В. И. Попов, канд. физ.-мат. наук (Ин-т прикл.математики и механики АН Украины, Донецк)

БЫСТРАЯ ЛОКАЛИЗАЦИЯ ТРАЕКТОРИЙ В ЗАДАЧЕ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

Рассматривается стандартная задача оптимального управления и ее решение быстрым преобразованием Фурье.

Розглядається стандартна задача оптимального керування та їі розв'язок шляхом швидкого перетворення Фур'є.
Численные методы оптимального управления имеют поисковый, итерационный характер и в достаточно малой окрестности оптимальной траектории обладают высокой сходимостью. Проблема состоит лишь в том, чтобы локализовать этот поиск, т. е. попасть в такую окрестность. В данной статье мы попытаемся это сделать быстрым преобразованием Фурье. Но сначала на двух типичных примеpax (пп. 1 и 2) изложим некоторые идеи.

1. Локализация корней полинома. Пусть $f=f(x)$ - вещественный (или комплексный) полином степени выше 4. Уравнение $f=0$, вообще говоря, неразрешимо в радикалах - теорема Абеля, - и его приходится решать методом итерации. Для этого корни полинома надо локализовать, т.е. указать систему окрестностей, каждая из которых содержит по одному корню. В вещественном случае можно воспользоваться методом Штурма, в комплексном - рассмотреть "аналитический ландшафт", т.е. график функции $E=|f(x)|^{2}$. Ее минимумы - корни полинома. Отправляясь от произвольно выбранной точки $x_{\text {нач }}$ и двигаясь против градиента функции E, можно попытаться достичь точки абсолютного минимума. При неудаче вместо $x_{\text {нач }}$ следует испытать другую начальную точку $x_{\text {нач }}$, за ней следующую и т.д. В сущности, это стрельба наугад, но, в общем случае, разумной альтернативы ей нет. Таким образом, проблема локализации, т.е. выбора хорошего начального приближения $x_{\text {нач }}$, стоит весьма остро. Аналогичная ситуация складывается и для системы алгебраических уравнений

$$
\begin{equation*}
f_{1}=0, f_{2}=0, \ldots, f_{n}=0 \tag{1}
\end{equation*}
$$

возрастает лишь объем вычислений, поскольку и аналитический ландшафт $E=\left|f_{1}\right|^{2}+\ldots+\left|f_{n}\right|^{2}$ и все приближения к точке минимума функции E лежат в многомерных пространствах. К рассмотрению систем вида (1) сводятся многие задачи оптимального управления (см. ниже).
2. Задача на условный экстремум. Пусть на некотором множестве X вещественного N-мерного координатного пространства R^{n} задана вещественная функция f_{0} и

$$
\begin{equation*}
f_{0} \rightarrow \min \text { по } X \tag{2}
\end{equation*}
$$

- задача о ее глобальном минимуме (наименьшем значении на X). При нашем чисто аналитическом подходе множество X удобно задавать как множество точек $x \in R N$, в которых функция принадлежности множества X неотрицательна: $f_{X} \geq 0$. Вводя дополнительную переменную $x_{0}=\left(f_{X}\right)^{1 / 2}$, получаем равенство $f_{1} \equiv f_{0}-\left(x_{0}\right)^{2}=0$. Переменную x_{0} удобно причислить к аргументам функции f_{0}. Иногда множество X задают не одним, а несколькими равенствами вида (1), где $n \leq N$. Тогда задача (2) выглядит так :

$$
f_{0} \rightarrow \min \text { по }(1)
$$

или $f_{0} \rightarrow \min$ по $E=0$. Если функции f_{0}, \ldots, f_{n} не аналитичны, то с ними выгодно связать некоторые аналитические функции, исследовать последние, используя весь хорошо развитый аппарат комплексного анализа, а затем вернуться обратно. На практике основные затруднения возникают не с аналитичностью, а с размерностью задачи ("проклятие размерности" - термин Беллмана). Даже при $N<3$ аналитический ландшафт может быть весьма замысловатым и задача (3) не поддается решению. Тогда ценен даже частичный успех, модификация (редукция) задачи, введение дополнительных ("рабочих") переменных и функций, получение ряда косвенных результатов - так называемых признаков ("принципов") оптимальности. Последние в сочетании с прямыми (итерационными) методами оптимизации образуют золотой фонд ("рутинную часть" - термин Тихомирова) всей теории, позволяя решать задачи средней трудности. Что же касается более трудных задач, то их в изобилии поставляет статистическая механика. В ней своя терминология: f_{0} - "энергия", (1) - связи, X - малая подсистема большой изолированной сверхсистемы ("термостата"). Общих переменных у различных подсистем обычно нет и единственная связь - это "тепловой контакт", т.е. обмен энергией. Простейший пример термостата - набор из $N_{1} \gg N$ булевых переменных $b_{1}, \ldots, b_{N_{1}}$. Другой пример - комплексное N_{1}-мерное пространство $\mathbb{C}^{N_{1}}$. В этом примере энергия

$$
\begin{equation*}
E=f_{0}(x)+\left|z_{1}\right|^{2}+\ldots+\left|z_{N_{1}}\right|^{2} \tag{4}
\end{equation*}
$$

$\left(z_{1}, \ldots, z_{N_{1}}\right) \equiv z \in \mathbb{C}^{N_{1}}$, а "микроканоническое распределение" - мера Ω - вводится формулой

$$
\begin{equation*}
d \Omega=\omega \delta\left(f_{1}\right) \ldots \delta\left(f_{n}\right) \delta\left(E-f_{0}-\left|z_{1}\right|^{2}-\ldots-\left|z_{N_{1}}\right|^{2}\right) \tag{5}
\end{equation*}
$$

ω - эвклидова мера (элементарный объем) - внешнее произведение дифференциалов всех координат конфигурационного пространства $R^{N} \times \mathbb{C}^{N_{1}}$. Дель-та-функция Дирака

$$
\begin{equation*}
\delta(x)=\int_{-\infty}^{\infty} \bar{d} p e^{-i p x}, \bar{d} p=\frac{d p}{2 \pi},-\infty<x<\infty \tag{6}
\end{equation*}
$$

- континуальный аналог символа Кронекера

$$
\begin{equation*}
\delta_{x}^{0}=\int_{-\pi}^{\pi} \bar{d} p e^{-i p x} \equiv 0 \quad \text { при } \quad x= \pm 1, \pm 2, \ldots ; \quad \delta_{0}^{0}=1 \tag{7}
\end{equation*}
$$

Произведения дельта-функций и замена переменных в них - довольно деликатная вещь, особенно в континуальных интегралах (т.е. при $N \rightarrow \infty$). На практике, при вычислениях на ЭВМ, ситуация несколько проще: числа N, N_{1} конечны, но дискретное преобразование Фурье - аналог сумм (6), (7) - должно быть быстрым (fast).

Вернемся к системе (1), (4). Энергетическая поверхность - это и есть тот аналитический ландшафт, который нам предстоит обозревать. Благодаря наличию термостата решений у данной системы чрезвычайно много, и вопрос ставится иначе: нас интересуют не отдельные решения, а вся их совокупность,

ее некоторые усредненные ("интегральные") характеристики типа

$$
\begin{equation*}
\left\langle f_{\text {пр }}\right\rangle=\int f_{\text {пр }} d \Omega, \tag{8}
\end{equation*}
$$

где $f_{\text {пр }}$ - некоторая пробная функция в R^{N}. В частности, при $f_{\text {пр }} \equiv 1$ определяем "энтропию"

$$
\begin{equation*}
\sigma=\ln \Omega \tag{9}
\end{equation*}
$$

и "температуру" T

$$
\begin{equation*}
1 / T=d \sigma / d E \tag{10}
\end{equation*}
$$

Символически (см. (6))

$$
\begin{equation*}
\left\langle f_{\text {ппр }}\right\rangle=\int f_{\text {пр }} d \Phi \tag{11}
\end{equation*}
$$

где

$$
\begin{equation*}
d \Phi=\omega_{\text {фаз }} \Psi \tag{12}
\end{equation*}
$$

$\omega_{\text {фаз }}$ - эвклидова мера в фазовом (p, x, z)-пространстве,

$$
\begin{equation*}
\Psi=e^{i L} \tag{13}
\end{equation*}
$$

— осциллирующая ("волновая") функция, Ф - так называемая мера Фейнмана,

$$
\begin{equation*}
L=p_{1} f_{1}+\ldots+p_{n} f_{n}+L_{0} \tag{14}
\end{equation*}
$$

- функция Лагранжа с "импульсами" p_{1}, \ldots, p_{n} и

$$
\begin{equation*}
L_{0}=\left(E-f_{0}-\left|z_{1}\right|^{2}-\ldots-\left|z_{N_{1}}\right|^{2}\right) p_{0} \tag{15}
\end{equation*}
$$

Так выглядит задача (1) в физической интерпретации. Математически это все не более чем обобщенное преобразование Фурье (интеграл Фурье, см. (11)) и все, что нам здесь нужно, - это научиться быстро вычислять его на ЭВМ, минуя локальные методы типа стационарной фазы (классический принцип стационарного действия).

Так как функция $f_{\text {пр }}$ от вектора z не зависит, то интеграл по z гауссов (см. (15)) и легко вычисляется

$$
\begin{gather*}
\left\langle f_{\text {прр }}\right\rangle=\int f_{\text {пр }} d \Omega_{x} \tag{16}\\
d \Omega_{x}=\omega_{x} \delta\left(f_{1}\right) \ldots \delta\left(f_{n}\right) \frac{\left(E-f_{0}\right)^{N_{1}-1}}{\left(N_{1}-1\right)!} \tag{17}
\end{gather*}
$$

ω_{x} - эвклидова мера в R_{N}. Наличие здесь δ-множителей Дирака означает, что интегрирование фактически идет не по всему пространству R^{N}, а лишь по множеству X.. В реальных физических экспериментах $N_{1} \sim 10^{20}$ и мера (17) - весьма быстро убывающая функция от "энергии" f_{0}. Следовательно, наибольший вес имеют точки с наименьшм значением f_{0} :

$$
\begin{equation*}
\left\langle f_{\text {rip }}\right\rangle \sim f_{\text {rip }}\left(x_{\text {orrt }}\right) \tag{18}
\end{equation*}
$$

$x_{\text {оптт }}$ - точка глобального минимума, т.е. искомое решение задачи (2). Вклады прочих точек экспоненциально малы, ими можно пренебречь. (Именно для

этого и вводился термостат - основное понятие статистической физики. Если игнорировать все физические аналогии, то остается абстрактный, чисто математический подход, и тогда вместо последнего множителя в (17) можно брать любую другую "штрафную", т.е. быстроубывающую, функцию от f_{0}.) Наряду с условием $N_{1} \gg N$ естественно считать $E \gg\left\langle f_{0}\right\rangle$, тогда в (9) имеем $\sigma \sim$ $\sim N_{1} \ln E$ и температура $T=E / N_{1}$ оказывается удельной энергией на одну степень свободы:

$$
E=T N_{1}
$$

Подведем итоги п.2. Формально проблема локализации экстремумов решается очень просто: вместо $f_{\text {пр }}$ поочередно подставляем координаты точки $x \in$ $\in R^{N}$. Подставляя произведения координат, можно узнать и их корреляции. Фактически же это все тот же метод стрельбы, поскольку в (16) интегрирование идет по всему пространству R^{N}. Стрельба, по-прежнему, идет наугад, мы покрываем все R^{N}. Она была бы бессмысленной, если бы мы не регистрировали ее результаты. Регистрация - чисто символическая, по Дираку - множителем (13). В итоге возникает мера Φ (см. (12)). Весьма четко и убедительно смысл этой меры как меры оптимальности впервые - в 1935 году - изложжл П.А.М. Дирак [1, с.174]. Этот смысл ясен из формулы (18). В дальнейшем идеи Дирака широко развил Фейнман, его имя закрепилось за мерой Ф и интегралом по ней (см. (11)). Наиболее плодотворные применения, как нам кажется, эти идеи найдут в теории оптимальных процессов. В вопросах локализации оптимума реальной альтернативы этим идеям нет.

После такого, по необходимости краткого, изложения основных идей перейдем к теории оптимального управления.
3. Задача Лагранжа. Найти наименьшее значение интеграла

$$
\begin{equation*}
\int_{t_{0}}^{t_{0}} f_{0}\left(x_{1}(t), \ldots, x_{n}(t)\right) d t \tag{19}
\end{equation*}
$$

где зависимые переменные $x_{m}(t), 1 \leq m \leq n$, вещественны и подчинены динамическим связям

$$
\begin{align*}
x_{m}\left(t_{0}\right)=\text { fix }, \quad x_{m}^{\prime}(t) & =f_{m}\left(x_{1}(t), \ldots, x_{n}(t)\right), & & 1 \leq m \leq n_{1} \tag{20}\\
0 & =f_{-m}\left(x_{1}(t), \ldots, x_{n}(t)\right), & & 1 \leq m \leq n_{2} \tag{21}
\end{align*}
$$

Знак fix указывает, что все стоящие перед ним величины фиксированы: t_{0}, t_{*}, $n, n_{1}, n_{2}=$ fix; $n_{1}+n_{2} \leq n$. Штрихом обозначена производная по независимой переменной - "времени" t. Отметим, что помимо чисто алгебраических связей (21) (ср. с (1)) здесь есть и "динамические", т.е. дифференциальные, связи (20). Такова стандартная задача оптимального управления. Значения функций $f_{ \pm m}$ должны быстро вычисляться на ЭВМ - лучше всего, если это будут полиномы. Степень этих полиномов, за счет введения дополнительных переменных, можно снизить до двух, тогда будет легче обосновать и континуальное интегрирование.

Пример. $\quad f_{X}=x_{1}, f_{0}=t /\left(1+\left(x_{1}^{2}\right)\right)$ - задача Ньютона. Вводя дополнительные "рабочие" переменные $x_{2}=\left(x_{1}\right)^{2}, x_{1}=\left(x_{0}\right)^{2}, f_{0}=t-f_{0} x_{2}$, получаем стандартную задачу с полиномиальными связями.

Так же можно поступать и с другими мероморфными функциями. Специа-

льные функции \sin , \cos и т.д. лучше задавать их дифференциальными связями ($x^{\prime \prime}+x=0$ и т.д.). Таким образом, круг задач, подгоняемых "под стандарт", довольно обширен. Иногда, впрочем, удобнее заменить и сам интеграл (19) связью

$$
\begin{equation*}
x_{0}^{\prime}(t)=f_{0}\left(x_{1}(t), \ldots, x_{n}(t)\right), \quad x_{0}\left(t_{0}\right)=0, \quad x_{0}\left(t_{*}\right) \rightarrow \min \tag{22}
\end{equation*}
$$

или ввести обозначения

$$
\begin{equation*}
x_{m}^{\prime}(t)=v_{m}(t), \quad m \notin\left[0, n_{1}\right], \tag{23}
\end{equation*}
$$

для "управлений", т.е. переменных, чьи производные ничем не ограничены, случай, характерный для классической механики и вариационного исчисления. В механике к f_{0} добавляют еще и кинетическию энергию $\varepsilon\left(v_{m}\right)^{2} / 2$. Такая добавка регуляризирует фейнмановский интеграл по $v_{m} \in(-\infty, \infty)$, параметр $\varepsilon \rightarrow$ +0 и играет роль "массы". В дискретном случае такие добавки не обязательны. Вообще говоря, каждая конкретная задача имеет свою специфику, в чемто нарушающую стандарт. Главная же особенность задач оптимального управления - континуальное число связей (по $n_{1}+n_{2}$ для каждого t) - остается неизменной всегда, и нужно очень сильно модифицировать задачу, чтобы этих связей осталось конечное число (см. п.4).
4. Метод совпадений ("коллокаций"). В этом методе связи "совпадают", т.е. учитываются лишь в конечном числе точек, например в узлах интерполяционной формулы Лагранжа

$$
\begin{equation*}
x_{m}(t)=\sum_{v=1}^{N} x_{m}\left(t_{v}\right) l_{v}(t), \tag{24}
\end{equation*}
$$

где

$$
\begin{equation*}
l_{\mathrm{v}}(t)=\omega(t) /\left(t-t_{\mathrm{v}}\right) \omega^{\prime}\left(t_{\mathrm{v}}\right) \tag{25}
\end{equation*}
$$

- фундаментальные полиномы интерполяции, а $\omega(t)$-полином степени N с корнями $t_{1}<t_{2}<\ldots<t_{N}$. В частности, можно взять полином Чебышева первого рода

$$
\begin{equation*}
\omega(t)=\cos N \theta, \tag{26}
\end{equation*}
$$

где угол

$$
\begin{equation*}
\theta=\theta(t)=2 \arcsin \sqrt{\left(t-t_{0}\right) /\left(-t+t_{*}\right)} . \tag{27}
\end{equation*}
$$

В итоге бесконечномерная задача (20) - (22) редуцируется к конечномерной задаче типа (3), где f_{0}, \ldots, f_{n} - полиномы. Из-за наличия алгебраических связей (21) и по другим причинам мы имеем дело̣ с жесткими системами, поэтому при модификации задач типа (20) - (22) необхходимо соблюдать меры предосторожности. Желательно, например, чтобы скорость $x^{\prime}(t)$ не очень менялась с ростом t. Монотоной заменой $t \rightarrow t(\tau)$ эту скорость можно сделать даже постоянной по модулю. Могут потребоваться подобные замены и по другим осям координат (калибровка). Всевозможных калибровочных преобразований очень много, общих рецептов здесь нет. Чтобы вести расчеты на ЭВМ, необходим и второй шаг редукции - кодирование элементсв из R^{n} с помощью конечного числа булевых переменных ("битов")

$$
\begin{equation*}
x_{m v}=\left(b_{m v 1}, b_{m v 2}, \ldots, b_{m v r}\right)_{2} \equiv \sum_{s=1}^{r} 2^{-s} b_{m v s}, \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
x_{m v}=x_{m}\left(t_{v}\right), b_{m v s}=0 \text { или } 1 . \tag{29}
\end{equation*}
$$

Для простоты рассуждений считается, что $0<x_{m \nu}<1$. Этого всегда можно достичь соответствующей калибровкой.
5. Быстрое преобразование Фурье. Фактически мы используем два дискретных преобразования Фурье - комплексное и целочисленное. Комплексное преобразование используется в интерполяционной формуле Лагранжа (24), (25), поскольку корни полинома (26) выражаются через

$$
\begin{equation*}
z=\exp (i \pi / 2 N) \tag{30}
\end{equation*}
$$

- первообразный корень степени $2 N$ из -1 .

Целочисленное преобразование Фурье нам потребуется для умножения двоичных чисел с помощью алгоритма Шенхаге-Штрассена [2, с.304]. Термостат, упоминавшийся в п.2, тоже удобнее считать состоящим из дискретных двухуровневых подсистем. Таким образом, вместо формулы (4) используется ффрмула

$$
\begin{equation*}
E=f_{0}(x)+b_{1}+\ldots+b_{N_{1}} \tag{31}
\end{equation*}
$$

(переменные $b_{1}, \ldots, b_{N_{1}}$ - булевы), вместо дельта-функции (6) - символ Кронекера (7). Вместо интегрирования по переменным (29) производится суммирование по булевым переменным b_{m} и $b_{m v s}$ (см. (28), (31)). С учетом указанных изменений формула (11) позволяет вычислять математические ожидания за приемлемое машинное время. Если предположить, что фигурирующие в (1) полиномы являются плотными, то упомянутое машинное время можно, хотя бы приближенно, выразить через степень полиномов и их число.Тем самым будет оценена и временная сложность алгоритма, вычисляющего величины вида (11). К сожалению, с ростом степени полинома предположение о его плотности (т.е. отсутствии нулевых коэффициентов) становится все менее полезным. В соответствии с этим общая теорема об "эффективности вычисления средних (11) методом быстрого преобразования Фурье (БПФ), т.е. теорема о временной сложности указанного алгоритма, здесь не приводится. Для конкретных управляемых систем по сравнению с общим случаем (20)-(22) число связей, как правило, можно уменьшить.

После того, как средние (11) вычислены и, таким образом, оптимальная траектория локализована, можно приступить к улучшению начального приближения известными итерационными методами.

1. Дирак П. Принципы квантовон механики. - М.: Наука, 1979. - 480 с.
2. Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. М.: Мир. 1979.- 536 c .
