В. И. Рязанов, канд.физ.-мат.наук (Ин-т прикл. математики и механики АН Украины, Донецк)

РЕІІЕНИЕ ПРОБЛЕМЫ РАЙХА - ВОЛЬКЗАКА О КОНФОРМНОСТИ ПО БЕЛИНСКОМУ - ЛАВРЕНТЬЕВУ

Приведено положительное решение проблемы Райха - Волькзака относительно конформности по Белинскому - Лаврентьеву квазиконформных отображений в точке в случае произвольного модуля комплексной характеристики при соответствующем выборе ее аргумента.
Наведено позитивний розв'язок проблеми Райха - Волькзака відносно конформності за Белінським - Лаврентьєвим квазіконформних відображень у точці у випадку довільного модуля комплексної характеристики при відповідному виборі їі аргументу.
Данная статья продолжает исследования поведения комплексных характеристик и дифференцируемости квазиконформных отображений в точке, начатые в работах [1-13].

В п. 1 приведены некоторые общие свойства сходимости комплексных характеристик, индуцируемой локально равномерной сходимостью квазиконформных отображений. В п. 2 сформулирован основной результат (теорема 1) о том, что при любом модуле комплексной характеристики всегда можно так подобрать ее аргумент, чтобы соответствующее квазиконформное отображение было конформным по Белинскому в данной точке. Наконец, в п. 3 приведено доказательство этого утверждения. При этом существенно использован результат работы [13] о критериях дифференцируемости по Белинскому.

1. О сходимости характеристик. Согласно аналитическому определению Q-квазиконформным (Q-к.к.) отображением принято называть обобщенное гомеоморфное решение класса Соболева $W_{2, \text { loc }}^{1}$ уравнения Бельтрами

$$
\begin{equation*}
f_{\bar{z}}=\mu(z) f_{z} \tag{1}
\end{equation*}
$$

где

$$
\begin{equation*}
|\mu(z)| \leq q=\frac{(Q-1)}{(Q+1)}<1 \tag{2}
\end{equation*}
$$

Условие (2) означает равномерную эллиптичность уравнения (1). Коэффициент μ из (1) называется комплексной характеристикой отображения f.

Обозначим через π_{q} пространство всех комплексных характеристик Q к.к. отображений $\overline{\mathrm{C}}$ на себя, т.е. шар радиуса $q<1$ с центром в нуле пространства $\mathcal{L}^{\infty}(\mathbb{C})$. Будем говорить, что μ_{n} сходится к μ в смысле характеристик и писать $\mu_{n} \xrightarrow{\text { ch. }} \mu$, если соответствующие Q-к.к. отображения с́ходятся локально равномерно (л.р.), $f_{n} \xrightarrow{\text { л.р. }} f$ (см. [8-12]).

Абстрактные пространства со сходимостями впервые были введены Фреше (1906 г.). Урысон в 1924 г. ввел в этих пространствах дополнительную аксиому, которая в секвенциально компактных пространствах формулируется так: всякая последовательность, имеющая единственную точку накопления, сходится в этой точке.

В работах [8-12] установлен ряд общих свойств пространства характеристик, таких как метризуемость, секвенциальная компактность, локальный характер сходимости характеристик и др.

Отметим, что л.р. сходимость-для Q-к.к. отображений равносильна простой (поточечной) сходимости [1, с.76]. Далее, выбирая соответствующие последовательности f_{n} и $g_{n}, n=1,2, \ldots, Q-$ к.к. отображений и используя связь характеристик

$$
\begin{equation*}
\mu_{f \circ g^{-1}}=\left\{\frac{\mu_{f}-\mu_{g}}{1-\mu_{f} \bar{\mu}_{g}} \cdot \frac{g_{z}}{\bar{g}_{z}}\right\} \circ g^{-1} \tag{3}
\end{equation*}
$$

получаем следующее утверждение.

Предложение 1. Пусть $\mu, \mu_{n} \in \Re_{q}, n=1,2, \ldots, u . \mu_{n} \xrightarrow{\text { ch. }} \mu \quad n p u n \rightarrow \infty$. Тогда: 1) для любого с $\in \mathbb{C}$:

$$
\begin{equation*}
\mu_{n}(z+c) \xrightarrow{\text { ch. }} \mu(z+c) ; \tag{4}
\end{equation*}
$$

2) для любого $a \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$:

$$
\begin{equation*}
\mu_{n}(a z) \frac{\bar{a}}{a} \xrightarrow{\text { ch. }} \mu(a z) \frac{\bar{a}}{a} \tag{5}
\end{equation*}
$$

3) для любьх c_{0} ис $c_{n} \in \mathbb{C}, n=1 ; 2, \ldots$, таких, чтос $\boldsymbol{q}_{n} \rightarrow c_{0}$ при $n \rightarrow \infty$,

$$
\begin{equation*}
\mu_{n}\left(z+c_{n}\right) \xrightarrow{\text { ch. }} \mu\left(z+c_{0}\right) \tag{6}
\end{equation*}
$$

4) для любь $<a_{0}$ и $a_{n} \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}, n=1,2, \ldots$, таких, чтоа $a_{n} \rightarrow a_{0}$ при $n \rightarrow \infty$,

$$
\begin{equation*}
\mu_{n}\left(a_{n} z\right) \frac{\bar{a}_{n}}{a_{n}} \xrightarrow{\text { ch. }} \mu\left(a_{0} z\right) \frac{\bar{a}_{0}}{a_{0}} \tag{7}
\end{equation*}
$$

5) для любого дробно-линейного отображения $\varphi: \mathbb{C} \rightarrow \mathbb{C}$

$$
\begin{equation*}
\mu_{n}(\varphi(z)) \frac{\overline{\varphi^{\prime}(z)}}{\varphi^{\prime}(z)} \xrightarrow{\text { ch. }} \mu(\varphi(z)) \frac{\overline{\varphi^{\prime}(z)}}{\varphi^{\prime}(z)} \tag{8}
\end{equation*}
$$

Пусть $E \subseteq С$ - произвольное измеримое по Лебегу множество и $\mu_{n} \xrightarrow{\text { ch. }} \mu$. Тогда, например, из теоремы Штребеля [4] и соотношения (3) на основе аксиомы Урысона следует $\chi \mu_{n} \xrightarrow{\text { ch. }} \chi \mu$, где χ - характеристическая функция множества E. Функцию $\tilde{\mu}=\chi \mu$ в дальнейшем будем называть срезкой функции μ на множестве E.

Будем говорить, что последовательность измеримых множеств $E_{n} \subseteq С, ~ n=$ $=1, .2, \ldots$, сходится к измеримому множеству E по мере, если сходятся по мере их характеристические функции $\chi_{n} \xrightarrow{\text { mes }} \chi$. Это равносильно тому, что mes $\left(E \Delta E_{n}\right) \rightarrow 0$ при $n \rightarrow \infty$, где $E \Delta E_{n}=\left(E \backslash E_{n}\right) \cup\left(E_{n} \backslash E\right)$ - симметрическая разность множеств.

Далее, говорим, что последовательность множеств $E^{k} \subseteq C, n=1, .2, \ldots$, является исчерпанием плоскости \mathbb{C} по мере, если

$$
\begin{equation*}
\operatorname{mes} C \backslash \bigcup_{k=1}^{\infty} E^{k}=0 \tag{9}
\end{equation*}
$$

В работе [12] было установлено (лемма 5), что если $\mu_{n} \xrightarrow{\text { ch. }} \mu$. $\kappa_{n} \xrightarrow{\text { ch. }} \kappa$ и $\mu_{n}-\kappa_{n} \rightarrow 0$ по мере при $n \rightarrow \infty$ на некотором множестве E, то $\mu=\kappa$ почти всюду (п.в.) на E. Отсюда на основе аксиомы Урысона получаем:

Предложение 2. Пусть $E^{k}, k=1,2, \ldots$, - некоторое исчерпание плоскости по мере и пусть $E_{n}^{k} \subseteq С, k, n=1,2, \ldots$, - некоторые измеримые множества, такие, что при каждом фиксированном $k=1,2, \ldots, E_{n}^{k} \rightarrow E^{k}$ по мере при $n \rightarrow \infty$. Тогда для μ и $\mu_{n} \in \pi_{q}, n=1,2, \ldots$, следующие утверждения эквивалентны: 1) $\mu_{n} \xrightarrow{\text { ch. }} \mu$ при $n \rightarrow \infty$;
2) $\chi^{k} \mu_{n} \xrightarrow{\text { ch. }} \chi^{k} \mu \quad$ для каждого $k=1,2, \ldots$;

3) $\chi_{n}^{k} \mu_{n} \xrightarrow{\text { ch. }} \chi^{k} \mu$ для всех $k=1,2, \ldots$

Здесь через χ^{k} и χ_{n}^{k} обозначены характеристические функции множеств E^{k} и $E_{n}^{k}, k, n=1,2, \ldots$, соответственно. Отметим, что множества $E_{n}^{k}, k=1,2, \ldots$, в отличие от множеств $E^{k}, k=1,2, \ldots$, могут и не образовывать исчерпание плоскости по мере ни при одном $n=1,2, \ldots$.
2. $К$ проблеме Райха - Волькзака. Если два квазиконформных отображения f и g имеют одинаковую комплексную характеристику μ в окрестности точки z_{0}, то в этой окрестности $f=\mathscr{A} \circ g$, где \mathscr{A} - некоторая аналитическая функция. Таким образом, дифференциальные свойства квазиконформного отображения в точке полностью определяются комплексной характеристикой этого отображения в окрестности данной точки.

В работе [7] высказана гипотеза, что каков бы ни был модуль комплексной характеристики $g(z)=|\mu(z)|$, можно всегда так подобрать аргумент $\arg \mu(z)$, что соответствующее квазиконформное отображение $f(z)$ будет конформным в любой наперед заданной точке $z_{0} \in \mathbb{C}$. Эта проблема остается открытой.

Напомним, что отображение f называется конформным в точке z_{0}, если оно дифференцируемо в этой точке в смысле Дарбу - Штольца:

$$
f(z)-f\left(z_{0}\right)=f_{z}\left(z_{0}\right)\left(z-z_{0}\right)+f_{\bar{z}}\left(z_{0}\right) \overline{\left(z-z_{0}\right)}+o\left(\left|z-z_{0}\right|\right)
$$

и если $f_{\bar{z}}\left(z_{0}\right)=0$, а $f_{z}\left(z_{0}\right) \neq 0$.
Как установил Б.В.Шабат (см., например, [2, с.40]), даже при непрерывной комплексной характеристике $\mu(z)$ соответствующее квазиконформное отображение $f(z)$ может быть недифференцируемым в указанном смысле. Однако в этом случае, как, по-видимому, впервые установил П.П.Белинский [2, с.41], $u=$ $=f(z)$ дифференцируемо в следующем смысле:

$$
\begin{equation*}
\Delta u=A(\rho)\left[\Delta z+\mu_{0} \overline{\Delta z}+o(\rho)\right], \tag{10}
\end{equation*}
$$

где $\mu_{0}=\mu\left(z_{0}\right), A(\rho)$ зависит только от $\rho=\left|\Delta z+\mu_{0} \overline{\Delta z}\right|$, а $o(\rho) / \rho \rightarrow 0$ при $\rho \rightarrow 0$. Как показано в работе [13], при этом для любого $t>0$

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} A(t \rho) / A(\rho)=1 . \tag{11}
\end{equation*}
$$

Дифференцируемость в смысле (10), (11) в дальнейшем именуется как̆ дифференцируемость по Белинскому. При этом μ_{0} в (10) не обязательно равно $\mu\left(z_{0}\right)$.

Будем также говорить, что f конформно в точке z_{0} по Белинскому, если f дифференцируемо в этой точке по Белинскому и в (10) $\mu_{0}=0$. В [13] установлено, что для конформности по Белинскому в нуле отображения $f: \overline{\mathrm{C}} \rightarrow \overline{\mathrm{C}} \mathrm{c}$ нормировками $f(0)=0$ и $f(\infty)=\infty$ необходимо и достаточно, чтобы для любого $\zeta \in \mathbb{C}$

$$
\begin{equation*}
\lim _{z \rightarrow 0} \frac{f(z \zeta)}{f(z)}=\zeta . \tag{12}
\end{equation*}
$$

При этом предел является локально равномерным относительно ζ.
В частности, отсюда при $|\zeta|=1$ получаем

$$
\begin{equation*}
\lim _{r \rightarrow 0} \max _{|z|=r}|f(z)| / / \min _{|z|=r}|f(z)|=1, \tag{13}
\end{equation*}
$$

т.е. характеристика Лаврентьева $p(0)=1$. В этом случае естественно говорить, что отображение f конформно в нуле в смысле Лаврентьева. Как мы видим, из

обычной конформности следует конформность по Белинскому, а из последней - конформность по Лаврентьеву, означающая геометрически, что инфинитезимальный круг в данной точке переходит в инфинитезимальный круг. Отметим также, что при конформности по Белинскому из (12) имеем

$$
\begin{gather*}
\lim _{z \rightarrow 0}[\arg f(z \zeta)-\arg f(z)]=\arg \zeta \tag{14}\\
\lim _{z \rightarrow 0}|f(z \zeta)| /|f(z)|=|\zeta| \tag{15}
\end{gather*}
$$

Таким образом, соотношения (14) и (15) являются характеристическим свойством конформности по Белинскому и геометрически означает отсутствие в данной точке относительной деформации и сохранение углов в указанном смысле. Отме тим, что в отличие от обычной конформности допускается переход радиальной линии в бесконечную накручивающуюся спираль, а также бесконечно большое растяжение и сжатие в точке.

В работе [13] показано, что необходимым и достаточным условием конформности по Белинскому в нуле является сходимость $\mu(\tau z) \xrightarrow{\text { ch. }} 0$ при $\tau \rightarrow$ $\rightarrow 0$ в смысле характеристик. Этот критерий в сочетании с результатами работ $[8,10]$ позволит нам дать положительное решение проблемы Райха - Волькзака относительно конформности по Белинскому. Именно, справедлива следующая теорема.

Теорема 1. Пусть $q(z): \mathbb{C} \rightarrow \mathbb{R}$ - произвольная измеримая функция такая, что $0 \leq q(z) \leq q<1$. Тогда существует измеримая функция $\vartheta(z): \mathbb{C} \rightarrow \mathbb{R}$, для которой квазиконформное отображение $f(z): \bar{C} \rightarrow \bar{C}$ с комплексной характеристикой $\mu(z)=g(z) e^{i v(z)}$ и нормировками $f(0)=0, f(1)=1$ и $f(\infty)=\infty$ является конформным по Белинскому в нуле.
3. Доказательство теоремья 1. Согласно упомянутому критерию достаточно показать, что $\mu_{\tau}(z)=\mu(\tau z) \xrightarrow{\text { ch. }} 0$ при $\tau \rightarrow 0$ в смысле характеристик при соответствующем выборе $\vartheta(z)=\arg \mu(z)$. Семейству характеристик $\mu_{\tau}(z)$ отвечает семейство отображений $f_{\tau}: \overline{\mathrm{C}} \rightarrow \overline{\mathrm{C}}, \tau>0$,

$$
\begin{equation*}
f_{\tau}(z)=f(\tau z) / f(\tau) \tag{16}
\end{equation*}
$$

нормированных условиями $f_{\tau}(0)=0, f_{\tau}(1)=1$ и $f_{\tau}(\infty)=\infty$. Сходимость $\mu_{\tau}(z) \xrightarrow{\text { ch. }} 0$ в смысле характеристик эквивалентна сходимости $f_{\tau}(z) \xrightarrow{\text { л.р. }} z$ на $\mathbb{C}_{0}=\mathbb{C} \backslash \mathbb{R}^{-}$, где \mathbb{R}^{-}- отрицательная вещественная полуось [1, с.76].

Таким образом, конформность по Белинскому f в нуле эквивалентна сходимости $F_{t}(\zeta) \xrightarrow{\text { л.р. }} e^{\zeta}$ при $t \rightarrow+\infty$, где

$$
\begin{equation*}
F_{t}(\zeta)=f\left(e^{\zeta-t}\right) / f\left(e^{-t}\right) \tag{17}
\end{equation*}
$$

- семейство отображений $F_{t}(\zeta): \Pi \rightarrow \mathbb{C} \backslash f\left(\mathbb{R}^{-}\right), t \in \mathbb{R}$, заданиых в полосе

$$
\begin{equation*}
\Pi=\{\zeta \in C:|\operatorname{Im} \zeta|<\pi\} . \tag{18}
\end{equation*}
$$

Их комплексные характеристики равны $\mathrm{M}(\zeta-t)$, где

$$
\begin{equation*}
\mathrm{M}(\zeta)=\mu\left(e^{\zeta}\right) e^{-2 i \operatorname{Im} \zeta} \tag{19}
\end{equation*}
$$

т.е.

$$
\begin{equation*}
|\mathrm{M}(\zeta)|=q\left(e^{\zeta}\right) \tag{20}
\end{equation*}
$$

и

$$
\begin{equation*}
\alpha(\zeta)=\arg M(\zeta)=\vartheta\left(e^{\zeta}\right)-2 \operatorname{Im} \zeta . \tag{21}
\end{equation*}
$$

Пусть

$$
v(z)=\left\{\begin{array}{l}
\mathrm{M}(\zeta), \zeta \in \Pi \tag{22}\\
0, \zeta \in C \backslash \Pi
\end{array}\right.
$$

В силу леммы 5 [12] и секвенциальной компактности пространства \dddot{m}_{q} доказываемое утверждение эквивалентно тому, что $v(\zeta-t) \xrightarrow{\text { ch. }} 0$ при $t \rightarrow+\infty, t \in \mathbb{R}$. Обозначим через

$$
\begin{equation*}
\Pi_{l}=\{\zeta \in \Pi: l \leq \operatorname{Re} \zeta<l+1\}, \tag{23}
\end{equation*}
$$

$l=0, \pm 1, \pm 2, \ldots$, полуоткрытые прямоугольники, образующие исчерпание полосы П, а через χ_{l} характеристические функции этих прямоугольников. В дальнейшем для произвольной функции $\varphi(\zeta): \mathbb{C} \rightarrow \mathbb{C}$ обозначаем

$$
\begin{equation*}
\varphi_{l}(\zeta)=\varphi(\zeta) \chi_{l}(\zeta), l=0, \pm 1, \pm 2, \ldots, \tag{24}
\end{equation*}
$$

и

$$
\begin{equation*}
\varphi^{(t)}(\zeta)=\varphi(\zeta-t), t \in \mathrm{R} . \tag{25}
\end{equation*}
$$

Поскольку указанные операции срезания и сдвига функций не коммутируют друг с другом, то уточним обозначение

$$
\begin{equation*}
\varphi_{l}^{(t)}(\zeta)=\left[\varphi^{(t)}(\zeta)\right]_{l}=\varphi(\zeta-t) \chi_{l}(\zeta) . \tag{26}
\end{equation*}
$$

В этих обозначениях критерий доказываемого утверждения состоит в том, что при $t \rightarrow+\infty$

$$
\begin{equation*}
\mathrm{v}^{(t)} \xrightarrow{\text { ch. }} 0 . \tag{27}
\end{equation*}
$$

В силу предложения 2 это эквивалентно тому, что при $t \rightarrow+\infty$

$$
\begin{equation*}
\mathrm{v}_{l}^{(t)} \xrightarrow{\text { ch. }} 0 \tag{28}
\end{equation*}
$$

для всех $l=0, \pm 1, \pm 2, \ldots$. Заметим однако, что поскольку $\chi_{l}(\zeta)=\chi_{0}(\zeta-l)$, то

$$
\begin{equation*}
v_{l}^{(t)}(\zeta)=v_{0}^{(\tau)}(w), \tag{29}
\end{equation*}
$$

где $\tau=t-l$ и $w=\zeta-l$. Таким образом, в силу предложения 1 условие (28) эквивалентно условию

$$
\begin{equation*}
\mathrm{v}_{0}^{(t)} \xrightarrow{\mathrm{ch} .} 0 \tag{30}
\end{equation*}
$$

при $t \rightarrow+\infty, t \in \mathbb{R}$.
Пусть

$$
k(\zeta)=\left\{\begin{array}{l}
q\left(e^{\zeta}\right), \zeta \in \Pi, \tag{31}\\
0, \zeta \in \mathrm{C} \backslash \Pi .
\end{array}\right.
$$

Полагаем

$$
v(\zeta)=\left\{\begin{array}{c}
k(\zeta) e^{i \alpha_{l}(\zeta)}, \zeta \in \Pi_{l}, l=0,1,2, \ldots, \tag{32}\\
k(\zeta), \zeta \in C \backslash \Pi^{+},
\end{array}\right.
$$

где

$$
\begin{equation*}
\Pi^{+}=\bigcup_{l=0}^{+\infty} \Pi_{l}, \tag{33}
\end{equation*}
$$

а функции $\alpha_{l}(\zeta)$ подобраны так, что

$$
\begin{equation*}
\rho\left(v_{0}^{(l)}, 0\right)<2^{-l}, l=0,1,2, \ldots \tag{34}
\end{equation*}
$$

в некоторой метрике ρ из пространства характеристик \mathfrak{m}_{q}. Это всегда можно сделать в силу теоремы замыкания для класса характеристик со значениями из

семейства множеств $\mathrm{N}(\zeta)=\left\{v \in \mathrm{C}:|v|=k_{0}^{(l)}(\zeta)\right\}, \zeta \in \mathbb{C}$, состоящего в данном случае из окружностей с центром в нуле (см. [8, 10]).

Таким образом, по построению

$$
\begin{equation*}
\mathrm{v}_{0}^{(l)} \xrightarrow{\mathrm{ch} .} 0 \tag{35}
\end{equation*}
$$

при $l \rightarrow \infty, l=1,2, \ldots$. Покажем, что это влечет (30). В силу секвенциальной компактности пространства $\Im 刀_{q}$ для этого достаточно проверить, что

$$
\begin{equation*}
v_{0}^{\left(t_{n}\right)} \xrightarrow{\text { ch. }} 0 \tag{36}
\end{equation*}
$$

при $n \rightarrow \infty$ для произвольной последовательности $t_{n} \in \mathbb{R}^{+}, n=1,2, \ldots$, с $t_{n} \rightarrow \infty$.
Пусть $l_{n}=\left[t_{n}\right]$ и $\lambda_{n}=\left\{t_{n}\right\}$ - целая и дробная части $t_{n}, n=1,2, \ldots$, соответственно.
Тогда $l_{n} \rightarrow \infty$ при $n \rightarrow \infty$, а $\lambda_{n} \in[0,1), n=1,2, \ldots$. Без ограничения общности можно считать, что $\lambda_{n} \rightarrow \lambda_{0} \in[0,1]$.

Для любого $\lambda \in[0,1]$

$$
\chi_{0}(\zeta)=\chi_{0}(\zeta)\left[\chi_{0}(\zeta-(\lambda-1))+\chi_{0}(\zeta-\lambda)\right]=\kappa^{\lambda}(\zeta)+\eta^{\lambda}(\zeta),
$$

где κ^{λ} и η^{λ}-характеристические функции полуоткрытых прямоугольников

$$
\begin{aligned}
& P^{\lambda}=\{\zeta \in \mathrm{C}:|\operatorname{Im} \zeta|<\pi, 0 \leq \operatorname{Re} \zeta<\lambda\} \\
& R^{\lambda}=\{z \in \mathrm{C}:|\operatorname{Im} \zeta|<\pi, \lambda \leq \operatorname{Re} \zeta<1\} .
\end{aligned}
$$

Как видим, $\Pi_{0}=P^{\lambda} \cup R^{\lambda}$. В указанных обозначениях

$$
\begin{gathered}
v_{0}^{\left(t_{n}\right)}(\zeta)=\chi_{0}(\zeta) v\left(\zeta-l_{n}-\lambda_{n}\right)=\chi_{0}(\zeta)\left[v_{0}^{\left(1+l_{n}\right)}\left(\zeta-\left(\lambda_{n}-1\right)\right)+\right. \\
\left.+v_{0}^{\left(l_{n}\right)}\left(\zeta-\lambda_{n}\right)\right]=\kappa^{\lambda_{n}}(\zeta) v_{0}^{\left(1+l_{n}\right)}\left(\zeta-\left(\lambda_{n}-1\right)\right)+\eta^{\lambda_{n}}(\zeta) v_{0}^{\left(l_{n}\right)}\left(\zeta-\lambda_{n}\right) .
\end{gathered}
$$

Поэтому в силу предложений 1 и 2 из (35) получаем (36), что и завершает доказательство.

1. Lehto O., Virtanen K. Quassikonforme Abbildungen.- Berlin ect.: Springer, 1965.- 269 P.
2. Белинский П. П. Общие свойства квазиконформных отображений.- Новосибирск: Наука, 1974.-98 c.
3. Боярский Б. В. Обобщенные решения системы дифференциальных уравнений первого порядка эллиптического типа с разрывными коэффициентами//Мат. сб.-1957.- 43, № 4.C. 451-503.
4. Strebel K. Ein konvergenzsatz für Folgen quasiconformer Abbildungen// Comment. math. helv.-1969.- 44, N⒋- S. 469-475.
5. Teichmuller O. Untersuchungen über konforme und quasiconforme Abbildungen// Deutsche Math. -1938.- 3.- P. 621-673.
6. Wittich H. Zum Beweis eines Satzes uber quasiconforme Abbildungen//Math.Z.-1948.- 51.-P.278-288.
7. Reich E., Walczak H. On the behaviour of quasiconformal mappings at the point// Trans. Amer. Math. Soc.- 1965.- 117, №5.- P. 338-351.
8. Ryazanov V. I. Some quations of convergence and compactness for quasiconformal mappings// Amer. Math. Soc. Transl.- 1986.- 131, №.- P. 7-19.
9. Ryazanov V. I. On necessary and sufficient condition for convergence of complex dilatations// Pliska: Stud. math. bulg.- 1989.- 10.- P. 39-44.
10. Рязянов В. И. Некоторые вопросы сходимости и компактности для квазиконформных отображений// Теория отображений и приближение фуикций.- Киев: Наук. думка, 1983.C. 50-62.
11. Рязянов В. И. О сходимости характеристик квазиконформных отображений // Укр. мат. журн.- 1986.- 38, №2.- С. 200-204.
12. Рязянов В. И. О компактификации классов с интетральными ограничениями на характеристики Лаврентьева // Сиб. мат. журн.- 1992.- 33, № 1.- С. 87-104.
13. Рязянов В. И. Критерий дифференцируемости по Белинскому и его следствия // Укр. мат. журн.- 1992.- 44, №2.- С. 295-300.
