С. Я. Махно, канд. физ.-мат. наук (Ин-т прикл. математики и механики АН Украины, Донецк)

СХОДИМОСТЬ ДИФФУЗИОННЫХ ПРОЦЕССОВ. II

Получены достаточные условия слабой сходимости решений стохастических уравнений в терминах сходимости коэффициентов.

Одержані достатні умови слабкої збіжності розв'язків стохастичних рівнянь у термінах збіжності коефіцієнтів.

Данная статья является продолжением работы [1], поэтому сохраним введенные обозначения, предположения и продолжим нумерацию формул и теорем.

В статье приведены условия слабой сходимости решений уравнения (1) в терминах их коэффициентов при нерегулярной зависимости последних от малого параметра ε. Отметим, что предельные теоремы для различных классов стохастических уравнений предлагаемым методом получены в [2]. Кроме того, приводятся условия слабой сходимости решений уравнения (1), позволяющие отказаться от условия равномерной ограниченности коэффициентов по ε.

Теорема 4. Пусть в уравнении (1) $d=1$, выполнено условие $(* *), b^{\varepsilon}(t, x)=$ $=b_{1}^{\varepsilon}(t, x)+b_{2}^{\varepsilon}(x), x^{\varepsilon} \rightarrow x$. Кроме того, существуют функции $B(t, x), G^{\varepsilon}(x)$, удовлетворяющие условию (**) такие, что

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0}\left\|b_{1}^{\varepsilon}(t, x)-B(t, x)\right\|_{2, \text { loc }}=0, \lim _{\varepsilon \rightarrow 0}\left\|a^{\varepsilon}(t, x)-G^{\varepsilon}(x)\right\|_{2, \mathrm{loc}}=0, \\
\frac{b_{2}^{\varepsilon}(x)}{G^{\varepsilon}(x)} \stackrel{\varepsilon \rightarrow 0}{ } F(x), \frac{1}{G^{\varepsilon}(x)} \stackrel{\varepsilon \rightarrow 0}{ } G(x) .
\end{gathered}
$$

Toгдa $\xi^{\varepsilon} \Rightarrow \xi$, где $b(t, x)=B(t, x)+\frac{F(x)}{G(x)}, \sigma(t, x)=G^{-1 / 2}(x)$.
Доказательспво. Проверим условия (V), (N). Положим

$$
V^{\varepsilon}(x)=2 \int_{0}^{x} \int_{0}^{y}\left(\frac{F(z)}{G^{\varepsilon}(z) G(z)}-\frac{b_{2}^{\varepsilon}(z)}{G^{\varepsilon}(z)}\right) d z d y .
$$

Тогда

$$
\hat{b}^{\varepsilon}=b_{1}^{\varepsilon}-B+\left(a^{\varepsilon}-G^{\varepsilon}\right) \frac{1}{G^{\varepsilon}}\left(\frac{F}{G}-b_{2}^{\varepsilon}\right)+B+\frac{F}{G} \underset{\xi}{ } B+\frac{F}{G} .
$$

Очевидна справедливость и двух других требований условия (V). Аналогично проверяется, что функция

$$
N^{\varepsilon}(x)=\int_{0}^{x} \int_{0}^{y}\left(\frac{1}{G^{\varepsilon}(z) G(z)}-1\right) d z d y
$$

удовлетворяет условию (N) с предельной функцией $G^{-1}(x)$.
Утверждение теоремы 4, примеры в [3] показывают, что только слабой в $L_{2 \text {, loc }}$ сходимости коэффициентов уравнения (1) недостаточно для слабой сходимости решений. Приведем дополнительные предположенияя, обеспечивающие слабую сходимость решений уравнения (1) при слабой сходимости их коэффициентов. Вначале исследуем сходимость решений граничных задач. Пусть $D \in O^{2}$ и содержатся в d-мерном кубе $Q=\left\{x ;-l<x_{i}<l, i=\overline{1, d}\right\}$. Для $\varphi \in C_{0}^{\infty}([0, T] \times D)$ положим

$$
\begin{gathered}
\Phi_{i j}(t, x)=\int_{-l}^{x_{i}} \int_{-l}^{x_{j}} \varphi\left(t, x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots x_{j-1}, z, x_{j+1}, \ldots x_{n}\right) d z d y \\
\langle\langle\varphi\rangle\rangle_{i j}^{(\alpha)}=\|\varphi\|_{2}+\left|\Phi_{i j}\right|_{0, \alpha} \\
|g|_{0, \alpha}=\sup _{\substack{(t, x),(s, y) \\
t \neq s, x \neq y}} \frac{|g(t, x)-g(s, y)|}{\left(|t-s|^{1 / 2}+|x-y|\right)^{\alpha}}
\end{gathered}
$$

Через $\rho(z)$ обозначим функцию типа модуля непрерывности, $z(i)$ - вектор, у которого на i-м месте стоит z_{i}, а остальные координаты - нули.

Рассмотрим граничную задачу:

$$
\begin{gather*}
L^{\varepsilon} u^{\varepsilon}=f^{\varepsilon}, t \in[0, T), x \in D, \\
\left.u^{\varepsilon}\right|_{\Gamma_{T}}=0 . \tag{9}
\end{gather*}
$$

Если выполнено условие $(*)((* *)), f^{\ell} \in L_{d+1}([0, \mathrm{~T}] \times D)$, то (9) имеет единственное решение класса $W_{d+1}^{1,2}([0, \mathrm{~T}] \times D)$. Если же $\|f\|_{d+1} \leq C$, то [4] существуют постоянные K, α, независящие от ε (α зависит только от d, C, λ) такие, что для решения (9)

$$
\begin{equation*}
\left|u^{\varepsilon}\right|_{0, \alpha} \leq K . \tag{10}
\end{equation*}
$$

Аналогично [5] доказывается следующее утверждение.
Теорема 5. Пусть для функций ($b^{\varepsilon}, a^{\varepsilon}$) выполнены условия (*) ((**)), (H), $\left\|f^{\mathfrak{E}}\right\|_{d+1} \leq C$ идля лобыхх $\varphi \in C_{0}^{\infty}([0, T] \times D),|z(j)| \leq 1$,

$$
\begin{equation*}
\left|\int_{0}^{T} \int\left[a_{i j}^{\varepsilon}(t, x+z(j))-a_{i j}^{\varepsilon}(t, x)\right] \varphi(t, x) d x d t\right| \leq \rho(|z(j)|)\langle\langle\varphi\rangle\rangle_{i j}^{(\alpha)}, \tag{11}
\end{equation*}
$$

где α взято из условия (10). Пусть, кроме того, $a_{i j}^{\varepsilon} \not \wp^{\circ} a_{i j}, b_{i}^{\varepsilon} \longrightarrow b_{i}, i, j=\overline{1, d}$, $f^{\varepsilon}{ }_{\xi \rightarrow 0} f$ и функции(b, a) удовлетворяют условию (*), ((**)). Тогда равномерно на $[0, \mathrm{~T}] \times D u^{\varepsilon}(t, x)$ сходится к решению граничной задачи

$$
L u=f, t \in[0, T), x \in D ;\left.u\right|_{\Gamma_{T}}=0 .
$$

Эта теорема позволяет решить вопрос о слабой сходимости решений стохастических уравнений при слабой сходимости коэффициентов.

Теорема 6. Пусть $x^{\varepsilon} \rightarrow x$, для функций ($b^{\varepsilon}, a^{\varepsilon}$) выполнены условия (*) $((* *))$, (H) и (11) для α из (10). Если $a_{i j}^{\varepsilon} \underset{\xi \rightarrow 0}{ } a_{i j}, b_{i}^{\varepsilon} \underset{\xi \rightarrow 0}{ } b_{i}, i, j=\overline{1, d}$, и функции (b, a) удовлетворяют условию (*), ((**)), то $\xi^{\varepsilon} \Rightarrow \xi$.

Доказательство. Проверим справедливость условий (V), (N) с предельными функциями (b, a). Определим $V_{k}^{\varepsilon}(t, x)$ как решение задачи Коши,

$$
\begin{gathered}
L^{\varepsilon} V_{k}^{\varepsilon}=b_{k}-b_{k}^{\varepsilon}, t \in[0, T), x \in E_{d}, \\
V_{k}^{\varepsilon}(T, x)=0, k=\overline{1, d} .
\end{gathered}
$$

Из доказательства теоремы 3 ясно, что необходимо лишь установить равномерную на компактах сходимость $V_{k}^{\varepsilon}(t, x)$ к нулю. Последнее есть следствие теоремы 6. Условие (V) установлено. Аналогично проверяется и условие (N).

Утверждение теоремы следует из теоремы 2: Теорема доказана.
Иногда вместо условий $(V),(N)$ удобнее проверить условия $\left(V^{\delta}\right),\left(N^{\delta}\right)$ [2].
Условие $\left(V^{\delta}\right)$. Существует последовательность функций $V_{k}^{\varepsilon \delta}(t, x) \in$ $\in W_{d+1, \text { loс }}^{1,2}, k=\overline{1, d}$, такая, что для каждого $\delta>0$

1) $b_{k}^{\varepsilon \delta}:=b_{k}^{\varepsilon}+\frac{1}{2}\left(a^{\varepsilon} \nabla, \nabla\right) V_{k}^{\varepsilon \delta} \xrightarrow[\varepsilon \rightarrow 0]{\longrightarrow} b_{k}^{\delta}$;
2) $\lim _{\varepsilon \rightarrow 0} \sup _{x \in D}\left|V_{k}^{\varepsilon \delta}(t, x)\right|=0$ для любой ограниченной области $D \subset E_{d} \quad n p и$ каждом $t \in[0, \mathrm{~T}]$;
3) $\lim _{\varepsilon \rightarrow 0}\left\|V_{k}^{\varepsilon \delta}\right\|_{d+1, \mathrm{loc}}=\lim _{\varepsilon \rightarrow 0}\left\|\frac{\partial V_{k}^{\varepsilon \delta}}{\partial x_{i}}\right\|_{d+1, \mathrm{loc}}=0, i=\overline{1, d} ;$

кроме того,
4) $\lim _{\delta \rightarrow 0} \varlimsup_{\varepsilon \rightarrow 0}\left\|\frac{\partial V_{k}^{\varepsilon \delta}}{\partial t}+b_{k}^{\varepsilon \delta}-b_{k}^{\varepsilon}\right\|_{d+1, \mathrm{loc}}=0 ;$
5) $\lim _{\delta \rightarrow 0}\left\|b_{k}^{\delta}-b_{k}\right\|_{d+1, \mathrm{loc}}=0$.

Условие (N^{δ}). Существует последовательность функций $N_{k l}^{\varepsilon \delta}(t, x)=$ $=N_{l k}^{\varepsilon \delta}(t, x) \in W_{d+1, l \text { ос }}^{1,2}, k, l=\overline{1, d}$, такая, что

1) $a_{k l}^{\varepsilon \delta}:=a_{k l}^{\varepsilon}+\left(a^{\varepsilon} \nabla, \nabla\right) N_{k l}^{\varepsilon \delta} \underset{\xi \rightarrow 0}{\longrightarrow} a_{k l}^{\delta}$;
2) $\lim _{\varepsilon \rightarrow 0} \sup _{x \in D}\left|N_{k l}^{\varepsilon \delta}(t, x)\right|=0$ для любой ограниченной области $D \subset E_{d} n p и$ каждом $t \in[0, \mathrm{~T}]$;
3) $\lim _{\varepsilon \rightarrow 0}\left\|N_{k l}^{\varepsilon \delta}\right\|_{d+1, \mathrm{loc}}=\lim _{\varepsilon \rightarrow 0}\left\|\frac{\partial N^{\varepsilon \delta}}{\partial x_{i}}\right\|_{d+1, \mathrm{loc}}=0, i=\overline{1, d}$;
4) $\lim _{\delta \rightarrow 0} \varlimsup_{\varepsilon \rightarrow 0}\left\|\frac{\partial N_{k l}^{\varepsilon \delta}}{\partial t}+\frac{1}{2}\left(a_{k l}^{\varepsilon \delta}-a_{k l}^{\delta}\right)\right\|_{d+1, \text { loc }}=0$;
5) $\lim _{\delta \rightarrow 0}\left\|a_{k l}^{\delta}-a_{k l}\right\|_{d+1, \mathrm{loc}}=0$.

B [2] установлено, что теорема 2 [1] будет справедлива, если в ее формулировке условия $(V),(N)$ заменить на условия $\left(V^{\delta}\right)$, (N^{δ}).

Рассмотрим вопрос о слабой сходимости решений стохастических уравнений со случайными коэффициентами к решению уравнения (4). К таким моделям приводят многие задачи при исследовании слабой сходимости решений стохастических уравнений с неограниченными коэффициентами [6, 7].

Пусть ($\Omega, \mathcal{T}, \mathcal{F}_{t}, P$) - основное вероятностное пространство с потоком σ алгебр $\mathcal{F}_{t}, t \in[0, T],\left(w^{\varepsilon}(t), \mathcal{F}_{t}\right)$ при каждом $\varepsilon>0$ - стандартный k-мерный винеровский процесс, функции $f_{i}^{\varepsilon}(t, x, \omega), g_{i j}^{\varepsilon}(t, x, \omega), i=\overline{1, d}, j=\overline{1, k}, \mathcal{F}_{t}$-согласованы, случайный процесс $\zeta^{\varepsilon}(t)$ является решением уравнения

$$
\begin{equation*}
\zeta^{\varepsilon}(t)=x^{\varepsilon}+\int_{0}^{t} f^{\varepsilon}\left(s, \zeta^{\varepsilon}(s)\right) d s+\int_{0}^{t} g^{\varepsilon}\left(s, \zeta^{\varepsilon}(s)\right) d w^{\varepsilon}(s) \tag{12}
\end{equation*}
$$

Относительно функций $f_{i}^{\varepsilon}(t, x, \omega), G_{i j}^{\varepsilon}=\left[g^{\varepsilon}\left(g^{\varepsilon}\right)^{\prime}\right](t, x, \omega)$ предположим также, что существуют постоянные $C, \lambda>0$ такие, что

$$
\begin{gather*}
\left|f_{i}^{\varepsilon}(t, x, \omega)\right|+\left|G_{i j}^{\varepsilon}(t, x, \omega)\right| \leq C\left(1+|x|^{2}\right), \\
\left(G^{\varepsilon} \theta, \theta\right) \geq \lambda|\theta|^{2} \forall \theta \in E_{d} . \tag{13}
\end{gather*}
$$

Известно, что при условии (13) семейство мер, порожденных на $\mathbb{C}[0, T]$ решениями (12), слабо компактно. Введем условия, позволяющие находить коэффициенты уравнения для предельного процесса. С функциями $f_{i}^{\ell}, G_{i j}^{\ell}$, $i, j=\overline{1, d}$, свяжем оператор

$$
\mathfrak{L}^{\varepsilon}=\frac{\partial}{\partial t}+\left(f^{\varepsilon}, \nabla\right)+\frac{1}{2}\left(G^{\varepsilon} \nabla, \nabla\right) .
$$

Введём условие (P):

1) существуют d-мерный вектор $r^{\varepsilon}(t, x)$ и $d \times d$-мерная матрица $H^{\varepsilon}(t, x)$, удовлетворяющие условию (*) ((**)), такие, что $\forall \Phi \in C_{0}^{\infty}\left(E_{d}\right), 0 \leq s \leq t \leq T$,

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0} \boldsymbol{E}\left\{\int_{s}^{t}\left[\mathscr{L}^{\varepsilon} \Phi-\bar{L}^{\varepsilon} \Phi\right]\left(v, \zeta^{\varepsilon}(v)\right) d v / \mathfrak{F}_{s}^{\varepsilon}\right\}=0, \mathfrak{F}_{s}^{\varepsilon}=\sigma\left\{\zeta^{\varepsilon}(v), v \leq s\right\}, \\
\bar{L}^{\varepsilon}=\frac{\partial}{\partial t}+\left(r^{\varepsilon}, \nabla\right)+\frac{1}{2}\left(H^{\varepsilon} \nabla, \nabla\right) ;
\end{gathered}
$$

2) для функций $\left(r^{\varepsilon}, H^{\varepsilon}\right)$ выполнены условия $\left(V^{\delta}\right),\left(N^{\delta}\right)$ и предельные функции (r, H) также удовлетворяют условию (*) ((**));
3) $\forall \Phi \in C_{0}^{\infty}\left(E_{d}\right), k, l=\overline{1, d}$,

$$
\begin{aligned}
& \lim _{\delta \rightarrow 0} \varlimsup_{\varepsilon \rightarrow 0} \boldsymbol{E}\left\{\int_{s}^{t} \Phi\left(\zeta^{\varepsilon}(v)\right) \bar{L}^{\varepsilon} V_{k}^{\varepsilon \delta}\left(v, \zeta^{\varepsilon}(v)\right) d v / \mathcal{F}_{s}^{\varepsilon}\right\}=0, \\
& \lim _{\delta \rightarrow 0} \overline{\lim }_{\varepsilon \rightarrow 0} \boldsymbol{E}\left\{\int_{s}^{t} \Phi\left(\zeta^{\varepsilon}(v)\right){\left.\overline{L^{\varepsilon}} N_{k, l}^{\varepsilon \delta}\left(v, \zeta^{\varepsilon}(v)\right) d v / \mathfrak{F}_{s}^{\varepsilon}\right\}=0}^{2} .\right.
\end{aligned}
$$

Доказательство следующей теоремы полностью приведено в [6, 7].
Теорема 7. Пусть $x^{\varepsilon} \rightarrow x$, выполнены условия (13) и (P). Тогда $\zeta^{\varepsilon} \Rightarrow \xi$, где $b=r, \sigma=H^{1 / 2}$.

В [6, 7] на основании теоремы 7 изучено поведение "медленного" процесса в схеме усреднения для процессов с неограниченными по ε, периодическими, быстроосциллирующими коэффициентами, рассматриваются дифференциальные уравнения второго порядка и др. Здесь рассматриваются стохастические уравнения с коэффициентами, допускающими неограниченный рост по ε в отдельных областях. Следующая теорема обобщает результаты из [8].

Пусть $\xi^{\varepsilon}(t)$ - решение уравнения (1). Откажемся от требования равномерной ограниченности коэффициентов по ε. Через $\psi^{\varepsilon}(r), r \geq 0$, обозначим неотрицательную функцию такую, что $\int_{0}^{r} \psi^{\varepsilon}(z) d z \leq L\left(1+r^{\beta}\right), L \geq 0, \beta<1, \psi^{\varepsilon}(r), r \geq 0$ - неотрицательная непрерывная функция такая, что

$$
\int_{0}^{r} \varphi^{\varepsilon}(z) d z \xrightarrow[\varepsilon \rightarrow 0]{ } 0
$$

Положим для $r \geq 0$

$$
I^{\varepsilon}(r)=L_{1} \frac{\alpha^{\varepsilon}}{1+\left(\alpha^{\varepsilon} r\right)^{v}}+L_{2} \varphi^{\varepsilon}(r), v>1, \alpha^{\varepsilon} \xrightarrow[\varepsilon \rightarrow 0]{ } \infty, L_{1}, L_{2} \geq 0
$$

Будем считать выполненными следующие условия:

$$
\begin{gather*}
0<\lambda \leq \frac{\left(a^{\varepsilon}(t, x) x, x\right)}{|x|^{2}} \leq C, \tag{14}\\
\left(x, b^{\varepsilon}(t, x)\right)+\frac{1}{2} \operatorname{Sp} a^{\varepsilon}(t, x) \leq C+\psi^{\varepsilon}(|x|), \tag{15}\\
\varliminf_{\varepsilon \rightarrow 0} \inf _{t, x}\left[2\left(x, b^{\varepsilon}(t, x)\right)+\operatorname{Sp} a^{\varepsilon}(t, x)-\frac{\left(a^{\varepsilon}(t, x) x, x\right)}{|x|^{2}}\right]=\gamma>0 . \tag{16}
\end{gather*}
$$

Теорема 6. Пусть для уравнения (1) выполнены условия (14) - (16) и $x^{\varepsilon} \rightarrow$ $\rightarrow x$. Кроме того, существуют равномерно непрерывные по x равномерно по (t, ε) функции $\left(r^{\varepsilon}(t, x), H^{\varepsilon}=h^{\varepsilon}\left(h^{\varepsilon}\right)^{\prime},(t, x)\right)$, удовлетворяющие условио (*) ((**)) такие, что

$$
\begin{equation*}
\left|b^{\varepsilon}(t, x)-r^{\varepsilon}(t, x)\right|^{2}+\operatorname{Sp}\left(\sigma^{\varepsilon}(t, x)-h^{\varepsilon}(t, x)\right)\left(\sigma^{\varepsilon}(t, x)-h^{\varepsilon}(t, x)\right)^{\prime} \leq I^{\varepsilon}(|x|) \tag{17}
\end{equation*}
$$

и при каждом $t \in[0, \mathrm{~T}], x \in E_{d}$,

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{0}^{t} r_{i}^{\varepsilon}(s, x) d s & =\int_{0}^{t} r_{i}(s, x) d s, i=\overline{1, d} \\
\lim _{\varepsilon \rightarrow 0}^{t} \int_{0}^{t} H_{i j}^{\varepsilon}(s, x) d s & =\int_{0}^{t} H_{i j}(s, x) d s, i, j=\overline{1, d}
\end{aligned}
$$

Функции (r, H) равномерно непрерывны по x и по t и удовлетворяот условию (*) ((**)). Тогда $\xi^{\varepsilon} \Rightarrow \xi$ - решению уравнения (4) с коэффициентами $b=r, \sigma=H^{1 / 2}$.

Доказательство. В [8] установлено, что при сделанных предположениях

$$
\begin{equation*}
\boldsymbol{P} \lim _{\varepsilon \rightarrow 0} \int_{0}^{t} I^{\varepsilon}\left(\left|\xi^{\varepsilon}(s)\right|\right) d s=0 \tag{18}
\end{equation*}
$$

Обозначим

$$
\begin{gathered}
\eta^{\varepsilon}(t)=\int_{0}^{t}\left[b^{\varepsilon}\left(s, \xi^{\varepsilon}(s)\right)-r^{\varepsilon}\left(s, \xi^{\varepsilon}(s)\right)\right] d s+\int_{0}^{t}\left[\sigma^{\varepsilon}\left(s, \xi^{\varepsilon}(s)\right)-\right. \\
\left.-h^{\varepsilon}\left(s, \xi^{\varepsilon}(s)\right)\right] d w^{\varepsilon}(s) \\
f^{\varepsilon}(s, x, \omega)=r^{\varepsilon}\left(s, x+\eta^{\varepsilon}(s)\right), g^{\varepsilon}(s, x, \omega)=h^{\varepsilon}\left(s, x+\eta^{\varepsilon}(s)\right), \\
\zeta^{\varepsilon}(t)=\xi^{\varepsilon}(t)-\eta^{\varepsilon}(t) .
\end{gathered}
$$

Тогда процесс $\zeta^{\varepsilon}(t)$ удовлетворяет уравнению (12). Так как выполнено условие
(13), то семейство мер, порожденных процессами $\zeta^{\varepsilon}(t)$, слабо компактно.

Из свойств стохастических интегралов, (17), (18) легко следует

$$
\begin{equation*}
\sup _{t \in[0, T]}\left|\eta^{\varepsilon}(t)\right| \xrightarrow[\varepsilon \rightarrow 0]{P} 0 \tag{19}
\end{equation*}
$$

Отсюда вытекает, что семейство мер, порождаемых процессами $\xi^{\varepsilon}(t)$, слабо компактно и предельные распределения для $\zeta^{\varepsilon}(t)$ и $\xi^{\varepsilon}(t)$ совпадают. Проверим условие (P). Докажем вначале, что для произвольной ограниченной равномерно непрерывной по x равномерно по (t, ε) функции $F^{\varepsilon}(t, x)$ и ограниченной финитной функции $\psi(t, x)$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \boldsymbol{E} \int_{s}^{t}\left|F^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)+\eta^{\varepsilon}(v)\right)-F^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)\right)\right| \psi\left(v, \zeta^{\varepsilon}(v)\right) d v=0 \tag{20}
\end{equation*}
$$

Будем считать, что носитель функции $\psi(t, x)$ содержится во множестве $[0, \mathrm{~T}] \times S_{N}, S_{N}=\{x:|x| \leq N\}$. В силу (19) достаточно установить равенство

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \boldsymbol{E} \int_{s}^{t}\left|F^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)+\eta^{\varepsilon}(v)\right)-F^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)\right)\right| \psi\left(v, \zeta^{\varepsilon}(v)\right) \chi\left(\left|\eta^{\varepsilon}(v)\right| \leq N\right) d v=0 \tag{21}
\end{equation*}
$$

Для произвольного $\delta>0$ существует $\kappa>0$ такое, что при $|x-y|<.\kappa$, $\left|F^{\varepsilon}(t, x)-F^{\varepsilon}(t, y)\right| \leq \delta$. Для к построим в множестве $S_{2 N} \kappa$-сеть $x_{1}, x_{2}, \ldots, x_{n(\kappa)}$ и систему непрерывных функций $m_{j}(x), j=\overline{1, n(\kappa)}$, такую, что, $m_{j}(x) \geq 0, m_{j}(x)=0$ при $\left|x-x_{j}\right| \geq \kappa, \sum_{j=1}^{n(\kappa)} m_{j}(x)=1$ при $x \in S_{2 N}$ [9]. Положим

$$
F_{n}^{\varepsilon}(t, x)=\sum_{j=1}^{n(\kappa)} F_{n}^{\varepsilon}\left(t, x_{j}\right) m_{j}(x)
$$

Тогда для $x \in S_{2 N}$

$$
\begin{gather*}
\left|F_{n}^{\varepsilon}(t, x)-F^{\varepsilon}(t, x)\right| \leq \delta, \tag{22}\\
\left|F_{n}^{\varepsilon}(t, x+y)-F_{n}^{\varepsilon}(t, x)\right| \leq C \sum_{j=1}^{n(\kappa)}\left|m_{j}(x+y)-m_{j}(x)\right| \tag{23}
\end{gather*}
$$

Учитывая (22), (23), получаем

$$
\begin{gathered}
\boldsymbol{E} \int_{s}^{t}\left|F^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)+\eta^{\varepsilon}(v)\right)-F^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)\right)\right| \psi\left(v, \zeta^{\varepsilon}(v)\right) \chi\left(\left|\eta^{\varepsilon}(v)\right| \leq N\right) d v \leq \\
\leq C \delta+C \sum_{j=1}^{n(\kappa)} \boldsymbol{E}^{t} \int_{s}^{t} m_{j}\left(\zeta^{\varepsilon}(v)+\eta^{\varepsilon}(v)\right)-m_{j}\left(\zeta^{\varepsilon}(v)\right) \mid d v .
\end{gathered}
$$

Второе слагаемое правой части этого равенства стремится к нулю при $\varepsilon \rightarrow 0$, а первое слагаемое может быть сделано сколь угодно малым выбором δ. Отсюда следует (21), а следовательно, и (20).

Из (20) вытекает, что выполнено первое требование условия (P) с функциями $\left(r^{\varepsilon}, H^{\varepsilon}\right)$. Для этих функций справедливы условия $\left(V^{\delta}\right)$, $\left(N^{\delta}\right)$ [2]. T.e. второе требование условия (P) выполнено. Пусть $\Phi(x) \in C_{0}^{\infty}\left(E_{d}\right), \varphi_{s}(x)-\mathcal{M}_{s}$

измеримый непрерывный ограниченный функционал. Применим к функции $V_{k}^{\varepsilon \delta}(t, x) \Phi(x)$ и процессу $\zeta^{\varepsilon}(t)$ формулу Ито:

$$
\begin{aligned}
& \boldsymbol{E} \varphi_{s}\left(\zeta^{\varepsilon}\right) \int_{s}^{t} \Phi\left(\zeta^{\varepsilon}(v)\right) L^{\varepsilon} V_{k}^{\varepsilon \delta}\left(v, \zeta^{\varepsilon}(v)\right) d v=\boldsymbol{E} \varphi_{s}\left(\zeta^{\varepsilon}\right)\left[\left(V_{k}^{\varepsilon \delta} \Phi\right)\left(t, \zeta^{\varepsilon}(t)\right)-\right. \\
& \left.-\left(V_{k}^{\varepsilon \delta} \Phi\right)\left(s, \zeta^{\varepsilon}(s)\right)\right] \varphi_{s}\left(\zeta^{\varepsilon}\right)+\boldsymbol{E} \varphi_{s}\left(\zeta^{\varepsilon}\right) \int_{s}^{t}\left[\left(r^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)\right)-\right.\right. \\
& \left.-r^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)+\eta^{\varepsilon}(v)\right), \nabla V_{k}^{\varepsilon \delta}\left(v, \zeta^{\varepsilon}(v)\right)\right)+\frac{1}{2}\left(\left(H^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)\right)-\right.\right. \\
& \left.\left.-H^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)+\eta^{\varepsilon}(v)\right) \nabla, \nabla\right) V_{k}^{\varepsilon \delta}\left(v, \zeta^{\varepsilon}(v)\right)\right] \Phi\left(\zeta^{\varepsilon}(v)\right) d v- \\
& -\boldsymbol{E} \varphi_{s}\left(\zeta^{\varepsilon}\right) \int_{s}^{t} V_{k}^{\varepsilon \delta}\left(v, \zeta^{\varepsilon}(v)\right)\left[\left(r^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)+\eta^{\varepsilon}(v)\right), \nabla \Phi\left(\zeta^{\varepsilon}(v)\right)\right)+\right. \\
& \quad+\frac{1}{2}\left(H^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)+\eta^{\varepsilon}(v)\right) \nabla, \nabla\right) \Phi\left(\zeta^{\varepsilon}(v)\right)+\left(H^{\varepsilon}\left(v, \zeta^{\varepsilon}(v)+\eta^{\varepsilon}(v)\right) .\right. \\
& \left.\left.\quad \cdot \nabla \Phi\left(\zeta^{\varepsilon}(v)\right), \nabla V_{k}^{\varepsilon \delta}\left(v, \zeta^{\varepsilon}(v)\right)\right)\right] d v .
\end{aligned}
$$

Отсюда с учетом свойств функций $V_{k}^{\varepsilon \delta}$ [2] и (20) следует первое равенство в третьем требовании условия (P). Аналогично устанавливается и второе равенство третьего требования условия (P). Утверждение теоремы следует из теоремы 7. Теорема доказана.

1. Махно С. Я. Сходимость диффузионных процессов/Укр.мат. журн.- 1992.- 44, № 2.- С. 284 -289.
2. Махно С. Я. Достаточные условия для сходимости решений стохастических уравнений // Теория случайн. процессов.- 1988.- Вып. 16.- С. 66-72.
3. Махно С. Я. О сходимости решений стохастических уравнений//Статистика и управление случайными процессами. - М.: Наука, 1989.- С. 138-142.
4. Крылов Н. В. Нелинейные эллиптические и параболические уравнения второго порядка.М.: Наука, 1985.- 374 с.
5. Камынин В. Л. Предельный переход в.квазилинейных параболических уравнениях со слабо сходящимися коэффициентами и асимптотическое поведение решений задачи Коши // Мат. сб.- 1990.- 181, вып. 2.- С. 1031-1047.
6.Махно С. Я. Сходимость решений стохастических уравнений с возмущенными коэффициентами // Теория случайн. процессов и ее прил. - Киев: Наук. думка, 1990.- С.99-106.
6. Makhno S. On convergence of solutions of stochastic Equations/New Trends in Probab. and Statist.- Vilnius: Mokslas, Tokyo: VSP.- 1991.-1.- P. 474-484.
7. Кулинич Г. Л., Харкова М. В. Об асимптотическом поведении решений систем стохастических диффузионных уравнений при нерегулярной зависимости коэффициентов от параметра // Докл. АН УССР. Сер. А.- 1990.- Вып. 6.- С. 19-22.
8. Гихман И. И., Скороход А. В. Теория случайных процессов: В 3-х т. - М.: Наука, 1975.- Т. 3.496 c.

Получено 01.04.92

