СХОДИМОСТЬ ДИФФУЗИОННЫХ ПРОЦЕССОВ. II

Получены достаточные условия слабой сходимости решений стохастических уравнений в терминах сходимости коэффициентов.

Одержані достатні умови слабкої збіжності розв'язків стохастичних рівнянь у термінах збіжності коефіцієнтів.

Ланная статья является продолжением работы [1], поэтому сохраним введен-

ные обозначения, предположения и продолжим нумерацию формул и теорем. В статье приведены условия слабой сходимости решений уравнения (1) в

терминах их коэффициентов при нерегулярной зависимости последних от ма-

лого параметра є. Отметим, что предельные теоремы для различных классов стохастических уравнений предлагаемым методом получены в [2]. Кроме того, приводятся условия слабой сходимости решений уравнения (1), позволяющие

отказаться от условия равномерной ограниченности коэффициентов по є.

Теорема 4. Пусть в уравнении (1) d = 1, выполнено условие (**), $b^{\varepsilon}(t, x) =$ = $b_1^{\varepsilon}(t,x) + b_2^{\varepsilon}(x)$, $x^{\varepsilon} \to x$. Кроме того, существуют функции B(t,x), $G^{\varepsilon}(x)$,

удовлетворяющие условию (**) такие, что
$$\lim_{\varepsilon \to 0} \left\| b_1^{\varepsilon}(t,x) - B(t,x) \right\|_{2,\mathrm{loc}} = 0, \lim_{\varepsilon \to 0} \left\| a^{\varepsilon}(t,x) - G^{\varepsilon}(x) \right\|_{2,\mathrm{loc}} = 0,$$

$$\frac{b_2^{\varepsilon}(x)}{G^{\varepsilon}(x)} \xrightarrow{\varepsilon \to 0} F(x), \quad \frac{1}{G^{\varepsilon}(x)} \xrightarrow{\varepsilon \to 0} G(x).$$

Тогда
$$\xi^{\varepsilon} \Rightarrow \xi$$
 , где $b(t, x) = B(t, x) + \frac{F(x)}{G(x)}$, $\sigma(t, x) = G^{-1/2}(x)$. Доказательство. Проверим условия (V) , (N) . Положим

$$V^{\varepsilon}(x) = 2 \int_{0}^{x} \int_{0}^{y} \left(\frac{F(z)}{G^{\varepsilon}(z)G(z)} - \frac{b_{2}^{\varepsilon}(z)}{G^{\varepsilon}(z)} \right) dz dy.$$

Тогла

$$\hat{b}^{\varepsilon} = b_1^{\varepsilon} - B + \left(a^{\varepsilon} - G^{\varepsilon}\right) \frac{1}{G^{\varepsilon}} \left(\frac{F}{G} - b_2^{\varepsilon}\right) + B + \frac{F}{G} \xrightarrow{\varepsilon \to 0} \quad B + \frac{F}{G}.$$

Очевидна справедливость и двух других требований условия (V). Аналогично проверяется, что функция

$$N^{\varepsilon}(x) = \int_{0}^{x} \int_{0}^{y} \left(\frac{1}{G^{\varepsilon}(z)G(z)} - 1\right) dz dy$$

удовлетворяет условию (N) с предельной функцией $G^{-1}(x)$.

Утверждение теоремы 4, примеры в [3] показывают, что только слабой в $L_{2, \, {
m loc}}$ сходимости коэффициентов уравнения (1) недостаточно для слабой сходимости решений. Приведем дополнительные предположения, обеспечиваю-

щие слабую сходимость решений уравнения (1) при слабой сходимости их коэффициентов. Вначале исследуем сходимость решений граничных задач. Пусть $D \in O^2$ и содержатся в d-мерном кубе $Q = \{x; -l < x_i < l, i = \overline{1,d} \}$. Для

 $\phi \in C_0^\infty([0,T] \times D)$ положим

$$\begin{split} \Phi_{ij}(t,x) &= \int_{-l}^{x_i} \int_{-l}^{x_j} \phi \Big(t, x_1, \dots, x_{i-1}, y, x_{i+1}, \dots x_{j-1}, z, x_{j+1}, \dots x_n \Big) dz \, dy, \\ & \left\langle \left\langle \phi \right\rangle \right\rangle_{ij}^{(\alpha)} = \left\| \phi \right\|_2 + \left| \Phi_{ij} \right|_{0,\alpha}, \\ & \left| g \right|_{0,\alpha} = \sup_{\substack{(t,x),(s,y) \\ t \neq s, x \neq y}} \frac{\left| g(t,x) - g(s,y) \right|}{\left(\left| t - s \right|^{1/2} + \left| x - y \right| \right)^{\alpha}}. \end{split}$$

Через $\rho(z)$ обозначим функцию типа модуля непрерывности, z(i) – вектор, у которого на i-м месте стоит z_i , а остальные координаты – нули.

Рассмотрим граничную задачу:

$$L^{\varepsilon}u^{\varepsilon} = f^{\varepsilon}, t \in [0, T), x \in D,$$

$$u^{\varepsilon}\Big|_{\Gamma_{T}} = 0.$$
(9)

Если выполнено условие (*) ((**)), $f^{\varepsilon} \in L_{d+1}([0, T] \times D)$, то (9) имеет единственное решение класса $W_{d+1}^{1,2}([0, T] \times D)$. Если же $\|f^{\varepsilon}\|_{d+1} \leq C$, то [4] существуют постоянные K, α , независящие от ε (α зависит только от d, C, λ) такие, что для решения (9)

$$\left|u^{\varepsilon}\right|_{0,\alpha} \leq K. \tag{10}$$

Аналогично [5] доказывается следующее утверждение.

Теорема 5. Пусть для функций $(b^{\varepsilon}, a^{\varepsilon})$ выполнены условия (*) ((**)), (H), $\|f^{\varepsilon}\|_{d+1} \le C$ и для любых $\phi \in C_0^{\infty}([0,T] \times D)$, $|z(j)| \le 1$,

$$\left| \int_0^T \left[a_{ij}^{\varepsilon}(t, x + z(j)) - a_{ij}^{\varepsilon}(t, x) \right] \varphi(t, x) dx dt \right| \le \rho \left(|z(j)| \right) \left\langle \langle \hat{\varphi} \rangle \rangle_{ij}^{(\alpha)}, \tag{11}$$

где α взято из условия (10). Пусть, кроме того, $a_{ij}^{\varepsilon} \xrightarrow{\varepsilon \to 0} a_{ij}, b_i^{\varepsilon} \longrightarrow b_i, i, j = \overline{1,d}$,

 $f^{\epsilon} \xrightarrow{\epsilon \to 0} f$ и функции(b, a) удовлетворяют условию (*), ((**)). Тогда равномерно на $[0,T] \times D$ и $^{\epsilon}(t,x)$ сходится к решению граничной задачи

$$Lu = f, t \in [0,T), x \in D; u|_{\Gamma_n} = 0,$$

Эта теорема позволяет решить вопрос о слабой сходимости решений стохастических уравнений при слабой сходимости коэффициентов.

Теорема 6. Пусть $x^{\varepsilon} \to x$, для функций $(b^{\varepsilon}, a^{\varepsilon})$ выполнены условия (*)

((**)), (H) и (11) для α из (10). Если $a_{ij}^{\varepsilon} \xrightarrow{\varepsilon \to 0} a_{ij}, b_i^{\varepsilon} \xrightarrow{\varepsilon \to 0} b_i, i, j = \overline{1,d}$, и функции(b,a) удовлетворяют условию $(*), ((**)), mo \ \xi^{\varepsilon} \Rightarrow \xi$.

Доказательство. Проверим справедливость условий (V), (N) с предельными функциями (b,a). Определим $V_k^{\varepsilon}(t,x)$ как решение задачи Коши,

$$L^{\varepsilon}V_{k}^{\varepsilon} = b_{k} - b_{k}^{\varepsilon}, t \in [0, T), x \in E_{d},$$

$$V_{k}^{\varepsilon}(T, x) = 0, k = \overline{1, d}.$$

Из доказательства теоремы 3 ясно, что необходимо лишь установить равномерную на компактах сходимость $V_k^{\varepsilon}(t,x)$ к нулю. Последнее есть следствие теоремы 6. Условие (V) установлено. Аналогично проверяется и условие (N).

Утверждение теоремы следует из теоремы 2. Теорема доказана.

Иногда вместо условий (V), (N) удобнее проверить условия (V^{δ}), (N^{δ}) [2].

Условие (V^{δ}) . Существует последовательность функций $V_k^{\epsilon\delta}(t,x)$ \in $\in W_{d+1 \log}^{1,2}$, $k=\overline{1,d}$, такая, что для каждого $\delta>0$

1)
$$b_k^{\varepsilon\delta} := b_k^{\varepsilon} + \frac{1}{2} (a^{\varepsilon} \nabla, \nabla) V_k^{\varepsilon\delta} \xrightarrow[\varepsilon \to 0]{} b_k^{\delta};$$

2) $\lim_{\varepsilon \to 0} \sup_{x \in D} \left| V_k^{\varepsilon \delta}(t,x) \right| = 0$ для любой ограниченной области $D \subset E_d$ при каждом t ∈ [0, Т];

3)
$$\lim_{\varepsilon \to 0} \left\| V_k^{\varepsilon \delta} \right\|_{d+1, \text{loc}} = \lim_{\varepsilon \to 0} \left\| \frac{\partial V_k^{\varepsilon \delta}}{\partial x_i} \right\|_{d+1, \text{loc}} = 0, i = \overline{1, d};$$

кроме того,

4)
$$\lim_{\delta \to 0} \overline{\lim_{\epsilon \to 0}} \left\| \frac{\partial V_k^{\epsilon \delta}}{\partial t} + b_k^{\epsilon \delta} - b_k^{\epsilon} \right\|_{d+1, \text{loc}} = 0;$$

5) $\lim_{\delta \to 0} \|b_k^{\delta} - b_k\|_{d+1, loc} = 0.$ **Условие** (N^{δ}). Существует последовательность функций $N_{kl}^{\epsilon\delta}(t,x) =$

1)
$$a_{kl}^{\varepsilon\delta} := a_{kl}^{\varepsilon} + (a^{\varepsilon}\nabla, \nabla)N_{kl}^{\varepsilon\delta} \xrightarrow{\varepsilon \to 0} a_{kl}^{\delta};$$

 $=N_{lk}^{\varepsilon\delta}(t,x)\in W_{d+1,\mathrm{loc}}^{1,2},\,k,l=\overline{1,d},\,\,$ такая, что

2) $\lim_{\varepsilon \to 0} \sup_{x \in D} \left| N_{kl}^{\varepsilon \delta}(t,x) \right| = 0$ для любой ограниченной области $D \subset E_d$ при каждом $t \in [0, T]$;

3)
$$\lim_{\varepsilon \to 0} \| N_{kl}^{\varepsilon \delta} \|_{d+1, \text{loc}} = \lim_{\varepsilon \to 0} \left\| \frac{\partial N^{\varepsilon \delta}}{\partial x_i} \right\|_{d+1, \text{loc}} = 0, i = \overline{1, d};$$

4)
$$\lim_{\delta \to 0} \overline{\lim_{\epsilon \to 0}} \left\| \frac{\partial N_{kl}^{\epsilon \delta}}{\partial t} + \frac{1}{2} \left(a_{kl}^{\epsilon \delta} - a_{kl}^{\delta} \right) \right\|_{d+1, \text{loc}} = 0;$$

5)
$$\lim_{\delta \to 0} \|a_{kl}^{\delta} - a_{kl}\|_{d+1, loc} = 0.$$

В [2] установлено, что теорема 2 [1] будет справедлива, если в ее формули-

ровке условия (V), (N) заменить на условия (V^{δ}), (N^{δ}). Рассмотрим вопрос о слабой сходимости решений стохастических уравнений со случайными коэффициентами к решению уравнения (4). К таким моде-

лям приводят многие задачи при исследовании слабой сходимости решений

стохастических уравнений с неограниченными коэффициентами [6, 7]. Пусть $(\Omega, \mathcal{F}, \mathcal{F}_{n}, P)$ – основное вероятностное пространство с потоком σ алгебр \mathcal{F}_t , $t \in [0,T]$, $(w^{\varepsilon}(t),\mathcal{F}_t)$ при каждом $\varepsilon > 0$ – стандартный k-мерный винеровский процесс, функции $f_i^{\varepsilon}(t,x,\omega), g_{ij}^{\varepsilon}(t,x,\omega), i=\overline{1,d}, j=\overline{1,k}, \mathfrak{F}_i$ -согласо-

ваны, случайный процесс $\zeta^{\varepsilon}(t)$ является решением уравнения

$$\zeta^{\varepsilon}(t) = x^{\varepsilon} + \int_{0}^{t} f^{\varepsilon}(s, \zeta^{\varepsilon}(s)) ds + \int_{0}^{t} g^{\varepsilon}(s, \zeta^{\varepsilon}(s)) dw^{\varepsilon}(s).$$
 (12)

Относительно функций $f_i^{\varepsilon}(t,x,\omega), G_{ii}^{\varepsilon} = \left[g^{\varepsilon}(g^{\varepsilon})'\right](t,x,\omega)$ предположим так-

же, что существуют постоянные C, $\lambda > 0$ такие, что

$$\left| f_i^{\varepsilon}(t, x, \omega) \right| + \left| G_{ij}^{\varepsilon}(t, x, \omega) \right| \le C \left(1 + |x|^2 \right),$$

$$\left(G^{\varepsilon} \theta, \theta \right) \ge \lambda \left| \theta \right|^2 \ \forall \theta \in E_d. \tag{13}$$

Известно, что при условии (13) семейство мер, порожденных на $\mathbb{C}[0,T]$ решениями (12), слабо компактно. Введем условия, позволяющие находить коэффициенты уравнения для предельного процесса. С функциями $i, j = \overline{1, d}$, свяжем оператор

$$\mathfrak{Z}^{\varepsilon} = \frac{\partial}{\partial t} + (f^{\varepsilon}, \nabla) + \frac{1}{2} (G^{\varepsilon} \nabla, \nabla).$$

Введём условие (Р):

3) $\forall \Phi \in C_0^{\infty}(E_d), k, l = \overline{1,d},$

1) существуют d-мерный вектор $r^{\varepsilon}(t, x)$ и $d \times d$ -мерная матрица $H^{\varepsilon}(t, x)$, удовлетворяющие условию (*) ((**)), такие, что $\forall \Phi \in C_0^{\infty}(E_d), 0 \le s \le t \le T$,

$$\lim_{\varepsilon \to 0} E \left\{ \int_{s}^{t} \left[\mathcal{Z}^{\varepsilon} \Phi - \overline{L}^{\varepsilon} \Phi \right] \left(v, \zeta^{\varepsilon}(v) \right) dv / \mathfrak{F}_{s}^{\varepsilon} \right\} = 0, \ \mathfrak{F}_{s}^{\varepsilon} = \sigma \left\{ \zeta^{\varepsilon}(v), v \leq s \right\},$$

$$\overline{L}^{\varepsilon} = \frac{\partial}{\partial t} + \left(r^{\varepsilon}, \nabla \right) + \frac{1}{2} \left(H^{\varepsilon} \nabla, \nabla \right);$$

- 2) для функций $(r^{\varepsilon}, H^{\varepsilon})$ выполнены условия $(V^{\delta}), (N^{\delta})$ и предельные функции (r, H) также удовлетворяют условию (*) ((**));
 - $\lim_{\delta \to 0} \overline{\lim}_{\varepsilon \to 0} \mathbf{E} \left\{ \int_{0}^{t} \Phi(\zeta^{\varepsilon}(v)) \overline{L}^{\varepsilon} V_{k}^{\varepsilon \delta}(v, \zeta^{\varepsilon}(v)) dv / \mathfrak{F}_{s}^{\varepsilon} \right\} = 0,$

$$\lim_{\delta \to 0} \overline{\lim}_{\varepsilon \to 0} E \left\{ \int_{\varepsilon}^{t} \Phi(\zeta^{\varepsilon}(v)) \overline{L}^{\varepsilon} N_{k,l}^{\varepsilon \delta}(v, \zeta^{\varepsilon}(v)) dv / \mathfrak{F}_{s}^{\varepsilon} \right\} = 0.$$

$$\lim_{\delta \to 0} \overline{\lim_{\varepsilon \to 0}} E \left\{ \int_{s} \Phi(\zeta^{\varepsilon}(v)) \overline{L}^{\varepsilon} N_{k,l}^{\varepsilon \delta}(v, \zeta^{\varepsilon}(v)) dv / \mathfrak{F}_{s}^{\varepsilon} \right\} = 0$$

Доказательство следующей теоремы полностью приведено в [6, 7].

Теорема 7. Пусть $x^{\varepsilon} \to x$, выполнены условия (13) и (P). Тогда $\partial e b = r, \sigma = H^{1/2}$.

В [6, 7] на основании теоремы 7 изучено поведение "медленного" процесса в

схеме усреднения для процессов с неограниченными по є, периодическими, быстроосциллирующими коэффициентами, рассматриваются дифференциа-

льные уравнения второго порядка и др. Здесь рассматриваются стохастические

уравнения с коэффициентами, допускающими неограниченный рост по ε в отдельных областях. Следующая теорема обобщает результаты из [8]. Пусть $\xi^{\varepsilon}(t)$ — решение уравнения (1). Откажемся от требования равномер-

ной ограниченности коэффициентов по ε . Через $\psi^{\varepsilon}(r)$, $r \ge 0$, обозначим неотрицательную функцию такую, что $\int_0^r \psi^{\varepsilon}(z)dz \le L(1+r^{\beta}), L \ge 0, \beta < 1, \psi^{\varepsilon}(r), r \ge 0$

- неотрицательная непрерывная функция такая, что

$$\int_{0}^{\infty} \varphi^{\varepsilon}(z)dz \xrightarrow{\varepsilon \to 0} 0.$$

Положим для $r \ge 0$

такие, что

$$I^{\varepsilon}(r) = L_1 \frac{\alpha^{\varepsilon}}{1 + (\alpha^{\varepsilon}r)^{v}} + L_2 \varphi^{\varepsilon}(r), v > 1, \alpha^{\varepsilon} \xrightarrow{\varepsilon \to 0} \infty, L_1, L_2 \ge 0.$$

Будем считать выполненными следующие условия:

$$0 < \lambda \le \frac{\left(a^{\varepsilon}(t, x)x, x\right)}{\left|x\right|^{2}} \le C, \tag{14}$$

$$\left(x, b^{\varepsilon}(t, x)\right) + \frac{1}{2}\operatorname{Sp} a^{\varepsilon}(t, x) \le C + \psi^{\varepsilon}(|x|), \tag{15}$$

$$\underbrace{\lim_{\varepsilon \to 0} \inf_{t,x}}_{\varepsilon \to 0} \left[2 \left(x, b^{\varepsilon}(t,x) \right) + \operatorname{Sp} a^{\varepsilon}(t,x) - \frac{\left(a^{\varepsilon}(t,x)x,x \right)}{\left| x \right|^{2}} \right] = \gamma > 0. \tag{16}$$
Теорема 6. Пусть для уравнения (1) выполнены условия (14) – (16) и $x^{\varepsilon} \to 0$

Теорема 6. Пусть для уравнения (1) выполнены условия (14) – (16) и $x^{\varepsilon} \to x$. Кроме того, существуют равномерно непрерывные по x равномерно по (t, ε) функции $(r^{\varepsilon}(t, x), H^{\varepsilon} = h^{\varepsilon}(h^{\varepsilon})', (t, x))$, удовлетворяющие условию (*) ((**))

 $\left|b^{\varepsilon}(t,x)-r^{\varepsilon}(t,x)\right|^{2}+\mathrm{Sp}\left(\sigma^{\varepsilon}(t,x)-h^{\varepsilon}(t,x)\right)\left(\sigma^{\varepsilon}(t,x)-h^{\varepsilon}(t,x)\right)'\leq I^{\varepsilon}(|x|),$

и при каждом
$$t \in [0, T], x \in E_d$$
,
$$\lim_{\varepsilon \to 0} \int_0^t r_i^{\varepsilon}(s, x) ds = \int_0^t r_i^{\varepsilon}(s, x) ds, i = \overline{1, d},$$

$$\lim_{\varepsilon \to 0} \int_{0}^{\infty} H_{ij}^{\varepsilon}(s,x)ds = \int_{0}^{\infty} H_{ij}(s,x)ds, i,j = \overline{1,d}.$$
Функции (r,H) равномерно непрерывны по x и по t и удовлетворяют условию $(*)$ $(**)$ Тогда $f^{\varepsilon} \to f$ — решению уравнения (4) с когффициентами

вию (*) ((**)). Тогда $\xi^{\varepsilon} \Rightarrow \xi$ — решению уравнения (4) с коэффициентами b = r, $\sigma = H^{1/2}$.

 $P \lim_{\varepsilon \to 0} \int_{0}^{\cdot} I^{\varepsilon} (|\xi^{\varepsilon}(s)|) ds = 0.$

$$r$$
, $\sigma = H^{1/2}$. Доказательство. В [8] установлено, что при сделанных предположениях

$$\eta^{\varepsilon}(t) = \int_{0}^{t} \left[b^{\varepsilon} \left(s, \xi^{\varepsilon}(s) \right) - r^{\varepsilon} \left(s, \xi^{\varepsilon}(s) \right) \right] ds + \int_{0}^{t} \left[\sigma^{\varepsilon} \left(s, \xi^{\varepsilon}(s) \right) - h^{\varepsilon} \left(s, \xi^{\varepsilon}(s) \right) \right] dw^{\varepsilon}(s),$$

$$f^{\varepsilon}(s,x,\omega) = r^{\varepsilon}(s,x+\eta^{\varepsilon}(s)), \ g^{\varepsilon}(s,x,\omega) = h^{\varepsilon}(s,x+\eta^{\varepsilon}(s)),$$
$$\zeta^{\varepsilon}(t) = \xi^{\varepsilon}(t) - \eta^{\varepsilon}(t).$$

Тогда процесс $\zeta^{\varepsilon}(t)$ удовлетворяет уравнению (12). Так как выполнено условие

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 10

(18)

(13), то семейство мер, порожденных процессами $\zeta^{\epsilon}(t)$, слабо компактно. Из свойств стохастических интегралов, (17), (18) легко следует

$$\sup_{t \in [0,T]} \left| \eta^{\varepsilon}(t) \right| \xrightarrow{P} 0. \tag{19}$$

Отсюда вытекает, что семейство мер, порождаемых процессами $\xi^{\varepsilon}(t)$, слабо компактно и предельные распределения для $\zeta^{\varepsilon}(t)$ и $\xi^{\varepsilon}(t)$ совпадают. Проверим условие (P). Докажем вначале, что для произвольной ограниченной равномерно непрерывной по x равномерно по (t, ε) функции $F^{\varepsilon}(t, x)$ и ограниченной финитной функции $\psi(t, x)$

$$\lim_{\varepsilon \to 0} E \int_{-\infty}^{t} \left| F^{\varepsilon} \left(v, \zeta^{\varepsilon}(v) + \eta^{\varepsilon}(v) \right) - F^{\varepsilon} \left(v, \zeta^{\varepsilon}(v) \right) \right| \psi \left(v, \zeta^{\varepsilon}(v) \right) dv = 0.$$
 (20)

Будем считать, что носитель функции $\psi(t, x)$ содержится во множестве $[0, T] \times S_N$, $S_N = \{x: |x| \le N\}$. В силу (19) достаточно установить равенство

$$\lim_{\varepsilon \to 0} E \int_{\varepsilon}^{t} \left| F^{\varepsilon} \left(\nu, \zeta^{\varepsilon}(\nu) + \eta^{\varepsilon}(\nu) \right) - F^{\varepsilon} \left(\nu, \zeta^{\varepsilon}(\nu) \right) \right| \psi \left(\nu, \zeta^{\varepsilon}(\nu) \right) \chi \left(\left| \eta^{\varepsilon}(\nu) \right| \le N \right) d\nu = 0. \tag{21}$$

Для произвольного $\delta > 0$ существует $\kappa > 0$ такое, что при $|x-y| < \kappa$, $|F|^{\varepsilon}(t,x) - F|^{\varepsilon}(t,y)| \le \delta$. Для κ построим в множестве S_{2N} κ -сеть $x_1, x_2, ..., x_{n(\kappa)}$ и систему непрерывных функций $m_j(x)$, $j = \overline{1, n(\kappa)}$, такую, что $m_j(x) \ge 0$, $m_j(x) = 0$ при $|x-x_j| \ge \kappa$, $\sum_{j=1}^{n(\kappa)} m_j(x) = 1$ при $x \in S_{2N}$ [9]. Положим

$$F_n^{\varepsilon}(t,x) = \sum_{j=1}^{n(\kappa)} F_n^{\varepsilon}(t,x_j) m_j(x).$$

Тогда для $x ∈ S_{2N}$

$$\left| F_n^{\varepsilon}(t, x) - F^{\varepsilon}(t, x) \right| \le \delta, \tag{22}$$

$$\left| F_n^{\varepsilon}(t, x+y) - F_n^{\varepsilon}(t, x) \right| \le C \sum_{j=1}^{n(\kappa)} \left| m_j(x+y) - m_j(x) \right|. \tag{23}$$

Учитывая (22), (23), получаем

$$E\int_{s}^{t} \left| F^{\varepsilon} \left(v, \zeta^{\varepsilon}(v) + \eta^{\varepsilon}(v) \right) - F^{\varepsilon} \left(v, \zeta^{\varepsilon}(v) \right) \right| \psi \left(v, \zeta^{\varepsilon}(v) \right) \chi \left(\left| \eta^{\varepsilon}(v) \right| \leq N \right) dv \leq$$

$$\leq C\delta + C \sum_{i=1}^{n(\kappa)} E\int_{s}^{t} \left| m_{j} \left(\zeta^{\varepsilon}(v) + \eta^{\varepsilon}(v) \right) - m_{j} \left(\zeta^{\varepsilon}(v) \right) \right| dv.$$

Второе слагаемое правой части этого равенства стремится к нулю при $\varepsilon \to 0$, а первое слагаемое может быть сделано сколь угодно малым выбором δ . Отсюда следует (21), а следовательно, и (20).

Из (20) вытекает, что выполнено первое требование условия (P) с функциями (r^{ε} , H^{ε}). Для этих функций справедливы условия (V^{δ}), (V^{δ}) [2]. Т.е. второе требование условия (P) выполнено. Пусть $\Phi(x) \in C_0^{\infty}(E_d)$, $\varphi_s(x) - \mathcal{M}_s$ -

измеримый непрерывный ограниченный функционал. Применим к функции $V_k^{\epsilon\delta}(t,x)\Phi(x)$ и процессу $\zeta^{\epsilon}(t)$ формулу Ито:

Отсюда с учетом свойств функций $V_k^{\epsilon\delta}$ [2] и (20) следует первое равенство в третьем требовании условия (Р). Аналогично устанавливается и второе равенство третьего требования условия (Р). Утверждение теоремы следует из теоремы 7. Теорема доказана.

- 1. Махно С. Я. Сходимость диффузионных процессов//Укр.мат. журн. 1992. 44, № 2. С. 284 -289.
- 2. Махно С. Я. Достаточные условия для сходимости решений стохастических уравнений // Теория случайн. процессов. – 1988. – Вып. 16. – С. 66-72.
- 3. Махно С. Я. О сходимости решений стохастических уравнений//Статистика и управление случайными процессами. - М.: Наука, 1989.- С. 138-142.
- 4. Крылов Н. В. Нелинейные эллиптические и параболические уравнения второго порядка.-М.: Наука, 1985.- 374 с.

496 c.

- Камынин В. Л. Предельный переход в квазилинейных параболических уравнениях со слабо сходящимися коэффициентами и асимптотическое поведение решений задачи Коши // Мат. сб.- 1990.- 181, вып. 2.- С. 1031-1047.
- 6. Махно С. Я. Сходимость решений стохастических уравнений с возмущенными коэффициен-
- тами // Теория случайн. процессов и ее прил. Киев: Наук. думка, 1990.- С.99-106. 7. Makhno S. On convergence of solutions of stochastic Equations//New Trends in Probab. and
- Statist.- Vilnius: Mokslas, Tokyo: VSP.- 1991.-1.- P. 474-484. 8. Кулинич Г. Л., Харкова М. В. Об асимптотическом поведении решений систем стохастичес-
- ких диффузионных уравнений при нерегулярной зависимости коэффициентов от параметра // Докл. AH УССР. Cep. A.- 1990.- Вып. 6.- C. 19-22. 9. Гихман И. И., Скороход А. В. Теория случайных процессов: В 3-х т. - М.: Наука, 1975.- Т. 3.-

Получено 01.04.92