть выполняются условия теоремы 2, а уровень α_{t} удовлетворяет условиям

$$
\lim _{t \rightarrow \infty} \alpha_{t}>0, \varlimsup_{t \rightarrow \infty} \alpha_{t}<1 .
$$

Тогда справедливо соотношение

$$
\lim _{t \rightarrow \infty} \psi_{t}^{-1} \ln \beta_{t}=-1, \psi_{t}=a^{-1} b t .
$$

Доказательство. Достаточно применить теорему 2 при $s=1$ и теорему 2.2 из [7].

Теорема 6. Пусть выполняются условия теоремы 3. Тогда для любого $\alpha \in$ $\in(0,1)$

$$
\lim _{t \rightarrow \infty} \alpha_{t}=\alpha \Leftrightarrow \lim _{t \rightarrow \infty} \psi_{t}^{-1} \ln \beta_{t}=-g_{1-\alpha, p}^{-p}
$$

где $\psi_{t}=b t^{p} / h(t)$, а $g_{1-\alpha, p}-(1-\alpha)-$ квантиль устойчивого закона G_{p}, $G_{p}\left(g_{1-\alpha, p}\right)=1-\alpha$.

Доказательство. Достаточно применить теорему 3 и теорему 4.1 из [7].
Теорема 7. Пусть выполняются условия теоремыь 4. Тогда для любого $\alpha \in$ $\in(0,1)$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \alpha_{t}=\alpha \Leftrightarrow \lim _{t \rightarrow \infty} \psi_{t}^{-1}\left(\ln \beta_{t}+\varphi_{t}\right)=b g_{1-\alpha, p}, \tag{38}
\end{equation*}
$$

где $\varphi_{t}=a^{-1} t, \psi_{t}=a^{-1-1 / p} b_{t}, 1-F\left(b_{t}\right) \sim t^{-1}$.
Доказательство. В силу теоремы 4 имеем сходимость (29), где функция распределения $\boldsymbol{P}\left\{b \gamma_{p}<x\right\}$ непрерывна и $\psi_{t}=o\left(\varphi_{t}\right)$ при $t \rightarrow \infty$. Отсюда, повторяя доказательство теоремы 4.1 из [7] с соответствующими изменениями, получаем соотношение (38).

Замечание. Теорема 5 определяет скорость убывания β_{t} при $t \rightarrow \infty$, когда справедлив закон больших чисел для Λ_{t}. В услових теоремы 7 , очевидно, также выполняется закон больших чисел для Λ_{t} и теорема 7 определяет более тонкое поведение β_{t} при $t \rightarrow \infty$.

1. Линьков Ю. Н., Мупир аль Шахф. Асимптотические своиства отношения правдоподобия для считающих процессов.- Донецк, 1991.- 56 с.- (Препринт / АН УССР. Ин-т прикл. математики и механики; 91.02).
2. Кокс Д., Льюис П. Статистический анализ последовательностей событий.-М.: Мир, 1969.312 c .
3. Кокс Д., Смит В. Теория восстановления.- М.: Сов. радио, 1967.- 300 с.
4. Кабанов Ю. М., Липиер Р. Ш., Ширяев А.Н. Мартингальные методы в теории точечных процессов // Тр. шк.-сем. по теории случайн. процессов (Друскининкай, 25-28 нояб. 1974 г.). - Вильнюс, 1975.- Ч.2.- С. 269-354.
5. Jacod J. Multivariate point processes: predictaable projection, Radoon-Nikodym derivatives, representation of martingales/Z. Wahrscheinlichkeitstheor. und verw. Geb.- 1975.- 31, № 3.- P. 235-253.
6. Feller W. Fluctuation theory of recurrent events// Trans. Amer. Math. Soc.- 1949.- 67_ No 1.- P. 98-119.
7. Линьков Ю. Н. Асимптотическое различение двух простых статистических гипотез.- Киев, 1986.- 60 с.- (Препринт/ АН УССР. Ин-т математики; 86.45).

Получено 01.04.92

