И. Е. Ірицкер, асп. (Ин-т прикл.математики и механики АН Украины, Донецк)

О НЕПРЕРЫВНОСТИ ГАРМОНИЧЕСКИ СОПРЯЖЕННЫХ ФУНКЦИЙ В ЖОРДАНОВЫХ ОБЛАСТЯХ

Исследуются достаточные условия непрерывности гармонически сопряженных функций в зависимости от геометрического строения различных классов жордановых областей. Полученные результаты являются обобщением известного условия непрерывности функции по Дини для круга.
Досліджуються достатні умови неперервності гармонічно спряжених функцій в залежності від геометричної будови різних класів жорданових областен. Одержані результати є узагальненням відомої умови неперервності функції за Діні для круга.

1. Пусть G - область в комплексной плоскости \mathbb{C}, имеющая жорданову границу L, точка $a \in G$. Обозначим через $\varphi: G \rightarrow D$ конформное отображение области G на единичный круг $D=\{w:|w|<1\}$, нормированное условиями $\varphi(a)=0, \varphi^{\prime}(a)=1 / R>0$, где $R-$ внутренний конформный радиус G относительно точки a.. Пусть $\psi=\varphi^{-1}$ - обратное конформное отображение. По теореме Каратеодори φ и ψ продолжаются до гомеоморфизма между замыканием области G и замыканием круга D.

Рассмотрим функцию $u(z)$, гармоническую в G и непрерывную в \bar{G}, имеющую контурный модуль непрерывности $\omega_{u}(t)$ на $L[1]$. Обозначим чंерез $v(z)$ функцию, гармонически сопряженную функции $u(z)$ в области G, и нормируем ее условием $v(a)=0$. Функция $g(z)=u(z)+i v(z)$ аналитична в области G.

В данной работе исследуются достаточные условия на модуль непрерывности $\omega_{u}(t)$, которые гарантируют непрерывность аналитической функции $g(z)$ в \bar{G}, т.е. принадлежность $g(z)$ классу $A(\bar{G})$. Очевидно, что в нашем случае $g(z) \in A(\bar{G}) \Leftrightarrow v(z) \in C(\bar{G})$.

Когда область G является кругом, решение поставленной задачи хорошо известно. Если вещественная часть аналитической функции $u(z)$ имеет контурный модуль непрерывности $\omega_{u}(t)$ на L и при некотором $\varepsilon>0$

$$
\begin{equation*}
\int_{0}^{\varepsilon} \omega_{u}(t) t^{-1} d t<\infty \tag{1}
\end{equation*}
$$

то $g(z) \in A(\bar{G})$, причем для телесного модуля непрерывности $g(z)$ в \bar{G} справедлива оценка

$$
\begin{equation*}
\omega_{g}(t) \leq C_{5}\left(\int_{0}^{t} \omega_{u}(s) s^{-1} d s+t \int_{t}^{\pi} \omega_{u}(s) s^{-2} d s\right) \tag{2}
\end{equation*}
$$

Ясно, что эта же оценка справедлива для телесного модуля непрерывности мнимой части $\omega_{\nu}(t)$ на $\bar{G}[1, ~ c .126 ; 2, ~ c .110] . ~$
2. В дальнейшем нам потребуется понятие приведения модуля $\mu_{a}\left(z_{1}, z_{2}, G\right)$ [3] семейства кривых, отделяющих точки z_{1} и z_{2} от точки a в G.

Пусть $\lambda(t)$ - строго монотонно убывающая функция такая, что $\forall z_{1}, z_{2} \in L$

$$
\begin{equation*}
\mu_{a}\left(z_{1}, z_{2}, G\right) \leq \lambda\left(\left|z_{1}-z_{2}\right|\right) \tag{3}
\end{equation*}
$$

Теорема 1. Если для области G выполняется (3) и при некотором $\varepsilon>0$

$$
\begin{equation*}
\int_{0}^{\varepsilon} \omega_{u}(s) d(\lambda(s))>-\infty \tag{4}
\end{equation*}
$$

mo $v(z) \in C(\bar{G})$.

Доказательство. Перейдем с помощью конформного отображения $\psi(w)$ от области G к кругу D. Тогда функция $u \circ \psi(w)$ является гармонической в D и непрерывной в \bar{D}. Из (1) следует, что если для контурного модуля непрерывности $\omega_{\mu ь \psi}(t)$ на ∂D выполняется условие Дини

$$
\begin{equation*}
\int_{0}^{\varepsilon} \omega_{\mu \circ \psi}(t) t^{-1} d t<\infty \tag{5}
\end{equation*}
$$

то аналитическая функция $g \circ \psi(w) \in A(\bar{D})$, где $g \circ \psi(w)=u \circ \psi(w)+i v \circ \psi(w)$. В силу непрерывности конформного отображения $\psi(w)$ имеем $g \circ \psi(w)$ € $\in A(\bar{D}) \Leftrightarrow g(z) \in A(\bar{G})$, поэтому для доказательства теоремы покажем, что из (4) следует (5).

Если $\omega_{\psi}(t)$ - телесный модуль непрерывности $\psi(w)$ на \bar{D}, то $\omega_{u \circ \psi}(t) \leq \omega_{u}$ 。 - $\omega_{\psi}(t)$. Используя теоремы искажения расстояний при конформном отображении [3], из (3) получаем

$$
\left|w_{1}-w_{2}\right| \geq c_{2} e^{-\pi \lambda\left(z_{1}-z_{2} \mid\right)}
$$

где $z_{1}=\psi\left(w_{1}\right), z_{2}=\psi\left(w_{2}\right)$, а C_{2} зависит только от G.
Из последнего неравенства следует, $\omega_{\psi}(t) \leq s(t)$, где $s(t)$ - функция, обратная $t(s)=c_{2} e^{-\pi \lambda(s)}$. На основании изложенного выше, можно записать следующую цепочку неравенств:

$$
\begin{aligned}
& \int_{0}^{\varepsilon} \omega_{u \circ \psi}(t) t^{-1} d t \leq \int_{0}^{\varepsilon} \omega_{u} \circ \omega_{\psi}(t) t^{-1} d t \leq \int_{0}^{\varepsilon^{\prime}} \omega_{u}(s) t^{-1}(s) d(t(s))= \\
& \quad=\int_{0}^{\varepsilon^{\prime}} \omega_{u}(s) t^{-1}(s) t(s) d(-\pi \lambda(s))=\int_{0}^{\varepsilon^{\prime}} \omega_{u}(s) d(-\pi \lambda(s)) .
\end{aligned}
$$

Следовательно, если $\int_{0}^{\varepsilon} \omega_{u}(s) d(\lambda(s))>-\infty$, то $v(z) \in C(\bar{G})$.
Мажоранту $\lambda(t)$, фигурирующую в соотношении (3), можно задать непосредственно по геометрии области G. Для этого рассмотрим характеристику

$$
\begin{equation*}
\mu_{G}(t)=\sup _{\substack{t \leq\left|z_{1}, z_{2}\right| \leq t_{0} \\ z_{1}, z_{2} \in L}} \mu_{a}\left(z_{1}, z_{2}, G\right), \tag{6}
\end{equation*}
$$

где $t_{0}=\operatorname{diamL} / 2$. Характеристика $\mu_{G}(t)$ является вариантом характеристики, введенной в [4]. Очевидно, что для нее выполняется (3), поэтому остается показать строго монотонное убывание $\mu_{G}(t)$. По способу задания функции $\mu_{G}(t)$ сразу можно сказать, что она не возрастает.

Рассмотрим следующую теорему искажения [3]:

$$
\begin{equation*}
\left|\varphi\left(z_{1}\right)-\varphi\left(z_{2}\right)\right|=4 R \sqrt{R^{-1}-e^{-2 \pi \mu_{a}}} e^{-\pi \mu a}, \tag{7}
\end{equation*}
$$

где $\mu_{a}=\mu_{a}\left(z_{1}, z_{2}, G\right), z_{1}, z_{2} \in L$. Из (7) видно, что

$$
\begin{equation*}
\inf _{\substack{t \leq\left|\left.\right|_{1} z_{2}\right| \leq t_{0} \\ z_{1}, z_{2} \in L}}\left|\varphi\left(z_{1}\right)-\varphi\left(z_{2}\right)\right|=4 R \sqrt{R^{-1}-e^{-2 \pi \mu_{G}(t)}} e^{-\pi \mu_{G}(t)} . \tag{8}
\end{equation*}
$$

Учитывая непрерывность $\varphi(z)$ в \bar{G}, мы можем утверждать, что последний \inf достигается в некоторых точках $\zeta_{1}, \zeta_{2} \in L$, т.е. $\mu_{G}(t)=\mu_{a}\left(\zeta_{1}, \zeta_{2}, G\right)$. Используя соотношение между гармонической мерой в области G относительно точки a дуги $\bar{z}_{1} z_{2} \subset L$ и приведенным модулем [3]

$$
\begin{equation*}
\sin \frac{1}{4} m\left(z_{1} z_{2}\right)=\sqrt{R} e^{-\pi \mu_{a}\left(z_{1}, z_{2}, G\right)} \tag{9}
\end{equation*}
$$

получаем $\zeta_{1}-\zeta_{2} \mid=t$. Действительно, если $\zeta_{1}-\zeta_{2} \mid>t$, то существует $\zeta_{3} \in L$: $\zeta_{1}-\zeta_{3} \mid=t$ и $\zeta_{3} \in \zeta_{1} \zeta_{2}$. Используя конформную инвариантность гармонической меры, легко показать, что $m\left(\zeta_{1} \zeta_{3}\right)<m\left(\zeta_{1} \zeta_{2}\right)$. Из (9) непосредственно имеем

$$
\mu_{a}\left(\zeta_{1}, \zeta_{3}, G\right)>\mu_{a}\left(\zeta_{1}, \zeta_{2}, G\right)=\mu_{G}(t),
$$

что приводит к противоречию.
Приведенные выше рассуждения показывают, что если $t_{1}<t_{2}$, то $\mu_{G}\left(t_{1}\right)>$ $>\mu_{G}\left(t_{2}\right)$. Кроме этого мы можем определить $\mu_{G}(t)$ следующим эквивалентным образом:

$$
\begin{equation*}
\mu_{G}(t)=\max _{\substack{\left|z_{1}-z_{2}\right|=t \\ z_{1}, z_{2} \in L}} \mu_{a}\left(z_{1}, z_{2}, G\right) \tag{10}
\end{equation*}
$$

Отметим, что $\mu_{G}(t)$ является чисто геометрической характеристикой области G. Суммируя полученные результаты, получаем следующую теорему.

Теорема 2. Если выполнено условие

$$
\begin{equation*}
\int_{0}^{\varepsilon} \omega_{u}(s) d\left(\mu_{G}(s)\right)>-\infty \tag{11}
\end{equation*}
$$

mo $v(z) \in C(\bar{G})$.
Перейдем к рассмотрению некоторых подклассов жордановых областей. Пусть $f(x)$ - произвольная непрерывная на $[0, \infty)$ функция, $f(0)=0,0<f(x) \leq x$ при $x>0$. Будем говорить, что область G удовлетворяет $f(x)$-условию Джона [4], если $\exists K>0, a \in G$, такие, что $\forall z \in L$. существует спрямляемая дуга l_{z} длины $l<K$ с естественной параметризацией $\zeta=\zeta(s), \zeta(0)=z, \zeta(l)=a$, для которой $\operatorname{dist}(\zeta(s), L) \geq f(s)$ при $s \in[0, l]$.

Теорема 3. Пусть G удовлетворяет $f(x)$-условию Джона. Если при некотором $\varepsilon>0$

$$
\begin{equation*}
\int_{0}^{\varepsilon} \omega_{u}(s) f^{-1}(s) d s<\infty \tag{12}
\end{equation*}
$$

mo $v(z) \in C(\bar{G})$
Доказательство. Из теоремы 2 работы [4] следует оценка для приведенного модуля:

$$
\begin{equation*}
\mu_{a}\left(z_{1}, z_{2}, G\right) \leq C_{3} \int_{\left|z_{1}-z_{2}\right| / 4}^{K} \frac{d s}{f(s)} \tag{13}
\end{equation*}
$$

где $z_{1}, z_{2} \in L$, а C_{3} зависит только от G.
Выберем функцию $\lambda(t)$ равной правой части в (13). Тогда

$$
\int_{0}^{\varepsilon} \omega_{u}(s) d\left(C_{3} \int_{s / 4}^{K} f^{-1}(s) d s\right)=-C_{3} \int_{0}^{\varepsilon} \omega_{u}(s) f^{-1}(s / 4) d s \geq-C_{4} \int_{0}^{\varepsilon^{\prime}} \omega_{u}(s) f^{-1}(s) d s
$$

По теореме 1 условие (12) гарантирует непрерывность $v(z)$ в \bar{G}.
Следствие 1. Если G удовлетворяет ах-условио Джона, где $0<a<1$, то для непрерывности $v(z)$ в \bar{G} достаточно, чтобы

$$
\begin{equation*}
\int_{0}^{\varepsilon} \omega_{u}(s) s^{-1} d s<\infty \tag{14}
\end{equation*}
$$

Следствие 2. Если G удовлетворяет ах \boldsymbol{x}^{α}-условию Джона ($\alpha>1$), то

для непрерывности $v(z)$ в \bar{G} достаточно, чтобы

$$
\begin{equation*}
\int_{0}^{\varepsilon} \omega_{u}(s) s^{-\alpha} d s<\infty . \tag{15}
\end{equation*}
$$

Отметим следующее [4]:

1) $a x$-условию Джона удовлетворяют области с квазиконформной границей, липшицевы области и области с внутренним условием клина раствора α фиксированного радиуса;
2) $a x^{\alpha}$-условию Джона удовлетворяют локальные $\mathrm{Lip} 1 / \alpha$-области и области, граница которых состоит из конечного числа квазиконформных дуг, гладких в окрестностях точек стыка и образующих в них нулевые углы порядка касания не выше α.

Условие (14) является точным даже для круга (см., например, [2, с.131]). Показать точность условия (12) не удалось.
3. Мы можем выписать оценку телесного модуля непрерывности функции $g(z)$ в \bar{G} через $\omega_{u}(t)$ и телесные модули непрерывности прямого и обратного конформных отображений $\omega_{\varphi}(t)$ и $\omega_{\psi}(t)$. Для этого нужно воспользоваться рассуждениями, аналогичными приведенным при доказательстве теоремы 1. Сначала переносим $g(z)$ с помощью отображения $z=\psi(w)$ в круг D, затем оцениваем модуль непрерывности полученной функции в круге по (2) и переносим ее с помощью отображения $w=\varphi(z)$ снова в область G.

Рассмотрим частный случай, когда $\varphi, \psi \in \operatorname{Lip} 1$. Используя ту же схему, из (2) получаем

$$
\begin{equation*}
\omega_{g}(t) \leq C_{5}\left(\int_{0}^{t} \omega_{u}(s) s^{-1} d s+t \int_{t}^{\pi} \omega_{u}(s) s^{-2} d s\right), \tag{16}
\end{equation*}
$$

где C_{5} не зависит от t.
Следовательно, при $\varphi, \psi \in \operatorname{Lip1} 1$ для области G справедлива теорема Привалова [5, с.400]. А именно, если $u(z) \in \operatorname{Lip} \alpha, 0<\alpha<1$, на границе области L, то $g(z) \in \operatorname{Lip} \alpha$ на \bar{G}.

В [6] построен пример области G, для которой $\varphi, \psi \in \operatorname{Lip} 1$, но $L=\partial G$ не является асимптотически конформной кривой. Таким образом, существуют области, для которых справедлива теорема Привалова при всех $\alpha \in(0,1)$, с границами, не являющимися асимптотически конформными кривыми. Этот пример дополняет результаты работы [7, c. 162-163].

1. Тамразов П. М. Гладкости и полиномиальные приближения. - Киев: Наук. думка, 1975. 270c.
2. Гарнетт Дж. Ограниченные аналитические функции. - М.: Мир, 1984. - 470с.
3. Belyi V.I. Development of the method of conformal invariants and quasiconformal quasiinvariants from the viewpoint of application to problems of polynomial approximation // Approxim. function spaces: Proc. Int. Conf. (Gdansk, Aug. 27-31, 1979). -Amsterdam, etc.: North-Holl. Publ. comp., 1981. - P.102-121.
4. Маймескул В. В. Оценки роста сопряженных гармонических полиномов в областях комплексной плоскости // Укр. мат. журн. - 1990. - 42, №6. - С.772-777.
5. Голузин Г. М. Геометрическая теория функций комплексного переменного.- М.: Наука, 1966. -628c.
6. Lesley F. D. Domains with Lipschitz mapping functions // Ann.Acad.sci. Fenn. Ser. A. Math. 1983. - 8. - P.219-233.
7. Андриевский В. В. Об одной теореме И.И.Привалова // Anal..math.-1990.-16, №3.-P.159-172.

Получено 01.04.92

