ПОТОЧЕЧНАЯ ОЦЕНКА РЕШЕНИЯ

 КВАЗИЛИНЕЙНОЙ ЭЛЛИПТИЧЕСКОЙ ЗАДАЧИ В ОБЛАСТИ С ТОНКОЙ ПОЛОСТЬЮУстановлена поточечная оценка решения задачи Дирихле для квазилинейного эллиптического уравнения второго порядка в области, ограниченная компонента дополнения к которой содержится в малои окрестности множества $\left\{x \in R^{n}:|x| \leq 1 / 2, x_{1}=\ldots=x_{s}=0\right\}$.

Встановлена поточкова оцінка розв'язку задачі Діріхле для квазілінійного еліптичного рівняння другого порядку в області, обмежена компонента доповнення до якої міститься у малому околі множини $\left\{x \in R^{n}:|x| \leq 1 / 2, x_{1}=\ldots=x_{s}=0\right\}$.

1. Основные предположения и главный результат. Поточечные оценки решений нелинейных эллиптических и параболических задач стали в последнее время основой построения усредненных задач в перфорированных областях, изучения поведения решений вблизи негладкой границы и на бесконечности, установления устранимости особенностей решений нелинейных задач. Методы получения поточечных оценок разработаны И. В. Скрыпником. Роль этих оценок и некоторые из возможных приложений изложены в монографии [1].

Пусть s - целое число, $2<s \leq n-1, x^{\prime}=\left(x_{1}, \ldots, x_{s}\right), x^{\prime \prime}=\left(x_{s+1}, \ldots, x_{n}\right)$. Обозначим

$$
\begin{aligned}
& Q=\left\{x \in R^{n}:\left|x^{\prime}\right| \leq 1,\left|x^{\prime \prime}\right| \leq 1\right\} \\
& Q^{\prime}=\left\{x \in R^{n}:\left|x^{\prime}\right| \leq d,\left|x^{\prime \prime}\right| \leq H\right\}
\end{aligned}
$$

при $d \leq \frac{1}{4} \leq H \leq \frac{1}{2}$. Изучим поведение решения граничной задачи

$$
\begin{align*}
& \sum_{i=1}^{n} \frac{d}{d x_{i}} a_{i}\left(x, \frac{\partial u}{\partial x}\right)=0 \quad x \in \Omega=Q \backslash F, \tag{1}\\
& u(x)=0 \quad x \in \partial Q, \quad u(x)=k \quad x \in \partial F, \tag{2}
\end{align*}
$$

где F - содержащееся в Q^{\prime} откррытое множество.
В дальнейшем предполагаем, что функции $a_{i}(x, p), i=1, \ldots, n$, определены при $x \in Q, p \in R^{n}$ и удовлетворяют условиям:
a) $a_{i}(x, p)$ непрерывны по p при почти всех $x \in Q$, измеримы по x при любом $p, a_{i}(x, 0)=0$ при $x \in Q, i=1, \ldots, n$;
б) существуют положительные постоянные v_{1}, v_{2} такие, что при всех значениях $x \in Q, p \in R^{n}$ выполнены неравенства

$$
\begin{gather*}
\sum_{i=1}^{n} a_{i}(x, p) p_{i} \geq v_{1}(1+|p|)^{m-2}|p|^{2} \tag{3}\\
\left|a_{i}(x, p)\right| \leq v_{2}(1+|p|)^{m-2}|p|, \quad i=1, \ldots, n \tag{4}
\end{gather*}
$$

с некоторым $m \in[2, s)$.
Ограничимся рассмотрением модельного уравнения только ради простоты изложения. Доказательство поточечных оценок упрощается, если в неравенствах (3), (4) заменить правые части соответственно выражениями $v_{1}|p|^{m}$, $v_{2}|p|^{m-1}$. Также можно рассмотреть случаи $1<m<2, m=s$, только при $m=s$

изменяется вид априорной оценки.
Методами теории монотонных операторов просто доказывается разрешимость задачи (1), (2) в $W_{m}^{1}(\Omega)$, если, например, дополнительное условие

$$
\sum_{i=1}^{n}\left[a_{i}(x, p)-a_{i}(x, q)\right]\left(p_{i}-q_{i}\right) \geq 0
$$

справедливо при $x \in \Omega, p, q \in R^{n}$. Пусть $\psi_{F}(x)$ - функция класса $C_{0}^{\infty}(\Omega)$, равная единице на F. Функцию $u(x, k) \in W_{m}^{1}(\Omega)$ называем решением задачи (1), (2), если $u(x, k)-k \psi_{F}(x) \in \stackrel{\circ}{W_{m}^{1}}(\Omega)$ и для произвольной функции $\varphi(x) \in$ $\epsilon \stackrel{\circ}{W_{m}^{1}}(\Omega)$ выполнено интегральное тождество

$$
\begin{equation*}
\sum_{i=1}^{n} \int_{\Omega} a_{i}\left(x, \frac{\partial u}{\partial x}\right) \frac{\partial \varphi}{\partial x_{i}} d x=0 \tag{5}
\end{equation*}
$$

С помощью неравенств (3), (4) легко получить оценку

$$
\begin{equation*}
0 \leq \frac{1}{k} u(x, k) \leq 1 \text { при } k \neq 0 . \tag{6}
\end{equation*}
$$

Целью настоящей работы является доказательство поточечной оценки

$$
\begin{equation*}
|u(x, k)| \leq C|k|\left(\frac{d}{\left|x^{\prime}\right|}\right)^{\frac{s-m}{m-1}} \tag{7}
\end{equation*}
$$

с постоянной C, зависящей лишь от m, n, s, v_{1}, v_{2}. Эта оценка носит неулучшаемый характер в том смысле, что показатель степени $\frac{s-m}{m-1}$ в правой части не может быть увеличен. Более того, при $\bar{F}=Q^{\prime}$ может быть получена двусторонняя оценка

$$
C_{1}|k|\left(\frac{d}{r}\right)^{\frac{s-m}{m-1}} \leq \max _{\left|x^{\prime}\right|=r}|u(x, k)| \leq C_{2}|k|\left(\frac{d}{r}\right)^{\frac{s-m}{m-1}}
$$

показывающая точность неравенства (7).
В дальнейшем будем считать $k>0$, так как при $k<0$ оценка (7) для $u(x, k)$ является следствием такой же оценки для функции $v(x,-k)=-u(x, k)$, являюшейся решением задачи вида (1), (2), удовлетворяющей условиям а), б).

При $s=n$ оценка (7) доказана в статье [2], и эта оценка явилась основой построения усреднения квазилинейных эллиптических задач в областях с мелкозернистой границей.

Доказательство оценки (7) при $s=n-1$ существенно отличается от метода, использованного в работе [2]. Случай $s=n-1$ рассмотрен в гл. 10 монографии [1], и соответствующая оценка позволила изучить усреднение квазилинейных эллиптических задач в областях с каналами. Отметим, что способ доказательства оценки (7) в случае $s=n-1$ при соответствующей его модификации позволил получить поточечную оценку решения квазилинейной параболической задачи в перфорированной области (см. [3]).

Получение оценки (7) при $s<n-1$ потребовало дальнейших значительных изменений в методе доказательства. Доказанная в данной работе оценка,

как и способ ее получения, открывают возможности изучения качественных свойств решений новых классов нелинейных уравнений, в частности, с вырождением, и построения теории усреднения для перфорированных областей, дополнения к которым содержатся в трубчатых окрестностях многообразий различной размерности.
2. Предварительные интегральные и поточечные оценки. Определим при $d<$ $<r \leq 1$:

$$
\begin{gather*}
m(r)=\underset{\left|x^{\prime}\right|=r,\left|x^{\prime \prime}\right| \leq 1}{\operatorname{yraimax}} u(x, k), \quad u_{r}(x, k)=\max \{u(x, k)-m(r), 0\}, \\
E_{r}=\{x: u(x, k)>m(r)\} . \tag{8}
\end{gather*}
$$

Легко проверяется включение

$$
\begin{equation*}
E_{r} \subset\left\{x \in R^{n}:\left|x^{\prime}\right| \leq r,\left|x^{\prime \prime}\right| \leq 1\right\} . \tag{9}
\end{equation*}
$$

Зафиксируем в дальнейшем четную бесконечно дифференцируемую функцию $\chi(t), t \in R^{1}$, равную единице при $|t| \leq \frac{1}{2}$, нулю при $|t| \geq 1$ и такую, что $-3 \leq$ $\leq \frac{d \chi(t)}{d t} \leq 0$ при $t \geq 0$. Пусть при $x^{\prime \prime}, \eta \in R^{n-s} \quad \chi_{h}\left(x^{\prime \prime}, \eta\right)=\chi\left(\left|x^{\prime}-\eta\right| / h\right)$ для $h>$ >0. Тогда $\chi_{h_{1}}\left(x^{\prime \prime}, \eta\right) \leq \chi_{h_{2}}\left(x^{\prime \prime}, \eta\right)$ при $h_{1} \leq h_{2}$.

Теорема 1. Предположим, что выполнены условия а), б). Тогда существуют постоянные K_{1}, K_{2}, зависящие лишь от m, n, s, v_{1}, v_{2}, такие, что при $k>$ $>0, d<r<1, K_{1} r \leq h \leq H, \eta \in R^{n-s},|\eta| \leq 1$ для решения $u(x, k)$ задачи (1), (2) справедлива оценка

$$
\begin{equation*}
\int_{E_{r}}\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right|^{2} \chi_{h}^{m}\left(x^{\prime \prime}, \eta\right) d x \leq K_{2} h^{n-s}(k-m(r)) k d^{s-m}(k+d)^{m-2} . \tag{10}
\end{equation*}
$$

Доказательство теоремы 1 аналогично доказательству теоремы 2.1 гл. 10 [1] и поэтому его опускаем.

Пусть μ - произвольное число из интервала ($0, k-m(r)$). Введем обозначения

$$
\begin{gather*}
{\left[u_{r}\right]_{\mu}=\min \left\{u_{r}(x, k), \mu\right\}, E_{r, m}=\left\{x \in \Omega: 0 \leq u_{r}(x, k) \leq \mu\right\},} \\
F_{r, \mu}=\left\{x \in \Omega: u_{r}(x, k) \geq \mu\right\} . \tag{11}
\end{gather*}
$$

Лемма 1. Существует постоянная K_{3}, зависящая лишь от m, n, s, v_{1}, v_{2}, такая, что для решения $u(x, k)$ задачи (1), (2) справедлива оценка

$$
\begin{equation*}
\int_{E_{r, \mu}}\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right|^{2} d x \leq K_{3} H^{n-s} \mu k d^{s-m}(k+d)^{m-2} \tag{12}
\end{equation*}
$$

nри $k>0, d<r<1,0<\mu<k-m(r)$.
Доказательство леммы 1 аналогично доказательству леммы 2.7 гл. 10 [1].
Теорема 2. Существует постоянная K_{4}, зависящая лишь от m, n, s, v_{1}, v_{2}, такая, что справедлива оценка

$$
\begin{equation*}
u(x, k) \leq K_{4} k\left(\frac{H^{n-s} d^{s-m}}{\left|x^{\prime}\right|^{n-m}}\right)^{\frac{1}{m-1}} . \tag{13}
\end{equation*}
$$

Аналогично доказательству леммы 2.8 гл. 10 [1] с помощью неравенства (12) могут быть получены оценки

$$
\begin{gather*}
m\left(\frac{r}{2}\right)-m(r) \leq C_{1} k\left(\frac{H^{n-s} d^{s-m}}{r^{n-m}}\right)^{\frac{1}{m-1}} \quad \text { при } k>d, \\
m\left(\frac{r}{2}\right)-m(r) \leq C_{2} k \frac{H^{n-s} d^{s-2}}{r^{n-2}} \quad \text { при } k \leq d, \tag{14}
\end{gather*}
$$

где $r \in[2 d, 1]$ и C_{1}, C_{2} - постоянные, зависящие лишь от m, n, s, v_{1}, v_{2}.
Далее, при $k \leq d$ из второго неравенства в (14) имеем

$$
\begin{gather*}
m\left(\frac{r}{2}\right)-m(r) \leq\left[m\left(\frac{r}{2}\right)\right]^{\frac{m-2}{m-1}}\left[m\left(\frac{r}{2}\right)-m(r)\right]^{\frac{1}{m-1}} \leq \\
\leq k^{\frac{m-2}{m-1}}\left[C_{2} k \frac{H^{n-s} d^{s-m}}{r^{n-m}}\right]^{\frac{1}{m-1}}\left(\frac{d}{r}\right)^{\frac{m-2}{m-1}} \leq C_{2}^{\frac{1}{m-1}} k\left[\frac{H^{n-s} d^{s-m}}{r^{n-m}}\right]^{\frac{1}{m-1}} . \tag{15}
\end{gather*}
$$

Из первой оценки в (14), оценки (15) и леммы 2.9 гл. 10 [1] следует неравенство (13).

Аналогично доказательствам лемм $2.8,2.9$ гл. 10 [1], используя вместо оценки (12) оценку (10) при $h=k_{1} r$, можно доказать следующую теорему.

Теорема 3. Существует постоянная K_{5}, зависящая лишь от m, n, s, v_{1}, v_{2}, такая, что для решения $u(x, k)$ задачи (1), (2) справедлива оценка

$$
\begin{equation*}
u(x, k) \leq K_{5} k\left(\frac{d}{\left|x^{\prime}\right|}\right)^{\frac{s-m}{m}} \tag{16}
\end{equation*}
$$

3. Оценка $I_{r, \mu}(h, \eta)$. Пусть q - число из интервала $\left(1, \frac{m}{m-1}\right)$, выбор которого будет указан далее. Обозначим

$$
\begin{equation*}
I_{r, \mu}(h, \eta)=\int_{\Omega} u_{r}^{-m+q(m-1)}(x, k)\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right|^{2} \chi_{h}^{m}\left(x^{\prime \prime}, \eta\right) d x, \tag{17}
\end{equation*}
$$

где $d<r<1, \mu \in(0, k-m(r)), K_{1} r \leq h \leq H, \eta \in R^{n-s}, u_{r}(x, k)$ определяется по решению $u(x, k)$ задачи (1), (2) равенством (8). Сходимость интеграла в (17) будет показана в ходе доказательства следующей леммы.

Лемма 2. Справедлива оценка

$$
\begin{align*}
I_{r, \mu}(h, \eta) \leq & \frac{K_{6}}{(q-1)^{m}}\left\{\left(\frac{r}{h}\right)^{2} I_{r, \mu}(2 h, \eta)+\mu^{(q-1)(m-1)} k(k+d)^{m-2} h^{n-s} d^{s-m}+\right. \\
& \left.+\frac{\mu^{(q-1)(m-1)}}{h} \int_{F_{r, \mu}}\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right|^{2} \chi_{h}^{m}\left(x^{\prime \prime}, \eta\right) d x\right\} \tag{18}
\end{align*}
$$

с постоянной K_{6}, зависящей только от m, n, s, v_{1}, v_{2}.
Доказательство. Пусть ε - произвольное число из интервала $(0, \mu)$.

Подставим в интегральное тождество (5) $\varphi(x)=\tilde{\varphi}(x) \chi_{h}^{m}\left(x^{\prime \prime}, \eta\right)$, где

$$
\tilde{\varphi}(x)=\left(\left[u_{r}\right]_{\mu}+\varepsilon\right)^{-m+q(m-1)}\left[u_{r}\right]_{\mu}-(\mu+\varepsilon)^{-m+q(m-1)} \mu \frac{u_{r}(x, k)}{k-m(r)}
$$

c $\left[u_{r}\right]_{\mu}$, определеной равенством (11).
Используя неравенства (3), (4) и (10), получаем

$$
\begin{gather*}
\int_{E_{r, \mu}}\left(\left[u_{r}\right]_{\mu}+\varepsilon\right)^{q(m-1)-m}\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right|^{2} \chi_{h}^{m}\left(x^{\prime \prime}, \eta\right) d x \leq \\
\leq \frac{C_{3}}{q-1}\left\{\frac{1}{h} \int_{E_{r, \mu}}\left(\left[u_{r}\right]_{\mu}+\varepsilon\right)^{q(m-1)-m}\left[u_{r}\right]_{\mu}\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right| \chi_{h}^{m-1}\left(x^{\prime \prime}, \eta\right) d x+\right. \\
\left.+\mu^{(q-1)(m-1)} k(k+d)^{m-2} h^{n-s} d^{s-m}\right\} \tag{19}
\end{gather*}
$$

Здесь и далее через C_{j} обозначаем постоянные, зависящие лишь от m, n, s, v_{1}, v_{2}.

Ометим, что если вместо функции $\varphi(x)$ подставить в интегральное тождество (5) функцию $\tilde{\varphi}(x)$, то получим неравенство вида (19), в котором отсутствуют $\chi_{h}^{m}\left(x^{\prime \prime}, \eta\right)$ в первом интеграле и интеграл в правой части, а в последнем слагаемом h заменено на H. Из такого неравенства, в силу теоремы Фату, следует сходимость интеграла в (17).

Интеграл в правой части (19) представим в виде суммы двух интегралов соответственно по $E_{r, \mu}$ и $F_{r, \mu}$, и первый из них оценим:

$$
\begin{align*}
& \frac{C_{3}}{(q-1) h} \int_{E_{r, \mu}}\left(\left[u_{r}\right]_{\mu}+\varepsilon\right)^{q(m-1)-m}\left[u_{r}\right]_{\mu}\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right| \chi_{h}^{m-1}\left(x^{\prime \prime}, \eta\right) d x \leq \\
& \quad \leq \frac{1}{2} \int_{E_{r, \mu}}\left(\left[u_{r}\right]_{\mu}+\varepsilon\right)^{q(m-1)-m}\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right|^{2} \chi_{h}^{m}\left(x^{\prime \prime}, \eta\right) d x+ \\
& \quad+\frac{C_{4}}{(q-1)^{m}} \int_{E_{r, \mu}}\left(\left[u_{r}\right]_{\mu}+\varepsilon\right)^{q(m-1)-m}\left\{\frac{\left[u_{r}\right]_{\mu}^{m}}{h^{m}}+\frac{\left[u_{r}\right]_{\mu}^{2}}{h^{2}}\right\} \chi_{2 h}^{m}\left(x^{\prime \prime}, \eta\right) d x . \tag{20}
\end{align*}
$$

Последний интеграл оцениваем, используя неравенство Пуанкаре. Имеем при $p=2, m:$

$$
\begin{gather*}
\int_{E_{r, \mu}}\left(\left[u_{r}\right]_{\mu}+\varepsilon\right)^{q(m-1)-m} \frac{\left[u_{r}\right]_{\mu}^{p}}{h^{p}} \chi_{2 h}^{m}\left(x^{\prime \prime}, \eta\right) d x \leq \\
\leq C_{5}\left(\frac{r}{h}\right)^{p} \int_{E_{r, \mu}}\left(\left[u_{r}\right]_{\mu}+\varepsilon\right)^{q(m-1)-m}\left|\frac{\partial u}{\partial x^{\prime}}\right|^{p} \chi_{2 h}^{m}\left(x^{\prime \prime}, \eta\right) d x . \tag{21}
\end{gather*}
$$

Из неравенств (19) - (21), переходя к пределу при $\varepsilon \rightarrow 0$, получаем оценку

Лемма 3. Суцествует постоянная K_{7}, зависящая лишь от m, n, s, v_{1}, ν_{2}, такая, что справедлива оценка

$$
\begin{gather*}
\int_{F_{r, \mu}} u_{r}^{-q}(x, k)\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right|^{2} \chi_{h}^{m}\left(x^{\prime \prime}, \eta\right) d x \leq \\
\leq \frac{K_{7} \mu^{1-q}}{(q-1)^{m}}\left\{k(k+d)^{m-2} h^{n-s} d^{s-m}+\right. \\
\left.+\int_{F_{r, \mu}}\left[\frac{1}{h^{m}} \mu^{(1-q)(m-1)} u_{r}^{q(m-1)}(x, k)+\frac{\mu^{1-q}}{h^{2}} u_{r}^{q}(x, k)\right] \chi_{2 h}^{m}\left(x^{\prime \prime}, \eta\right) d x\right\} \tag{22}
\end{gather*}
$$

Доказательство аналогично доказательству леммы 2.6 гл. 10 [1].
Теорема 4. При выполнении условий а), б) для решения $u(x, k)$ задачи (1), (2) справедлива оценка

$$
\begin{gather*}
I_{r, \mu}(h, \eta) \leq \frac{K_{8}}{(q-1)^{2 m}}\left\{\left(\frac{r}{h}\right)^{2} I_{r, \mu}(2 h, \eta)+\right. \\
+\mu^{(q-1)(m-1)} k(k+d)^{m-2} h^{n-s} d^{s-m}+ \\
\left.+\int_{F_{r, \mu}}\left[\frac{1}{h^{m}} u_{r}^{q(m-1)}(x, k)+\frac{1}{h^{2}} u_{r}^{q(m-1)-m+2}(x, k)\right] \chi_{2 h}^{m}\left(x^{\prime \prime}, \eta\right) d x\right\}, \tag{23}
\end{gather*}
$$

ฉде $I_{r, \mu}(h, \eta)$ определяется равенством (17), $k>0, q \in\left(1, \frac{m}{m-1}\right), 0<\mu<k-$ $m(r), d<r<1,|\eta| \leq \frac{1}{2}, K_{1} r \leq h \leq H \quad$ и постоянная K_{8} зависит только от m, n, s, v_{1}, v_{2}.

Доказательство. Оценим интеграл из неравенства (18):

$$
\begin{gather*}
\frac{1}{h} \int_{F_{r, \mu}}\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right| \chi_{h}^{m-1}\left(x^{\prime \prime}, \eta\right) d x \leq \\
\leq \mu^{q-1} \int_{F_{r, \mu}} u_{r}^{-q}(x, k)\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right|^{2} \chi_{h}^{m}\left(x^{\prime \prime}, \eta\right) d x+ \\
+C_{6} \iint_{F_{r, \mu}}\left\{\mu^{(1-q)(m-1)} \frac{u_{r}^{q(m-1)}}{h^{m}}+\mu^{1-q} \frac{u_{r}^{q}}{h^{2}}\right\} \chi_{2 h}^{m}\left(x^{\prime \prime}, \eta\right) d x . \tag{24}
\end{gather*}
$$

Оценка (23) следует из неравенств (18), (24), если оценить первый интеграл правой части (24) по неравенству (22) и воспользоваться при $x \in F_{r \mu}$ оценкой $u_{r}(x, k) \geq \mu$.

Замечание 1. Аналогично доказательству теоремы 4, только без использования срезывающих функций $\chi_{h}^{m}\left(x^{\prime \prime}, \eta\right)$, доказывается оценка

$$
\begin{aligned}
& \int_{E_{r, \mu}} u_{r}^{-m+q(m-1)}(x, k)\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right|^{2} d x \leq \\
\leq & \frac{K_{8}}{(q-1)^{2 m}}\left\{\mu^{(q-1)(m-1)} k(k+d)^{m-2} h^{n-s} d^{s-m}+\right. \\
+ & \int_{F_{r, \mu}}\left[\frac{1}{h^{m}} u_{r}^{q(m-1)}(x ; k)+\frac{1}{h^{2}} u_{r}^{q(m-1)-m+2}(x, k)\right] d x
\end{aligned}
$$

4. Последовательное улучшение интегральньхх оценок. Будем исходить далее из дополнительного предположения, что при некотором $\lambda \in\left[\frac{1}{m}, \frac{1}{m-1}\right)$ и некоторой постоянной $A_{1} \geq K_{4}$ справедлива оценка

$$
\begin{equation*}
u(x, k) \leq A_{1} k\left(\frac{d}{\left|x^{\prime}\right|}\right)^{\lambda(s-m)}, x \in \Omega \tag{25}
\end{equation*}
$$

Доказажем справедливость более сильной оценки вида (25) с той же постоянной A_{1} и с заменой λ на некоторое $\lambda^{\prime}>\lambda$. Такое последовательное улучшение поточечной оценки в итоге приведет к оценке вида (25) с заменой λ на $m-1$, т.е. к цели нашего доказательства - оценке (7). Отметим справедливость оценки (25) с $\lambda=1 / m$, что следует из теоремы 3 . Последовательному улучшению поточечных оценок, которое будет осуществлено в следующем пункте, предшествует в данном пункте последовательное улучшение предварительных интегральных оценок.

Если предполагать выполненной оценку (25), то при любом $\theta \in[0,1]$ справедливо неравенство

$$
\begin{equation*}
u(x, k) \leq M\left(A_{1}\right) k\left(\frac{H}{\left|x^{\prime}\right|}\right)^{\alpha}\left(\frac{d}{\left|x^{\prime}\right|}\right)^{p}, x \in \Omega \tag{26}
\end{equation*}
$$

где $M\left(A_{1}\right)=K_{4}^{\theta} A_{1}^{1-\theta}$,

$$
\begin{equation*}
\alpha=\frac{n-s}{m-1} \theta, \beta=\frac{s-m}{m-1} \theta+\lambda(s-m)(1-\theta) \tag{27}
\end{equation*}
$$

Оценка (26) является непосредственным следствием оценок (13), (25).
Введем при произвольных положительных числах A, r, ρ, h и $\eta \in R^{n-s}$ обозначения

$$
\begin{align*}
R_{r, \rho}(A, h) & =\left[A k\left(\frac{d}{\rho}\right)^{\lambda(s-m)}\right]^{(q-1)(m-1)} k(k+d)^{m-2} h^{n-s} d^{s-m}+ \\
& +\left[M(A) k\left(\frac{h}{r}\right)^{\alpha}\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)} r^{s} h^{n-s-m}+ \\
& +\left[M(A) k\left(\frac{h}{r}\right)^{\alpha}\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)-m+2} r^{s} h^{n-s}, \tag{28}
\end{align*}
$$

$$
\begin{equation*}
J_{r}(h, \eta)=\int_{E_{r}}\left\{\frac{1}{h^{m}} u_{r}^{q(m-1)}(x, k)+\frac{1}{h^{2}} u_{r}^{q(m-1)-m+2}(x, k)\right\} \chi_{h}^{m}\left(x^{\prime \prime}, \eta\right) d x \tag{29}
\end{equation*}
$$

и пусть $R_{r}(A, h)=R_{r, r}(A, h)$.
Зафиксируем в дальнейшем значения q и θ, полагая их соответственно равными

$$
\begin{equation*}
q=\frac{s-m+1}{s-m}, \quad \theta=\frac{s-m}{2(s-1)(n-s)} . \tag{30}
\end{equation*}
$$

В этом случае, в частности, справедливо неравенство

$$
\begin{equation*}
(\alpha+\beta) q(m-1)<s . \tag{31}
\end{equation*}
$$

Теорема 5. Предположим; что q, θ определяются равенствами (30) u для решения $u\left(x, k\right.$) задачи (1), (2) справедлива оценка (25) при $A_{1}>K_{4} \quad и$ $\lambda \in\left[\frac{1}{m}, \frac{1}{m-1}\right)$. Существуют постоянные $A_{2}, A_{3}, A_{4} \in[1, \infty)$, зависящие лишь от m, n, s, v_{1}, v_{2}, такие, что из справедливости при некоторьх $\bar{r} \in[8 d, 1], h$ $\in(0, H]$ оценок

$$
\begin{gather*}
J_{r}(h, \eta) \leq A_{2} R_{r}\left(A_{1}, h\right), \tag{32}\\
I_{r, \mu}(h, \eta) \leq A_{3} R_{r, \rho}\left(A_{1}, h\right), \quad \mu=m(\rho)-m(r) \tag{33}
\end{gather*}
$$

при $2 d \leq r \leq \bar{r},|\eta| \leq 1, \frac{r}{4^{m+1}} \leq \rho \leq r, 2 d \leq \rho$ и неравенства

$$
\begin{equation*}
A_{4} \bar{r} \leq h \tag{34}
\end{equation*}
$$

следует выполнение оценок

$$
\begin{gather*}
J_{r}\left(\frac{h}{2}, \eta\right) \leq A_{2} R_{\eta}\left(A_{1}, \frac{h}{2}\right), \tag{35}\\
I_{r, \mu}\left(\frac{h}{2}, \eta\right) \leq A_{3} R_{r, \rho}\left(A_{1}, \frac{h}{2}\right), \mu=m(\rho)-m(r) \tag{36}
\end{gather*}
$$

npu $2 d \leq r \leq \frac{\bar{r}}{2},|\eta| \leq 1, \frac{r}{4^{m+1}} \leq \rho \leq r, 2 d \leq \rho$.
Доказательство. Отметим вначале, что в условиях теоремы с некоторыми постоянными C_{7}, C_{8} справедливы оценки

$$
\begin{gather*}
J_{r}(H, \eta) \leq C_{7} R_{r}\left(A_{1}, H\right), \tag{37}\\
I_{r, \mu}(H, \eta) \leq C_{8} R_{r, \rho}\left(A_{1}, H\right), \quad \mu=m(\rho)-m(r) . \tag{38}
\end{gather*}
$$

при $2 d \leq r \leq 1$, $\eta \mid \leq 1,2 d \leq \rho \leq r$. Эти неравенства непосредственно следуют из замечания 1 , оценок (25), (26) и условия (31).

Далее будем предполагать, что $A_{2} \geq C_{7}, A_{3} \geq C_{8}$. Докажем вначале неравенство (36). Пусть $\rho=4^{m+1}$. Используя неравенства (33) и Пуанкаре, при $\mu=$ $=m\left(\frac{r}{p}\right)-m(r), r \leq \bar{r}$ получаем

$$
J_{r}\left(\frac{h}{2}, \eta\right) \leq 4^{m} \int_{E_{r}}\left\{\frac{1}{h^{m}}\left[u_{r}\right]_{\mu}^{q(m-1)}+\frac{1}{h^{2}}\left[u_{r}\right]_{\mu}^{q(m-1)-m+2}\right\} \chi_{h}^{m}\left(x^{\prime \prime}, \eta\right) d x+
$$

$$
\begin{gather*}
+4^{m} J_{\frac{r}{p}}\left(\frac{h}{2}, \eta\right) \leq C_{9}\left(\frac{r}{h}\right)^{2} I_{r, \mu}(h, \eta)+4^{m} J_{\frac{r}{p}}\left(\frac{h}{2}, \eta\right) \leq \\
\leq C_{9} A_{3}\left(\frac{r}{h}\right)^{2} R_{r \cdot \frac{r}{p}}\left(A_{1}, h\right)+4^{m} J_{\frac{r}{p}}\left(\frac{h}{2}, \eta\right) . \tag{39}
\end{gather*}
$$

Отсюда, обозначая $J_{j}=J_{p^{-j} r}\left(\frac{h}{2}, \eta\right)$, при $r \geq 2 d p^{j+1}$ имеем

$$
\begin{equation*}
J_{j} \leq C_{9} p^{2} A_{3} \sum_{i=1}^{3} R_{r}^{(i)}\left(A_{1}, h\right) p^{-\tau_{i j}}+4^{m} J_{j+1}, \tag{40}
\end{equation*}
$$

где

$$
\begin{gathered}
R_{r}^{(1)}\left(A_{1}, h\right)=\left(\frac{r}{h}\right)^{2}\left[A_{1} k\left(\frac{d}{r}\right)^{\lambda(s-m)}\right]^{(q-1)(m-1)} k(k+d)^{m-2} h^{n-s} d^{s-m}, \\
R_{r}^{(2)}\left(A_{1}, h\right)=\left(\frac{r}{h}\right)^{2}\left[M\left(A_{1}\right) k\left(\frac{h}{r}\right)^{\alpha}\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)} r^{s} h^{n-s-m}, \\
R_{r}^{(3)}\left(A_{1}, h\right)=\left(\frac{r}{h}\right)^{2}\left[M\left(A_{1}\right) k\left(\frac{h}{r}\right)^{\alpha}\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)-m+2} r^{s} h^{n-s-2}, \\
\tau_{1}=2-\lambda(s-m)(q-1)(m-1), \\
\tau_{2}=2-(\alpha+\dot{\beta}) q(m-1)+s, \\
\tau_{3}=2-(\alpha+\beta)[q(m-1)-m+2]+s .
\end{gathered}
$$

В силу выбора q и условия (31) $\tau_{1} \geq 1, \tau_{2} \geq 2, \tau_{3} \geq 2$. Тем самым из (40) находим

$$
\begin{equation*}
J_{j} \leq 2^{n} C_{9} A_{3}\left(\frac{r}{h}\right)^{2} R_{r}\left(A_{1}, \frac{h}{2}\right) p^{2-j}+4^{m} J_{j+1} . \tag{41}
\end{equation*}
$$

Выбирая целое число j_{0} так, чтобы $2 d p^{j_{0}} \leq r \leq 2 d p^{j_{0}+1}$, последовательным применением неравенства (41) получаем

$$
J_{r}\left(\frac{h}{2}, \eta\right) \leq 2^{n} C_{9} A_{3}\left(\frac{r}{h}\right)^{2} R_{r}\left(A_{1}, \frac{h}{2}\right)^{j_{0}-1} \sum_{j=0}^{j_{0}}\left(\frac{4^{m}}{p}\right)^{j}+4^{m j_{0}} J_{j_{0}}
$$

Число p выбираем равным 4^{m+1} и, тем самым, из последнего неравенства следует

$$
\begin{equation*}
J_{r}\left(\frac{h}{2}, \eta\right) \leq C_{10} A_{3}\left(\frac{r}{h}\right)^{2} R_{r}\left(A_{1}, \frac{h}{2}\right)+4^{m j_{0}} J_{j_{0}} . \tag{42}
\end{equation*}
$$

Оценим последнее слагаемое в правой части (42), используя выбор p, j_{0}, неравенство (6) и включение (9):

$$
4^{m j_{0}} J_{j_{0}} \leq C_{11} \frac{r}{d}\left\{k^{q(m-1)} h^{n-s-m}+k^{q(m-1)-m+2} h^{n-s-2}\right\} d^{s} .
$$

Проверяется, что правая часть последнего неравенства не превышает $C_{12} R_{r}\left(A_{1}, \frac{h}{2}\right)$, и из (41) следует оценка

$$
\begin{equation*}
J_{r}\left(\frac{h}{2}, \eta\right) \leq C_{13}\left[\left(\frac{r}{h}\right)^{2} A_{3}+1\right] R_{r}\left(A_{1}, \frac{h}{2}\right) \tag{43}
\end{equation*}
$$

Требуемое неравенство (35) доказывается, если подчинить A_{2}, A_{3}, A_{4} условию

$$
\begin{equation*}
C_{13}\left[A_{4}^{-2} A_{3}+1\right] \leq A_{2} . \tag{44}
\end{equation*}
$$

Далее доказываем неравенство (36). Из теоремы 4, неравенств (32) и (43) при $\mu=m(\rho)-m(r), r \leq \frac{\bar{r}}{2}$ имеем

$$
\begin{align*}
J_{r, \mu}\left(\frac{h}{2}, \eta\right) & \leq C_{14}\left\{\left(\frac{r}{h}\right)^{2} A_{3} R_{r, \rho}\left(A_{1}, h\right)+[m(\rho)]^{(q-1)(m-1)} k(k+d)^{m-2} h^{n-s} d^{s-m}+\right. \\
+ & {\left.\left[\left(\frac{r}{h}\right)^{2} A_{3}+1\right] R_{r}\left(A_{1}, \frac{h}{2}\right)\right\} \leq C_{15}\left\{\left(\frac{r}{h}\right)^{2} A_{3}+1\right\} R_{r, \rho}\left(A_{1}, \frac{h}{2}\right) . } \tag{45}
\end{align*}
$$

При этом использованы неравенства

$$
R_{r, \rho}\left(A_{1}, h\right) \leq C_{16} R_{r, \rho}\left(A_{1}, \frac{h}{2}\right), \quad R_{r}\left(A_{1}, \frac{h}{2}\right) \leq R_{r, \rho}\left(A_{1}, \frac{h}{2}\right)
$$

и оценка (25). Требуемое неравенство (36) следует из (44), если подчинить постоянные A_{3}, A_{4} условию

$$
\begin{equation*}
C_{15}\left[A_{4}^{-2} A_{3}+1\right] \leq A_{3} . \tag{46}
\end{equation*}
$$

Окончательный выбор постоянных A_{2}, A_{3}, A_{4} определяется двумя неравенствами (44), (46). Тем самым полностью доказана теорема 5.

Как уже отмечалось, предполагая $A_{2} \geq C_{7}, A_{3} \geq C_{8}$, обеспечиваем выполнение неравенств (32), (33) при $\bar{r}=\frac{H}{A_{4}}, h=H$. Последовательно применяя теорему 5 и используя оценку (45), получаем такое следствие.

Следствие 1. В условиях теоремы 5 при пюбом $r \in\left[2 d, \frac{H}{A_{4}}\right]$ справедлива оценка

$$
\begin{equation*}
I_{r, \mu}(h, \eta) \leq K_{9}\left[\left(\frac{r}{h}\right)^{2} A_{3}+1\right] R_{r, \rho}\left(A_{1}, h\right) \tag{47}
\end{equation*}
$$

для $\mu=m(\rho)-m(r), r / 4^{m+1} \leq \rho \leq r, A_{4} \bar{r} \leq h \quad$ с постоянной K_{9}, зависящей лишь от m, n, s, v_{1}, v_{2}.
5. Последовательное улучшение поточечных оценок. Определим числовые последовательности

$$
\begin{gathered}
r_{j}^{1}=\frac{r}{4}\left(1+2^{-j}\right), \quad r_{j}^{2}=\frac{r}{4}\left(3-2^{-j}\right), \quad j=1,2, \ldots, \\
h_{j}=\frac{h}{8}+\left(1-2^{-j+1}\right) r
\end{gathered}
$$

при $h \leq H, 8 d \leq r \leq 1$. В дальнейшем $\Psi_{j}\left(x^{\prime}\right)$ - функции класса $C_{0}^{\infty}\left(R^{s}\right)$, равные единице на $G_{j}^{\prime}=\left\{x^{\prime}: r_{j}^{(1)} \leq\left|x^{\prime}\right| \leq r_{j}^{(2)}\right\}$, нулю вне G_{j+1}^{\prime} и такие, что $0 \leq \psi_{j}\left(x^{\prime}\right) \leq 1$,
$\left|\frac{\partial \psi_{j}\left(x^{\prime}\right)}{\partial x^{\prime}}\right| \leq \frac{2^{j+4}}{r}$. Определим еще функции $\chi_{j, h}\left(x^{\prime \prime}, \eta\right) \in C_{0}^{\infty}\left(R^{n-s}\right)$, равные единице при $\left|x^{\prime \prime}-\eta\right| \leq h_{j}$, нулю при $\left|x^{\prime \prime}-\eta\right| \geq h_{j+1}$ и такие, что $0 \leq \chi_{j, h}\left(x^{\prime \prime}, \eta\right) \leq 1$, $\left|\frac{\partial}{\partial x^{\prime \prime}} \chi_{j, h}\left(x^{\prime \prime}, \eta\right)\right| \leq \frac{2^{j+1}}{r}$.

Подставим в интегральное тождество (5) функцию

$$
\varphi(x)=\left[u_{r}(x, k)\right]^{\rho+1}\left[\varphi_{j, h}(x, \eta)\right]^{\sigma+m},
$$

где $\varphi_{j, h}(x, \eta)=\psi_{j}\left(x^{\prime}\right) \chi_{j, h}\left(x^{\prime \prime}, \eta\right), \rho, \sigma$ - произвольные положительные числа. Оценивая на основании неравенств (3), (4) и Юнга, получаем

$$
\begin{gather*}
\int_{\Omega}\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right|^{2} u_{r}^{\rho}(x, k) \varphi_{j, h}^{\sigma+m}(x, \eta) d x \leq \\
\leq C_{16}(\sigma+m)^{m} \int_{\Omega}\left\{u_{r}^{\rho+2}(x, k)\left(\frac{2^{j}}{r}\right)^{2} \varphi_{j, h}^{\sigma+m-2}(x, \eta)+\right. \\
\left.\quad+u_{r}^{\rho+m}(x, k)\left(\frac{2^{j}}{r}\right)^{m} \varphi_{j, h}^{\sigma}(x, \eta)\right\} d x . \tag{48}
\end{gather*}
$$

Дальнейшие оценки проводятся по-разному в зависимости от того, какое из следующих ниже неравенств справедливо:

$$
\begin{align*}
& \mu_{j+1}(h, \eta)>r, \tag{49}\\
& \mu_{j+1}(h, \eta) \leq r, \tag{50}
\end{align*}
$$

где

$$
\begin{gathered}
\mu_{j+1}(h, \eta)=\operatorname{vrai} \max \left\{u_{r}(x, k): x \in C_{j+1}(h, \eta)\right\}, \\
G_{j+1}(h, \eta)=\left\{x=\left(x^{\prime}, x^{\prime \prime}\right): x^{\prime} \in G_{j+1}^{\prime},\left|x^{\prime \prime}-\eta\right| \leq h_{j+1}\right\} .
\end{gathered}
$$

Если выполнено неравенство (49), продолжим оценку (48), используя (49) и определение $\mu_{j+1}(h, \eta)$. Получим

$$
\begin{gather*}
\int_{\Omega}\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right|^{2} u_{r}^{\rho}(x, k) \varphi_{j, h}^{\sigma+m}(x, \eta) d x \leq \\
\leq C_{17}(\sigma+m)^{m} \frac{2^{j m}}{r^{m}} \mu_{j+1}^{m-2}(h, \eta) \int_{\Omega} u_{r}^{\rho+2}(x, k) \varphi_{j, h}^{\sigma}(x, \eta) d x . \tag{51}
\end{gather*}
$$

Далее применяем леммы 1.3 гл. 8 [1], подставляя вместо p, q значения m, $q(m-1)$. В результате получаем оценку

$$
\begin{equation*}
\left[\mu_{j}(h, \eta)\right]^{q(m-1)+\frac{n}{m}(m-2)} \leq C_{18} \frac{2^{j n}}{r^{n}}\left[\mu_{j+1}(h, \eta)\right]^{(m-2) \frac{n}{m}} \int_{\Omega}^{u(m-1)}(x, k) \varphi_{j, h}^{m}(x, \eta) d x . \tag{52}
\end{equation*}
$$

Отметим, что непосредственное применение леммы 1.3 гл. 8 [1] приводит к показателю степени $\varphi_{j, h}(x, \eta)$ в (52), равному $q(m-1)$. Для того чтобы этот

показатель равнялся m, достаточно произвести незначительные изменения в доказательстве леммы 1.3 гл. 8 [1].

Если же выполнено неравенство (50), продолжим оценку (48), используя (50) и определение $\mu_{j+1}(h, \eta)$. Будем иметь

$$
\begin{align*}
& \int_{\Omega}\left(1+\left|\frac{\partial u}{\partial x}\right|\right)^{m-2}\left|\frac{\partial u}{\partial x}\right|^{2} u_{r}^{\rho}(x, k) \varphi_{j, h}^{\sigma+m}(x, \eta) d x \leq \\
& \leq C_{19}(\sigma+m)^{m} \frac{2^{j m}}{r^{m}} \int_{\Omega} u_{r}^{\rho+2}(x, k) \varphi_{j, h}^{\sigma}(x, \eta) d x \tag{53}
\end{align*}
$$

Далее применяем лемму 1.2 гл. $8[1]$, подставив вместо p, q значения $2, q(m-$ $-1)-m+2$. Получаем оценку

$$
\begin{equation*}
\left[\mu_{j}(h, \eta)\right]^{q(m-1)-m+2} \leq C_{20} \frac{2^{\frac{j m n}{2}}}{r^{n}} \int_{\Omega} u_{r}^{q(m-1)-m+2}(x, k) \varphi_{j, h}^{2}(x, \eta) d x \tag{54}
\end{equation*}
$$

Относительно показателя степени $\varphi_{j, k}(x, \eta)$ в (54) справедливо замечание, сделанное выше по поводу оценки (52).

Таким образом, справедлива такая лемма.
Лемма 4. Предположим, что при некоторьх j, h, η для решения $u(x, k)$ задачи (1), (2) справедливо одно из неравенств (49), (50). Тогда соответственно выполняется одна из двух оценок (52), (54).

Последовательное улучшение поточечных оценок обеспечивает следующая теорема.

Теорема 6. Существует постоянная K_{10}, зависящая лишь от m, n, s, v_{1}, v_{2}, такая, что из справедливости при некотором $\lambda \in\left[\frac{1}{m}, \frac{1}{m-1}\right)$ неравенства (25) следует выполнение оценки

$$
\begin{equation*}
u(x, k) \leq K_{10} A_{1}^{1-\theta} k\left(\frac{d}{\left|x^{\prime}\right|}\right)^{\beta} \tag{55}
\end{equation*}
$$

где β, θ определяются соответственно равенствами (27), (30).
Доказательство. Покажем, что для обеспечения неравенства (55) достаточно установить оценку

$$
\begin{equation*}
\mu_{1}(h(r), \eta) \leq C A_{1}^{1-\theta} k\left(\frac{d}{r}\right)^{\beta} \tag{56}
\end{equation*}
$$

при $r \in\left[2 d, \frac{H}{A_{4}}\right], h(r)=A_{4} r, \eta \in R^{n-s},|\eta| \leq 1$ с постоянной A_{4}, определяемой теоремой 5 , и постоянной C, зависящей лишь от m, n, s, v_{1}, v_{2}.

Если предполагать доказанной оценку (56), то из определения $\mu_{1}(h(r), \eta)$ при соответствующем выборе η следует

$$
m\left(\frac{r}{2}\right)-m(r) \leq C A_{1}^{1-\theta} k\left(\frac{d}{r}\right)^{\beta}
$$

И далее, применяя лемму 2.9 гл. 10 [1], из последнего неравенства и оценки

$$
\begin{aligned}
& u(x, k) \leq C \frac{2^{\beta}}{2^{\beta}-1} A_{1}^{1-\theta} k\left(\frac{d}{\left|x^{\prime}\right|}\right)^{\beta}+m\left(\frac{H}{A_{4}}\right) \leq \\
\leq & C \frac{2^{\beta}}{2^{\beta}-1} A_{1}^{1-\theta} k\left(\frac{d}{\left|x^{\prime}\right|}\right)^{\beta}+K_{4}^{\theta} A_{1}^{1-\theta} k A_{4}^{\alpha+\beta} m\left(\frac{d}{H}\right)^{\beta}
\end{aligned}
$$

при $8 d \leq\left|x^{\prime}\right| \leq \frac{H}{A_{4}}$. Отсюда следует неравенство (55) для $\left|x^{\prime}\right| \leq \frac{H}{A_{4}}$. При $\left|x^{\prime}\right|>$ $>\frac{H}{A_{4}}$ доказываемую оценку (55) получаем из (26).

Докажем неравенство (56). При этом достаточно зафиксировать значение η таким образом, чтобы выполнялось неравенство

$$
\begin{equation*}
\mu_{1}(h(r), \eta) \geq m\left(\frac{r}{2}\right)-m(r) \tag{57}
\end{equation*}
$$

Возможны две ситуации при выбранных значениях r, η :

$$
\begin{align*}
& \mu_{2}(h(r), \eta)>r \tag{58}\\
& \mu_{2}(h(r), \eta) \leq r \tag{59}
\end{align*}
$$

Пусть вначале выполнено условие (58) и $j \geq 1$. Тогда $\mu_{j+1}(h(r), \eta)>r$ и $k>$ $>d$. В соответствии с леммой 4 , используя неравенство (52), получаем

$$
\begin{gather*}
{\left[\mu_{j}(h(r), \eta)\right]^{q(m-1)+\frac{n}{m}(m-2)} \leq} \\
\leq C_{18} \frac{2^{j n}}{r^{n}}\left[\mu_{j+1}(h(r), \eta)\right]^{(m-2) \frac{n}{m}} \int_{\Omega} u_{r}^{q(m-1)}(x, k) \varphi_{j, h(r)}^{m}(x, \eta) d x . \tag{60}
\end{gather*}
$$

Оценим интеграл в правой части (60). Применяя неравенства Пуанкаре и (47), имеем

$$
\begin{gather*}
\int_{\Omega} u_{r}^{q(m-1)}(x, k) \varphi_{j, h(r)}^{m}(x, \eta) d x \leq \int_{G_{j+1}} u_{r}^{q(m-1)}(x, k) \chi_{j, h}^{m}\left(x^{\prime \prime}, \eta\right) d x \leq \\
\leq C_{21} r^{m} \int\left|\frac{\partial}{\partial x^{\prime}}\left[u_{r}(x, k)\right]_{\mu_{j+1}}^{\frac{q(m-1)}{m}}\right|^{m} \chi_{j, h(r)}^{m}\left(x^{\prime \prime}, \eta\right) d x \leq \\
\leq C_{22} r^{m} \int_{E_{r, \mu}^{j+1}} u_{r}^{q(m-1)-m}(x, k)\left|\frac{\partial u}{\partial x}\right|^{m} \chi_{j, h(r)}^{m}(x, \eta) d x \leq C_{23} r^{m} R_{r, r_{j+1}^{(1)}}\left(A_{1}, h(r)\right) . \tag{61}
\end{gather*}
$$

Здесь $\mu_{j+1}=\mu_{j+1}(h(r), \eta), C_{23}=C_{22} K_{9}\left[A_{4}^{-2} A_{3}+1\right]$.
Отметим, что в силу (57)

$$
m\left(\frac{r}{2}\right)-m(r) \leq \mu_{j+1}(h(r), \eta) \leq m\left(r_{j+1}^{(1)}\right)-m(r)
$$

и тем самым обеспечены условия для μ_{j+1}, достаточные для применения оценки (47).

Из (60), (61) получаем

$$
\begin{gather*}
{\left[\mu_{j}(h(r), \eta)\right]^{q(m-1)+\frac{n}{m}(m-2)} \leq} \\
\leq C_{24} 2^{j n}\left[\mu_{j+1}(h(r), \eta)\right]^{(m-2) \frac{n}{m}}\left\{\left[A_{1} k\left(\frac{d}{r}\right)^{\lambda(s-m)}\right]^{(q-1)(m-1)} k^{m-1}\left(\frac{d}{r}\right)^{s-m}+\right. \\
\left.+\left[M\left(A_{1}\right) k\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)}+\left[M\left(A_{1}\right) k\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)-m+2}\left[\mu_{j+1}(h(r), \eta)\right]^{(m-2)}\right\} \tag{62}
\end{gather*}
$$

Оценим первое слагаемое в фигурных скобках, замечая, что

$$
\begin{gather*}
{\left[A_{1} k\left(\frac{d}{r}\right)^{q(s-m)}\right]^{(q-1)(m-1)} k^{m-1}\left(\frac{d}{r}\right)^{s-m}=} \\
=\left\{A_{1}^{\frac{q-1}{q}} k\left(\frac{d}{r}\right)^{\lambda(s-m) \frac{q-1}{q}+\frac{s-m}{m-1} \frac{1}{q}}\right\}^{q(m-1)} \leq C_{25}\left[M\left(A_{1}\right) k\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)}, \tag{63}
\end{gather*}
$$

так как в силу (30) и выбора λ справедливы неравенства

$$
\frac{1}{q}>\theta, \lambda(s-m) \frac{q-1}{q}+\frac{s-m}{m-1} \frac{1}{q}-\beta=(s-m)\left(\frac{1}{q}-\theta\right)\left(\frac{1}{m-1}-\lambda\right)>0 .
$$

Из неравенств (60), (63) получаем для

$$
\begin{equation*}
z_{j}=\mu_{j}(h(r), \eta)\left\{A_{1}^{1-\theta} k\left(\frac{d}{r}\right)^{\beta}\right\}^{-1} \tag{64}
\end{equation*}
$$

оценку

$$
\begin{equation*}
z_{j}^{q(m-1)+\frac{n}{m}(m-2)} \leq C_{26} 2^{j n}\left\{z_{j+1}^{(m-2) \frac{n}{m}}+z_{j+1}^{(m-2)\left(\frac{n}{m}+1\right)}\right\} . \tag{65}
\end{equation*}
$$

Далее достаточно предполагать, что $z_{j+1} \geq 1$, ибо в противном случае доказываемое неравенство (56) справедливо при $C=1$. Если же $z_{j+1} \geq 1$, то̣ из (65) имеем

$$
\begin{equation*}
z_{j} \leq C_{27} 2^{a_{j}} z_{j+1}^{b}, \tag{66}
\end{equation*}
$$

где $a=\frac{n m}{q(m-1) m+n(m-2)}, b=\frac{(m-2)(n+m)}{q(m-1)+n(m-2)} \leq 1$.
Неравенство (66) доказано сейчас при выполнении условия (58) для $j \geq 1$. Последовательным применением эттго неравенства получаем оценку

$$
\begin{equation*}
\mu_{1}(h(r), \eta) \leq C_{28} A_{1}^{1-\theta} k\left(\frac{d}{r}\right)^{\beta} \tag{67}
\end{equation*}
$$

что и доказывает неравенство (56) в случае (58).
При получении дальнейших оценок будем предполагать выполнение неравенства (59). В этом случае достаточно ограничиться доказательством при дополнительном предположении

$$
\begin{equation*}
r>k A_{1}^{1-\theta}\left(\frac{d}{r}\right)^{\beta} \tag{68}
\end{equation*}
$$

так как в противном случае доказываемая оценка (56) непосредственно следует из неравенства

$$
\mu_{1}(h(r), \eta) \leq \mu_{2}(h(r), \eta) \leq r .
$$

Получим оценку $\mu_{1}(h(r), \eta)$, предположив, что выполнено условие (59). Начнем с дополнительного предположения $k>d$. Применяя лемму 4, находим

$$
\left[\mu_{1}(h(r), \eta)\right]^{q(m-1)-m+2} \leq C_{29} \frac{1}{r^{n}} \int_{\Omega} u_{r}^{q(m-1)-m+2}(x, k) \varphi_{1, h(r)}^{m}(x, \eta) d x
$$

Оценим последний интеграл, использовав неравенства Пуанкаре и (47). В результате получим

$$
\begin{align*}
& {\left[\mu_{1}(h(r), \eta)\right]^{q(m-1)-m+2} \leq C_{30} r^{2-m}\left\{\left[A_{1} k\left(\frac{d}{r}\right)^{\lambda(s-m)}\right]^{(q-1)(m-1)} k^{m-1}\left(\frac{d}{r}\right)^{s-m}+\right.} \\
& +\left[M\left(A_{1}\right) k\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)}+\left[M\left(A_{1}\right) k\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)-m+2} \tag{69}\\
& \left.r^{m-2}\right\}
\end{align*}
$$

И, применяя далее неравенства (63) (68), получаем оценку

$$
\left[\mu_{1}(h(r), \eta)\right]^{q(m-1)-m+2} \leq C_{31}\left[\left(A_{1}^{1-\theta}\right) k\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)-m+2}
$$

что и доказывает неравенство (56) в случае (59), если $k>d$.
Осталось еще получить неравенство (56), если $k \leq d$ и выполнено условие (59). В соответствии с леммой 4 используем оценку (54). Оценивая интеграл в правой части (54) по неравенству Пуанкаре, а затем применяя оценку (47), находим

$$
\begin{align*}
& {\left[\mu_{1}(h(r), \eta)\right]^{q(m-1)-m+2} \leq C_{32}\left\{\left[A_{1} k\left(\frac{d}{r}\right)^{\lambda(s-m)}\right]^{(q-1)(m-1)} k\left(\frac{d}{r}\right)^{s-2}+\right.} \\
& \quad+\left[M\left(A_{1}\right) k\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)} r^{2-m}+\left[M\left(A_{1}\right) k\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)-m+2} \tag{70}
\end{align*}
$$

Оценм первое слагаемое в фигуной скобке в (70):

$$
\begin{equation*}
\left[A_{1} k\left(\frac{d}{r}\right)^{\lambda(s-m)}\right]^{(q-1)(m-1)} k\left(\frac{d}{r}\right)^{s-2} \leq C_{33}\left[M\left(A_{1}\right) k\left(\frac{d}{r}\right)^{\beta}\right]^{(q-1)(m-1)+1} \tag{71}
\end{equation*}
$$

что обеспечивается выбором значений λ, q, θ. Используя (68), из (70), (71) получаем

$$
\left[\mu_{1}(h(r), \eta)\right]^{q(m-1)-m+2} \leq C_{34}\left[\left(A_{1}^{1-\theta}\right) k\left(\frac{d}{r}\right)^{\beta}\right]^{q(m-1)-m+2},
$$

откуда следует неравенство (56).
Тем самым как в случае (58), так и в случае (59), доказана оценка (56), а следовательно, и полностью доказана теорема 6.
6. Доказательство основной оценки. Доказанная в предыдущем пункте теорема 6 о последовательном улучшении поточечных оценок позволяет просто получить основной результат данной работы.

Теорема 7. Предположим, что выполнены условия а), б). Тогда существует постоянная K, зависящая лишь от m, n, s, v_{1}, v_{2}, такая, что для решения $u(x, k)$ задачи (1), (2) справедлива оценка

$$
\begin{equation*}
|u(x, k)| \leq K|k|\left(\frac{d}{\left|x^{\prime}\right|}\right)^{\frac{s-m}{m-1}} \tag{72}
\end{equation*}
$$

Доказательство. Как отмечалось выше, достаточно рассматривать только случай положительного k. Покажем, что число K можно выбрать в виде

$$
\begin{equation*}
K=\max \left\{1, K_{4}, K_{5}, K_{10}^{\frac{1}{\theta}}\right\} \tag{73}
\end{equation*}
$$

где K_{4}, K_{5}, K_{10} - постоянные, определенные соответственно в теоремах $2,3,6$, и θ - число, определенное равенством (30).

Определим последовательность $\lambda_{i}, i=1,2, \ldots$:

$$
\begin{equation*}
\lambda_{i}=\frac{1}{m-1}-\frac{1}{m(m-1)}(1-\theta)^{i-1} \tag{74}
\end{equation*}
$$

и покажем, что при $i=1,2, \ldots$ справедливы оценки

$$
\begin{equation*}
u(x, k) \leq K k\left(\frac{d}{\left|x^{\prime}\right|}\right)^{(s-m) \lambda_{i}} \tag{75}
\end{equation*}
$$

где постоянная K определена равенством (73).
При $i=1$ оценка (75) следует из (73) и теоремы 3 , так как $\lambda_{1}=\frac{1}{m}$. Дальше оценка (75) доказывается индукцией по i. Если предположить ее справедливость при $i=i_{0}, i_{0} \geq 1$, то, применяя теорему 6 , получаем оценку

$$
\begin{equation*}
u(x, k) \leq K_{10} K^{1-\theta} k\left(\frac{d}{\left|x^{\prime}\right|}\right)^{\frac{s-m}{m-1} \theta+\lambda_{i_{0}}(s-m)(1-\theta)} \tag{76}
\end{equation*}
$$

По выбору K имеем $K_{10} K^{1-\theta} \leq K$. Из (74) получаем

$$
\frac{s-m}{m-1} \theta+\lambda_{i_{0}}(s-m)(1-\theta)=(s-m) \lambda_{i_{0}+1} .
$$

Тем самым из неравенства (76) следует оценка (75) при $i=i_{0}+1$.
Замечая, что $\lambda_{i} \rightarrow \frac{1}{m-1}$ при $i \rightarrow \infty$, предельным переходом по i из (75) получаем (72), что и завершает доказательство теоремы 7.

1. Скрыпник И. В. Методы исследования нелинейных эллиптических граничных задач.- М.:

Наука, 1990.- 448с.
2. Скрыпник И. В. О поточечных оценках некоторых емкостных потенциалов // Общая теория граничных задач.- Киев: Наук. думка, 1983.-С.198-206.
3. Скрыпник И. В.Поточечная оценка решения модельной нелинейной параболической задачи // Нелинейные граничные задачи.-1991.-Вып.3.-С. 72-86.

Получено 01.04.92

