удк 519.71

В.Г. Скобелев, канд.физ.-мат.наук (Ин-т прикл. математики и механики АН Украины, Донецк)

ПРЕДСТАВЛЕНИЕ АВТОМАТОВ ГРУППАМИ

Рассматривается задача представления абстрактных автоматов конечными группами. Доказана универсальность предложенного представления и исследуются его свойства.

Розглядається задача зображення абстрактних автоматів скінченними групами. Доведена універсальність запропонованого зображення та досліджуються пого властивості.
Абстрактный автомат представляет собой три абстрактных конечных множества и два определенных на них абстрактных отображения. Такой объект задается таблицами, определяющими отображения, или, что эквивалентно, взвешенным мультиграфом. Поэтому основным методом решения задачи теории абстрактных автоматов является поиск ситуаций в пространстве, построенном с помощью указанных таблиц, или на графе. В то же время абстрактный автомат является конечной алгебраической системой. Детализация ее структуры позволяет "арифметизировать" вычисления, осуществляемые абстрактным автоматом. Это дает возможность, во-первых, классифицировать автоматы в зависимости от вычисляемых ими функций и, во-вторых, существенно использовать при решении задач теории автоматов аппарат современной алгебры. Именно на основе такого подхода и был выделен специальный, достаточно узкий класс автоматов - линейные последовательностные машины [1].

В настоящей статье предложен общий метод представления абстрактных автоматов конечными группами. Доказана универсальность этого представления и исследуются его свойства. Понятия и обозначения в работе такие же, как и в [2-4].

Пусть $\mathfrak{U}_{m n k} m \geq 1, n \geq 1, k \geq 2$, - множество всех автоматов $A=\left(Q_{k}, X_{m}, Y_{n}\right.$, δ_{A}, λ_{A}), имеющих фиксированные множество состояний $Q_{k}=\left\{q_{1}, \ldots, q_{k}\right\}$, входной $X_{m}=\left\{x_{1}, \ldots, x_{m}\right\}$ и выходной $Y_{n}=\left\{y_{1}, \ldots, y_{n}\right\}$ алфавиты $\left(\delta_{A}: Q_{k} \times X_{m} \rightarrow Q_{k}\right.$ и $\lambda_{A}: Q_{k} \times X_{m} \rightarrow Y_{n}-$ функции переходов и выходов автомата A). Запись $A=A^{\prime}$ ($A, A^{\prime} \in \mathfrak{Z}_{m n k}$) означает, что автоматы A и A^{\prime} равны друг другу как алгебраические системы, т.е. $\delta_{A}=\delta_{A^{\prime}}$ и $\lambda_{A}=\lambda_{A^{\prime}}$. Рассмотрим группы $\mathfrak{B}_{1}=\left(G_{1}\right.$, о) и $\mathfrak{B}_{2}=$ $=\left(G_{2}, *\right)$. Обозначим через $F_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right), m \geq 1, n \geq 1, k \geq 2$, множество всех упорядоченных наборов $\Phi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, \varphi_{5}, \varphi_{6}\right)$ из шести отображений, где $\varphi_{1}: Q_{k} \rightarrow G_{1}, \varphi_{2}: X_{m} \rightarrow G_{1}, \varphi_{3}: G_{1} \rightarrow Q_{k}, \varphi_{4}: Q_{k} \rightarrow G_{2}, \varphi_{5}: X_{m} \rightarrow G_{2}, \varphi_{6}: G_{2} \rightarrow Y_{n}$ Каждому набору $\Phi \in F_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$ поставим в соответствие такой автомат $B_{\Phi}=\left(q_{k}, X_{m}, Y_{n}, \delta_{\Phi}, \lambda_{\Phi}\right)$, что

$$
\begin{align*}
& \delta_{\Phi}(q, x)=\varphi_{3}\left(\varphi_{1}(q) \circ \varphi_{2}(x)\right), \\
& \lambda_{\Phi}(q, x)=\varphi_{6}\left(\varphi_{4}(q) * \varphi_{5}(x)\right) \tag{1}
\end{align*}
$$

для всех $q \in Q_{k}$ и $x \in X_{m}$. Положим $\mathfrak{u}_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)=\left\{B_{\Phi} \mid \Phi \in F_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)\right\}$. Ясно, что для любых групп \mathfrak{B}_{1} и \mathfrak{B}_{2} при всех $m \geq 1, n \geq 1$ и $k \geq 2$ справедливо соотношение

$$
\begin{equation*}
\varnothing \neq \mathfrak{U}_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right) \subseteq \mathfrak{U}_{m n k} \tag{2}
\end{equation*}
$$

Определение 1. Представлением автомата $A \in \mathfrak{U}_{m n k}$ группами \mathfrak{B}_{1} и \mathfrak{B}_{2}

назовем такой упорядоченный набор отображений $\Phi_{A}=\left(\varphi_{1}^{A}, \varphi_{2}^{A}, \varphi_{3}^{A}, \varphi_{4}^{A}, \varphi_{5}^{A}\right.$, $\left.\varphi_{6}^{A}\right) \in F_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$, ч $\quad \mathrm{mo} A=B_{\Phi_{A}}\left(B_{\Phi_{A}} \in \mathfrak{U}_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)\right)$.

Зафиксируем группы $\mathfrak{G}_{1}=\left(G_{1}, \circ\right)$ и $\mathfrak{G}_{2}=\left(G_{2}, *\right)$, а также значения $m \geq 1$, $n \geq 1$ и $k \geq 2$. Предположим, что для автомата $A \in \mathfrak{X}_{m n k}$ существует его представление $\Phi_{A} \in F_{\text {mnk }}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$ группами \mathfrak{B}_{1} и \mathfrak{B}_{2}, Так как $A=B_{\Phi_{A}}$, то δ_{A} $=\delta_{\Phi_{A}}$ и $\lambda_{A}=\lambda_{\Phi_{i}}$. Из последних двух равенств и из (1) вытекает справедливость следующих утверждений:

$$
\begin{aligned}
& \left(\forall q, q^{\prime} \in Q_{k}\right)\left(\left(\exists x \in X_{m}\right) \delta_{A}(q, x) \neq \delta_{A}\left(q^{\prime}, x\right) \Rightarrow q \neq q^{\prime}\left(\operatorname{ker} \varphi_{1}^{A}\right)\right), \\
& \left(\forall q, q^{\prime} \in Q_{k}\right)\left(\left(\exists x \in X_{m}\right) \lambda_{A}(q, x) \neq \lambda_{A}\left(q^{\prime}, x\right) \Rightarrow q \neq q^{\prime}\left(\operatorname{ker} \varphi_{4}^{A}\right)\right), \\
& \left(\forall q, x^{\prime} \in X_{m}\right)\left(\left(\exists q \in Q_{k}\right)\left(\delta_{A}(q, x) \neq \delta_{A}\left(q, x^{\prime}\right) \Rightarrow x \neq x^{\prime}\left(\operatorname{ker} \varphi_{2}^{A}\right)\right),\right. \\
& \left(\forall q, x^{\prime} \in X_{m}\right)\left(\left(\exists q \in Q_{k}\right)\left(\lambda_{A}(q, x) \neq \lambda_{A}\left(q, x^{\prime}\right) \Rightarrow x \neq x^{\prime}\left(\operatorname{ker} \varphi_{5}^{A}\right)\right),\right.
\end{aligned}
$$

Из этих утверждений, в частности, следует, что как число попарно различных строк, так и число попарно различных столбцов таблицы переходов (соответственно таблицы выходов) любого автомата $A \in \mathfrak{X}_{m n k}$ принадлежащего множеству $\mathfrak{U}_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$, не превышает $\left|G_{1}\right|$ (соответственно $\left.\left|G_{2}\right|\right)$. Следующая теорема указывает естественный способ расширения множества представлений автоматов $A \in \mathfrak{X}_{m n k}$ при фиксированных значениях параметров $m>1$, $n \geq 1$ и $k \geq 2$.

Теорема 1. Если группь $\mathfrak{B}_{1}, \mathfrak{B}_{1}^{\prime}$ и $\mathfrak{B}_{2}, \mathfrak{B}_{2}^{\prime}$ удовлетворяют условиям

$$
\begin{equation*}
\mathfrak{G}_{i} \leq \mathfrak{G}_{i}^{\prime}, i=1,2, \tag{3}
\end{equation*}
$$

то включение

$$
\begin{equation*}
\mathfrak{A}_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right) \subseteq \mathfrak{A}_{m n k}\left(\mathfrak{B}_{1}^{\prime}, \mathfrak{B}_{2}^{\prime}\right) \tag{4}
\end{equation*}
$$

справедливо для всех $m \geq 1, n \geq 1$ и $k \geq 2$.
Доказательство. Пусть группы $\mathfrak{G}_{1}=\left(G_{1}, \circ\right), \mathfrak{B}_{2}=\left(G_{2}, *\right), \mathfrak{B}_{1}^{\prime}=\left(G_{1}^{\prime}, \circ\right)$ и $\mathfrak{B}_{2}^{\prime}=\left(G_{2}^{\prime}, *\right)$ удовлетворяют условиям (3). Зафиксируем значения $m \geq 1, n \geq 1$ и $k \geq 2$. Выберем произвольный автомат $B_{\Phi}=\left(Q_{k}, X_{m}, Y_{n}, \delta_{\Phi}, \lambda_{\Phi}\right) \in \mathfrak{U}_{m n k}\left(\mathfrak{B}_{1}\right.$, $\left.\mathfrak{B}_{2}\right)$, где $\Phi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, \varphi_{5}, \varphi_{6}\right) \in F_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$. Из условий (3) вытекает, что справедливы включения $G_{i} \subseteq G_{j}^{\prime}, i=1,2$. Поэтому существует упорядоченный набор отображений $\Phi^{\prime}=\left(\varphi_{1}^{\prime}, \varphi_{2}^{\prime}, \varphi_{3}^{\prime}, \varphi_{4}^{\prime}, \varphi_{5}^{\prime}, \varphi_{6}^{\prime}\right) \in F_{m n k}\left(\mathfrak{G}_{1}^{\prime}, \mathfrak{B}_{2}^{\prime}\right)$, удовлетворяющий следующим трем условиям:

1) $\varphi_{1}^{\prime}(q)=\varphi_{1}(q)$ и $\varphi_{4}^{\prime}(q)=\varphi_{4}(q)$ для всех $q \in Q_{k}$;
2) $\varphi_{2}^{\prime}(x)=\varphi_{2}(x)$ и $\varphi_{4}^{\prime}(x)=\varphi_{4}(x)$ для всех $x \in X_{m}$;
3) $\left.\varphi_{3}^{\prime}\right|_{G_{1}}=\varphi_{3}$ и $\left.\varphi_{6}^{\prime}\right|_{G_{2}}=\varphi_{6}$.

Рассмотрим автомат $B_{\Phi^{\prime}}=\left(Q_{k^{\prime}}, X_{m}, Y_{n}, \delta_{\Phi^{\prime}}, \lambda_{\Phi^{\prime}}\right) \in \mathfrak{U}_{m n k}\left(\mathfrak{G}_{1}^{\prime}, \mathfrak{G}_{2}^{\prime}\right)$. В силу (1) для всех $q \in Q_{k}$ и $x \in X_{m}$

$$
\begin{aligned}
& \delta_{\Phi^{\prime}}(q, x)=\varphi_{3}^{\prime}\left(\varphi_{1}^{\prime}(q) \circ \varphi_{2}^{\prime}(x)\right)=\varphi_{3}^{\prime}\left(\varphi_{1}(q) \circ \varphi_{2}(x)\right) \\
& \lambda_{\Phi^{\prime}}(q, x)=\varphi_{6}^{\prime}\left(\varphi_{4}^{\prime}(q) * \varphi_{5}^{\prime}(x)\right)=\varphi_{6}^{\prime}\left(\varphi_{4}(q) * \varphi_{5}(x)\right)
\end{aligned}
$$

А так как \mathfrak{E}_{1} и \mathfrak{B}_{2} - группы, то справедливы следующие утверждения:

$$
\begin{aligned}
& \varphi_{1}(q), \varphi_{2}(x) \in G_{1} \Rightarrow \varphi_{1}(q) \circ \varphi_{2}(x) \in G_{1}, \\
& \varphi_{4}(q), \varphi_{5}(x) \in G_{2} \Rightarrow \varphi_{4}(q) * \varphi_{5}(x) \in G_{2} .
\end{aligned}
$$

Поэтому для всех $q \in Q_{k}$ и $x \in X_{m}$

$$
\begin{aligned}
& \delta_{\Phi^{\prime}}(q, x)=\varphi_{{ }_{3 \mid} G_{1}}\left(\varphi_{1}(q) \circ \varphi_{2}(x)\right)=\varphi_{3}\left(\varphi_{1}(q) \circ \varphi_{2}(x)\right)=\delta_{\Phi}(q, x), \\
& \lambda_{\Phi^{\prime}}(q, x)=\varphi_{G_{G_{2}}^{\prime}}\left(\varphi_{4}(q) * \varphi_{5}(x)\right)=\varphi_{6}\left(\varphi_{4}(q) * \varphi_{5}(x)\right)=\lambda_{\Phi}(q, x) .
\end{aligned}
$$

Это означает, что $B_{\Phi}=B_{\Phi^{\prime}}$ Итак, для каждого автомата $B_{\Phi} \in \mathfrak{U}_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$ существует равный ему автомат $B_{\Phi^{\prime}} \in \mathfrak{U}_{m n k}\left(\mathfrak{B}_{1}^{\prime}, \mathfrak{B}_{2}^{\prime}\right)$. Следовательно, включение (4) справедливо. Теорема доказана.

Следствие 1. Пусть последовательности групп $\left\{\mathfrak{B}_{1}^{(j)} \mid j \in N\right\}$ и $\left\{\mathfrak{G}_{2}^{(j)} \mid j \in N\right\}$ удовлетворяют условиям

$$
\mathfrak{B}_{i}^{(1)} \leq \mathfrak{B}_{i}^{(2)} \leq \ldots \leq \mathfrak{B}_{i}^{(j)} \leq \ldots, i=1,2 .
$$

Тогда

$$
\varnothing \neq \mathfrak{U}_{m n k}\left(\mathfrak{B}_{1}^{(1)}, \mathfrak{B}_{2}^{(1)}\right) \subseteq \ldots \subseteq \mathfrak{U}_{m n k}\left(\mathfrak{B}_{1}^{(j)}, \mathfrak{B}_{2}^{(j)}\right) \subseteq \ldots \subseteq \mathfrak{U}_{m n k} .
$$

Справедливость следствия 1 непосредственно вытекает из (2) и (4).
Обозначим через $\mathcal{Z}=\left(Z_{l},+\right), l \geq 2$, аддитивную группу вычетов по модулю l. Следующая теорема показывает, что при соответствующем выборе групп \mathfrak{G}_{1} и \mathfrak{G}_{2} достигается верхняя граница, устанавливаемая соотношением (2).

Теорема 2. Пусть $m \geq 1, n \geq 1$ и $k \geq 2$ - фиксированные числа. Если группьы \mathfrak{B}_{1} и \mathfrak{G}_{2} удовлетворяют условиям

$$
\begin{align*}
& \mathcal{Z}_{1_{i}} \leq \mathfrak{G}_{i}, i=1,2, \tag{5}\\
& \min \left\{l_{1}, l_{2}\right\} \geq m k, \tag{6}
\end{align*}
$$

то справедлво равенство

$$
\begin{equation*}
\mathfrak{U}_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)=\mathfrak{U}_{m n k} \tag{7}
\end{equation*}
$$

Доказательство. Покажем, что из (5) и (6) вытекает справедливость включения

$$
\begin{equation*}
\mathfrak{U}_{m n k}\left(\mathfrak{Z}_{l_{1}}, \mathfrak{Z}_{l_{2}}\right) \supseteq \mathfrak{U}_{m n k} \tag{8}
\end{equation*}
$$

Выберем произвольный автомат $A=\left(Q_{k}, X_{m}, Y_{n}, \delta_{A}, \lambda_{A}\right) \in \mathfrak{U}_{m n k}$. В силу (6) существует такой набор $\Phi_{A}=\left(\varphi_{1}^{A}, \varphi_{2}^{A}, \varphi_{3}^{A}, \varphi_{4}^{A}, \varphi_{5}^{A}, \varphi_{6}^{A}\right) \in F_{m n k}\left(\mathfrak{Z}_{l_{1}}, \mathcal{Z}_{l_{2}}\right)$, что: 1) $\varphi_{1}^{A}\left(q_{i}\right)$ $=\varphi_{4}^{A}\left(q_{i}\right)=i-1$ для всех $\left.i \in\{1, \ldots, k\} ; 2\right) \varphi_{2}^{A}\left(x_{j}\right)=\varphi_{5}^{A}\left(x_{j}\right)=(j-1) k$ для всех $j \in$ $\in\{1, \ldots, m\} ; 3$) отображения $\varphi_{3}^{A}: \mathcal{Z}_{l_{1}} \rightarrow Q_{k}$ и $\varphi_{6}^{A}: \mathcal{Z}_{l_{2}} \rightarrow Y_{n}$ удовлетворяют условиям

$$
\begin{aligned}
& \varphi_{3}^{A}(r)=\delta_{A}\left(q_{R_{k}(r)+1}, \chi_{r / k\rfloor+1}\right), \\
& \varphi_{6}^{A}(r)=\lambda_{A}\left(q_{R_{k}(r)+1}, \chi_{r / k\rfloor+1}\right)
\end{aligned}
$$

для всех $r \in\{0,1, \ldots, m k-1\}$, где $R_{b}(a)$ - остаток от деления a на $b, \mathrm{a}\lfloor c\rfloor$ - целая часть числа c. Рассмотрим автомат $B_{\Phi_{A}}=\left(Q_{k}, X_{m}, Y_{n}, \delta_{\Phi_{A}}, \lambda_{\Phi_{A}}\right) \in$ $\in \mathfrak{X}_{m n k}\left(\mathfrak{Z}_{l_{1}}, \mathcal{Z}_{l_{2}}\right)$. В силу (1) для всех $q_{i} \in Q_{k}$ и $x_{j} \in X_{m}$

$$
\begin{aligned}
& \delta_{\Phi_{A}}\left(q_{i}, x_{j}\right)=\varphi_{3}^{A}\left(\varphi_{1}^{A}\left(q_{i}\right)+\varphi_{2}^{A}\left(x_{j}\right)\right)=\varphi_{3}^{A}(i-1+(j-1) k), \\
& \lambda_{\Phi_{A}}\left(q_{i}, x_{j}\right)=\varphi_{6}^{A}\left(\varphi_{4}^{A}\left(q_{i}\right)+\varphi_{5}^{A}\left(x_{j}\right)\right)=\varphi_{6}^{A}(i-1+(j-1) k) .
\end{aligned}
$$

Таккак $i \in\{1, \ldots, k\}$, то $R_{k}(i-1+(j-1) k)=i-1$ и $\lfloor(i-1+(j-1) k) / k\rfloor=j-1$. Поэтому для всех $q_{i} \in Q_{k}$ и $x_{j} \in X_{m}$

$$
\begin{aligned}
& \delta_{\Phi_{A}}\left(q_{i}, x_{j}\right)=\delta_{A}\left(q_{(i-1)+1}, x_{(j-1)+1}\right)=\delta_{A}\left(q_{i}, x_{j}\right), \\
& \lambda_{\Phi_{A}}\left(q_{i}, x_{j}\right)=\lambda_{A}\left(q_{(i-1)+1}, x_{(j-1)+1}\right)=\lambda_{A}\left(q_{i}, x_{j}\right),
\end{aligned}
$$

т.е. $A=B_{\Phi_{A}}$. Итак, для каждого автомата $A \in \mathfrak{Z}_{m n k}$ существует такой автомат $B_{\Phi_{A}} \in \mathfrak{U}_{m n k}\left(\mathfrak{Z}_{l_{1}}, \mathcal{Z}_{l_{2}}\right)$, что $A=B_{\Phi_{A}}$. Следовательно, включение (8) справедливо. В силу теоремы 1 из (5) и (8) вытекает

$$
\begin{equation*}
\mathfrak{U}_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right) \supseteq \mathfrak{U}_{m n k}\left(\mathfrak{Z}_{l_{1}}, \mathfrak{Z}_{l_{2}}\right) \supseteq \mathfrak{U}_{m n k} \tag{9}
\end{equation*}
$$

Из (2) и (9) непосредственно следует справедливость равенства (7). Теорема доказана.

Распространим функции переходов и выходов автомата $A=\left(Q_{k}, X_{m}, Y_{n}, \delta_{A}\right.$, $\left.\lambda_{A}\right) \in \mathfrak{U}_{m n k}$ на множество $Q_{k} \times X_{m}^{*}$ обычным образом в соответствии с равенствами

$$
\begin{gather*}
\delta_{A}(q, e)=q, \lambda_{A}(q, e)=e, \\
\delta_{A}(q, p x)=\delta_{A}\left(\delta_{A}(q, p), x\right), \tag{10}\\
\lambda_{A}(q, p x)=\lambda_{A}(q, p) \lambda_{A}\left(\delta_{A}(q, p), x\right),
\end{gather*}
$$

где $q \in Q_{k}, p \in X_{m}^{*}, x \in X_{m}$, а e-пустое слово.
Из (1) и (10) выттекает, что для любых групп \mathfrak{B}_{1} и \mathfrak{B}_{2} представление Φ_{A} автомата $A \in \mathfrak{U}_{m n k}$ на каждом такте осуществляет вычисления в соответствии со схемой: кодирование \rightarrow групповая операция \rightarrow декодирование.

При исследовании поведения автомата на множестве $Q_{k} \times X_{m}^{*}$ естественным является требование о том, чтобы для функции переходов кодирование осуществлялось только в начале функционирования, а декодирование - только в его конце. Выделим класс представлений, удовлетворяющих этому требованию.

Определение 2. Представление $\Phi_{A}=\left(\varphi_{1}^{A}, \varphi_{2}^{A}, \varphi_{3}^{A}, \varphi_{4}^{A}, \varphi_{5}^{A}, \varphi_{6}^{A}\right) \in$ $\in \mathfrak{U}_{\text {mnk }}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$ автомата $A \in \mathfrak{U}_{m n k}$ группами \mathfrak{B}_{1} и \mathfrak{B}_{2} назовем согласованным с функцией переходов, если

$$
\delta_{\Phi_{A}}(q, p)=\varphi_{3}\left(\varphi_{1}(q) \circ \varphi_{2}(p)\right)
$$

nри всех $q \in Q_{k} u p \in X_{m}^{*}$.

Обозначим через $F_{m n k}^{(0)}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$ множество всех таких наборов $\Phi=\left(\varphi_{1}, \varphi_{2}\right.$, $\left.\varphi_{3}, \varphi_{4}, \varphi_{5}, \varphi_{6}\right) \in F_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$, что

$$
\begin{gather*}
\operatorname{Va} 1 \varphi_{1} \circ \operatorname{Va} 1 \varphi_{1}=\operatorname{Va} 1 \varphi_{1}, \tag{11}\\
\left(\forall q \in Q_{k}\right)\left(\varphi_{3} \varphi_{1}(q)=q^{\prime} \Leftrightarrow q \equiv q^{\prime}\left(\operatorname{ker} \varphi_{1}\right)\right) . \tag{12}
\end{gather*}
$$

Предложение 1. Если $\Phi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, \varphi_{5}, \varphi_{6}\right) \in F_{m n k}^{(0)}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$, то $\left.\left(\varphi_{1} \varphi_{3}\right)\right|_{\mathrm{Val}_{1}}$ - тождественное отображение.

Доказательство. Предположим, что $\Phi \in F_{m n k}^{(0)}\left(\mathcal{B}_{1}, \mathfrak{B}_{2}\right)$. Выберем произвольное $q \in Q_{k}$. Пусть $\varphi_{3} \varphi_{1}(q)=q^{\prime}$. Тогда $\varphi_{1} \varphi_{3} \varphi_{1}(q)=\varphi_{1}\left(q^{\prime}\right)$. Так как $\varphi_{3} \varphi_{1}(q)=q^{\prime}$, то в силу (12) $\varphi_{1}(q)=\varphi_{1}\left(q^{\prime}\right)$. Следовательно, $\varphi_{1} \varphi_{3} \varphi_{1}(q)=\varphi_{1}(q)$ для всех $q \in Q_{k}$, т.е. $\varphi_{1} \varphi_{3}\left(\varphi_{1}(q)\right)=\varphi_{1}(q)$ для всех $\varphi_{1}(q) \in \operatorname{Va} \varphi_{1}$. А это означает, что $\left.\left(\varphi_{1} \varphi_{3}\right)\right|_{\mathrm{Val}_{1}}$ - тождественное отображение. Предложение доказано.

Следствие 2. Если $\Phi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, \varphi_{5}, \varphi_{6}\right) \in F_{m n k}^{(0)}\left(\mathcal{B}_{1}, \mathfrak{B}_{2}\right)$, то $\left.\varphi_{3}\right|_{\mathrm{Val}_{\mathrm{\varphi}_{1}}}$ и $\left.\varphi_{1}\right|_{\mathrm{Val} \mathrm{\varphi}_{3}}$ - инъективные отображения.

Справедливость следствия 2 непосредственно вытекает из предложения 1 . Положим

$$
\mathfrak{U}_{m n k}^{(0)}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)=\left\{B_{\Phi} \in \mathfrak{U}_{m n k}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right) \mid \Phi \in F_{m n k}^{(0)}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)\right\}
$$

Теорема 3. Функция переходов каждого автомата $B_{\Phi} \in \mathcal{U}_{m n k}^{(0)}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$ $\left(\Phi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, \varphi_{5}, \varphi_{6}\right) \in F_{\text {nпk }}^{(0)}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)\right)$ удовлетворяет равенству

$$
\begin{equation*}
\delta_{\Phi}(q, p)=\varphi_{3}\left(\varphi_{3}(q) \cdot \varphi_{3}(p)\right) \tag{13}
\end{equation*}
$$

при всех $q \in Q_{k}$ и $p \in X_{m}^{+}$.
Доказательство. Рассмотрим произвольный автомат $B_{\Phi} \in \mathfrak{U}_{m n k}^{(0)}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$. Доказательство, осуществим индукцией по длине входного слова.

Пусть $p \in X^{+}$и $|p|=1$ Тогда $p \in X_{m}$ и равенство (13) справедливо в силу (1).
Предположим, что (13) справедливо для всех $q \in Q_{k}$ и всех таких $p \in X_{m}^{+}$, что $|p| \leq l, l \geq 1$.

Пусть $p \in X_{m}^{+}$и $|p|=l+1$. Тогда $p=p^{\prime} x$, где $\left|p^{\prime}\right|=l$ и $x \in X_{m}$. Следовательно, $\delta_{\Phi}(q, p)=\delta_{\Phi}\left(q, p^{\prime} x\right)=\delta_{\Phi}\left(\delta_{\Phi}\left(q, p^{\prime}\right), x\right)=\varphi_{3}\left(\varphi_{1}\left(\delta_{\Phi}\left(q, p^{\prime}\right)\right) \circ \varphi_{2}(x)\right)$ для всех $q \in Q_{k}$. силу предположения индукции $\delta_{\Phi}\left(q, p^{\prime}\right)=\varphi_{3}\left(\varphi_{1}(q) \circ \varphi_{2}\left(p^{\prime}\right)\right)$. Поэтому $\delta_{\Phi}(q, p)=\varphi_{3}\left(\varphi_{1} \varphi_{3}\left(\varphi_{1}(q) \bullet \varphi_{2}\left(p^{\prime}\right)\right) \bullet \varphi_{2}(x)\right)$ для всех $q \in Q_{k}$. Таккак $B_{\Phi} \in \mathcal{U}_{m n k}^{(0)}\left(\mathcal{B}_{1}\right.$, $\left.\mathfrak{B}_{2}\right)$, то $\Phi \in F_{m n k}^{(0)}\left(\mathfrak{B}_{1}, \mathfrak{B}_{2}\right)$ и в соответствии с предположением $\left.1\left(\varphi_{1} \varphi_{3}\right)\right|_{\mathrm{Val}_{1}}$ - тождественное отображение. Отсюда вытекает, что $\delta_{\Phi}(q, p)=\varphi_{3}\left(\left(\varphi_{1}(q) 。\right.\right.$ $\left.\left.\varphi_{2}\left(p^{\prime}\right)\right) \circ \varphi_{2}(x)\right)=\varphi_{3}\left(\varphi_{1}(q) \circ\left(\varphi_{2}\left(p^{\prime}\right) \circ \varphi_{2}(x)\right)\right)=\varphi_{3}\left(\varphi_{1}(q) \circ \varphi_{2}(p)\right)$ для всех $q \in Q_{k}$, что и требовалось доказать. Теорема доказана.

1. Гилл А. Линейные последовательностные машины.-М.: Наука, 1974,-287с.
2. Каргаполов М. И., Мерзляков Ю. И. Основы теории групn.-М.: -М.: Наука,1977. - 239с.

3 Мальцев А. И. Алгебраическе системы.-М.: Наука, 1970. - 392с.
4. Трахтенброт Б. А., Барздинь Я. М. Конечные автоматы (Поведение и синтез). -М.: Наука, 1970.-400 c.

