УДК 517.946

И.И. Скрыпник, канд. физ.-мат. наук (Ин-т прикл. математики и механики АН Украины, Донецк)

ГРАНИЧНЫЕ ЗНАЧЕНИЯ РЕІІЕНИЙ ЛИНЕЙНЫХ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА

Изучаются локальные свойства решений параболических уравнений в областях, граница которых определяется разностью двух выпуклых функций. Установлены условия существования граничных некасательных и L_{2}-пределов.
Вивчаються локальні властивості розв'язків параболічних рівнянь в областях, границя яких визначається різницею двох опуклих функціи. Встановлено умови існування граничних недотичних та L_{2}-границь.

Пусть $\varphi_{1}(x, t), \varphi_{2}(x, t)$ - непрерывные выпуклые функции, $x \in R^{n}, t \in R_{+}^{1}$. Pacсмотрим область вида

$$
\begin{equation*}
Q=\left\{(x, y, t): x \in R^{n}, t \in R_{+}^{1}, y>\varphi(x, t)\right\}, \tag{1}
\end{equation*}
$$

где $\varphi(x, t)=\varphi_{1}(x, t)-\varphi_{2}(x, t)$.
Все результаты, полученные в данной работе, справедливы для областей вида.(1). При этом для простоты изложения рассмотрим полупространство

$$
R_{+}^{n+1} \times R_{+}^{1}=\left\{(z, t)=(x, y, t) \in R^{n} \times R_{+}^{1} \times R_{+}^{1}\right\} .
$$

Для произвольного $a>0$ определим множество

$$
\begin{equation*}
\Gamma_{a}(x, t)=\left\{(s, y, \tau):|s-x|<a y,|\tau-t|<(a y)^{2}\right\}, \tag{2}
\end{equation*}
$$

которое является аналогом обычного кругового конуса для эллиптического случая.

Пусть W - произвольное множество из $R_{+}^{n+1} \times R_{+}^{1}, u(z, t)$ - функция, определенная на W. Определим функцию

$$
\begin{equation*}
N_{W, a}(x, t)=\sup \left\{|u(z, \tau)|:(z, \tau) \in \Gamma_{a}(x, t) \cap W\right\} \tag{3}
\end{equation*}
$$

$\left(N_{W, a}(x, t)=0\right.$ при $\left.\Gamma_{a}(x, t) \cap W \neq \varnothing\right)$ - аналог нетангенциальной максимальной функции.

Если $u(z, t)$ имеет производные по z и t, определим также функцию

$$
\begin{equation*}
D_{W, a}(x, t)=\sup \left\{y\left|\frac{\partial u}{\partial z}\right|+y^{2}\left|\frac{\partial u}{\partial \tau}\right|,(z, \tau) \in \Gamma_{a}(x, t) \bigcap W\right\} . \tag{4}
\end{equation*}
$$

(Положим ее равной нулю, если $\Gamma_{a}(x, t) \cap W=\emptyset$.)
В случае ограниченного $y_{s, \tau}=\sup \{y,(s, y, \tau) \in W\}$ определим функцию

$$
\begin{gather*}
N_{W, a}^{0}(x, t)=\sup \left\{\left|u(s, y, \tau)-u\left(s, y_{s, \tau}, \tau\right)\right|,(s, y, \tau) \in \Gamma_{a}(x, t) \cap W\right\}, \tag{5}\\
A_{W, a}(x, t)=\left\{\int_{W \cap \Gamma_{a}(x, t)} y^{-1-n}\left|\frac{\partial u(z, \tau)}{\partial z}\right|^{2} d z d \tau\right\}^{1 / 2} \tag{6}
\end{gather*}
$$

- аналог интеграла Лузина.

Рассмотрим в $R_{+}^{n+1} \times R_{+}^{1}$ уравнение

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\sum_{i, j=1}^{n+1} a_{i j}(z, t) \frac{\partial^{2} u}{\partial z_{i} \partial z_{j}}+\sum_{i=1}^{n+1} a_{i}(z, t) \frac{\partial u}{\partial z_{i}}+a_{0}(z, t) u=f(z, t) \tag{7}
\end{equation*}
$$

коэффициенты которого $a_{i j}(z, t), a_{i}(z, t), a_{0}(z, t)$ непрерывны и ограничены вместе с производными первого порядка по z и гельдеровы по t с показателем $\mu / 2$ в $R_{+}^{n+1} \times R_{+}^{1}, 0<\mu<1 ; f(z, t) \in H^{\mu, \mu / 2}\left(R_{+}^{n+1} \times R_{+}^{1}\right), i, j=1, \ldots, n+1$, и выполнены неравенства

$$
\begin{equation*}
v_{0}^{-1}|\xi|^{2} \leq \sum_{i, j=1}^{n+1} a_{i j}(z, t) \xi_{i} \xi_{j} \leq v_{0}|\xi|^{2} \tag{8}
\end{equation*}
$$

для любых $(z, t) \in R_{+}^{n+1} \times R_{+}^{1}, \xi \in R^{n+1}, 0<v_{0}=$ const $<\infty$. Под решением понимаем классическое решение из области $C_{2}^{2} \cap C_{t}^{1}$.

Пусть

$$
f_{1}\left(z, z^{\prime} ; t, t^{\prime}\right)=\left(y|f(z, t)|+\left|y-y^{\prime}\right|^{1+\mu} \frac{\left|f(z, t)-f\left(z^{\prime}, t\right)\right|}{\left|z-z^{\prime}\right|^{\mu}}+y^{1+\mu / 2} \frac{\left|f(z, t)-f\left(z, t^{\prime}\right)\right|}{\left|t-t^{\prime}\right|^{\mu / 2}}\right)
$$

Определим также функцию

$$
F_{W, a}(x, t)=\sup \left\{f_{1}\left(z, z^{\prime}, \tau, \tau^{\prime}\right),(z, \tau),\left(z^{\prime}, \tau\right),\left(z, \tau^{\prime}\right) \in \Gamma_{a}(x, t) \cap W\right\}
$$

Определение. Будем говорить, что функция $u(x, y, t)$ нетангенциально ограничена в точке $\left(x_{0}, t_{0}\right) \in R^{n} \times R_{+}^{1}$, если для некоторьх $a, h>0$ выполнено

$$
\sup |u(x, y, t)|<\infty,(x, y, t) \in \Gamma_{a, h}\left(x_{0}, t_{0}\right)
$$

где $\Gamma_{a, h}\left(x_{0}, t_{0}\right)=\Gamma_{a}\left(x_{0}, t_{0}\right) \cap\{0<y<h\}$.
Определим $A_{h, a}(x, t)$ аналогично $A_{W, a}(x, t)$ с заменой W на $\Gamma_{a, h}(x, t)$.
Теорема 1. Пусть $u(z, t)$-решение уравнения (7) в $R_{+}^{n+1} \times R_{+}^{1}, u(z, t), f_{1}\left(z, z^{\prime}\right.$; t, t^{\prime}) нетангенциально ограничены в каждой точке измеримого множества $E \subset$ $\subset R_{x}^{n} \times R_{t,+}^{1}$, mes $E>0$. Тогда для всех $a, h>0$ функция $A_{h, a}(x, t)$ конечна почти всюду на E и решение $u(z, t)$ почти в каждой точке $\left(x_{0}, t_{0}\right) \in E$ имеет конечный предел

$$
\begin{equation*}
\lim u(z, t)=l<\infty,(z, t) \rightarrow\left(x_{0}, 0, t_{0}\right),(z, t) \in \Gamma_{a}\left(x_{0}, t_{0}\right) \tag{9}
\end{equation*}
$$

Пусть далее

$$
\Gamma_{a, h, H}(x, t)=\Gamma_{a}(x, t) \bigcap\{h<y<H\}
$$

Функции $F_{h, a}(x, t)$ и $N_{h, H, a}(x, t)$ определяются так же, как $F_{W, a}(x, t)$ и $N_{W, a}(x$, t), с заменой W на $\Gamma_{a, h}(x, t)$ и $\Gamma_{a, h, H}(x, t)$ соответственно. Справедлива следующая теорема.

Теорема 2. Пусть для некоторых $H>0, a>a_{0}, h \in\left(0, h_{0}\right)$, где a_{0}, h_{0} зависят лишь от известных величин, выполнено неравенство

$$
\begin{equation*}
\int_{0<y<H} y\left|\frac{\partial u(z, t)}{\partial z}\right|^{2} d z d t+\int_{R_{x}^{n} \times R_{t,+}^{1}} F_{H, a}^{2}(x, t) d x d t+\int_{R_{x}^{n} \times R_{t,+}^{1}} N_{h, H, a}^{2}(x, t) d x d t<\infty . \tag{10}
\end{equation*}
$$

Тогда почти всюду на $R_{x}^{n} \times R_{t,+}^{1}$ существует конечный предел (9), являющийся функцией $u_{0}(x, t) \in L_{2}\left(R_{x}^{n} \times R_{t,+}^{1}\right)$. Причем если $\left\{\varepsilon_{k}\right\}$-последовательность чисел $k=1,2, \ldots, \varepsilon_{k} \rightarrow 0$ при $k \rightarrow \infty$, то

$$
\begin{gather*}
\sup _{x}\left\|u\left(x, \varepsilon_{k}, t\right)\right\|_{L_{2}\left(R_{x}^{n} \times R_{t,+}^{1}\right)}<\infty, \tag{11}\\
\lim _{k \rightarrow \infty}\left\|u\left(x, \varepsilon_{k}, t\right)-u_{0}(x, t)\right\|_{L_{2}\left(R_{x}^{n} \times R_{t,+}^{1}\right)}=0 . \tag{12}
\end{gather*}
$$

Доказательства теорем 1,2 основаны на развитии для параболического случая методов работы [1]. При рассмотрении негладкой границы используются обобщения [4] этих методов. Основой доказательства являются следующие две теоремы.

Теорема 3. Пусть G-ограниченное открытое множество в $R_{x}^{n} \times R_{t,+}^{1}$,

$$
P=\operatorname{int}\left\{R_{+}^{n+1} \times R_{+}^{1} \backslash \bigcup_{(x, t) \notin G^{a}} \Gamma_{a}(x, t)\right\}
$$

$u(z, t)$ - решение уравнения (7) в $R_{+}^{n+1} \times R_{+}^{1}, \alpha, \beta \in(1, \infty), \omega, \rho>0$. Тогда существует такое $a_{0}>0$, что для всвх a, больших a_{0}, найдутся γ, δ, r_{0}, при которьх выполняется неравенство

$$
\begin{gather*}
\alpha \operatorname{mes}\left\{N_{P, a}^{0}>\beta \lambda\right\} \leq \operatorname{mes}\left\{N_{P, a}^{0}>\lambda\right\}+\alpha\left[c(n) \operatorname{mes}\left\{A_{P, a}>\gamma \lambda\right\}+\right. \\
\left.\quad+\operatorname{mes}\left\{D_{P, a}>\delta \lambda\right\}+\operatorname{mes}\left\{F_{P, a}>\rho \lambda\right\}+\operatorname{mes}\left\{N_{P, a}>\omega \lambda\right\}\right] \tag{13}
\end{gather*}
$$

для всех $\lambda>0$, лишь только $d(G) \leq r_{0}$. Здесь

$$
d(G)=\sup \left\{\max \left[\left|z-z^{\prime}\right|,\left|t-t^{\prime}\right|^{1 / 2}\right],(z, t),\left(z^{\prime}, t^{\prime}\right) \in G\right\} .
$$

Теорема 4. Пусть $u(z, t)$ - решение уравнения (7) в $R_{+}^{n+1} \times R_{+}^{1}, \alpha, \beta \in$ $\epsilon(1, \infty), \rho, a>0$. Тогда найдутся такие γ, δ, что для любого $\lambda>0$ верно неравенство

$$
\begin{gather*}
\alpha \operatorname{mes}\left\{A_{P, a}>\beta \lambda\right\} \leq \operatorname{mes}\left\{A_{P, a}>\lambda\right\}+ \\
+\alpha\left[\operatorname{mes}\left\{N_{P, a}>\gamma \lambda\right\}+\operatorname{mes}\left\{D_{P, a}>\delta \lambda\right\}+\operatorname{mes}\left\{F_{P, a}>\rho \lambda\right\}\right] \tag{14}
\end{gather*}
$$

Остановимся на некоторых моментах доказательства теоремы 3. Пусть $\pi_{\gamma, \lambda, \varepsilon}(x, t)=\chi_{\left\{A_{P_{\varepsilon}, a}>\gamma \lambda\right]}(x, t)$, где $\chi_{E}(x, t)$ - характеристическая функция множества E,

$$
\pi_{\gamma, \lambda, \varepsilon}^{*}(x, t)=\sup \left\{\frac{1}{\operatorname{mes} Q} \int_{Q} \pi_{\gamma, \lambda, \varepsilon}(s, \tau) d s d \tau,(x, t) \in Q\right\}
$$

где Q - цилиндр,

$$
\begin{gathered}
E=\left\{N_{P_{\varepsilon}, a}^{0}>\beta \lambda, \pi_{\gamma, \lambda, \varepsilon}^{*} \leq \frac{1}{2}, D_{P_{\varepsilon}, a} \leq \delta \lambda, F_{P_{\varepsilon}, a} \leq \rho \lambda, N_{P_{\varepsilon}, a} \leq \omega \lambda\right\} \\
G_{0}=\left\{N_{P_{\varepsilon}, a}^{0}>\lambda\right\}
\end{gathered}
$$

Здесь $P_{\varepsilon}=P \cap\{y>\varepsilon\}, \varepsilon>0$.
Покажем, что при достаточно малых δ, γ выполняется неравенство

$$
\begin{equation*}
\alpha \operatorname{mes} E \leq \operatorname{mes} G_{0} \tag{15}
\end{equation*}
$$

Тогда (13) будет следовать из (15) и того, что аналогично [3, с.15]

$$
\operatorname{mes}\left\{\pi_{\gamma, \lambda, \varepsilon}^{*} \geq \frac{1}{2}\right\} \leq c(n)\left\|\pi_{\gamma, \lambda, \varepsilon}\right\|_{L_{1}\left(R_{x}^{n} \times R_{t,+}^{1}\right)}=c(n) \operatorname{mes}\left\{A_{P_{\varepsilon}, a}>\gamma \lambda\right\} .
$$

Множество G_{0} открыто и содержится в G. Пусть неравенство (15) не выполняется, т.е. mes $G_{0}<\alpha$ mes E. Тогда аналогично $[1,3]$ найдется цилиндр $Q \subset$ $\subset G_{0}$, для которого mes $Q \leq c_{1} \alpha$ mes $\{E \cap Q\}$ и существует $\left(x_{0}, t_{0}\right) \in \partial Q$ такое, что $N_{P_{e}, a}^{0}\left(x_{0}, t_{0}\right) \leq \lambda$. Не теряя общности считаем $Q=Q_{r}\left(0, \tau_{0}\right), \tau_{0}>0$.
Выберем $\xi=\xi(n, \alpha) \in(0,1 / 2)$ так, чтобы для цилиндра $Q_{0}=Q_{(1-2 \xi) r}\left(0, \tau_{0}\right)$ выполнялось $\operatorname{mes} Q_{0}=\left[1-1 / 2 \alpha c_{1}\right] \operatorname{mes} Q$. Toгда mes $Q<2 \alpha c_{1} \operatorname{mes}\left\{E \cap Q_{0}\right\}$. Положим $E_{0}=E \cap Q_{0}$. Рассмотрим множества

$$
\begin{gathered}
V^{r}=\left\{(s, y, \tau) \in R^{n} \times R_{+}^{1} \times R_{+}^{1}:|s|<r-a y,\left|\tau-\tau_{0}\right|<r^{2}-(a y)^{2}\right\}, \\
V_{\varepsilon}^{r}=V^{r} \cap\{y>\varepsilon\}
\end{gathered}
$$

и область

$$
W_{0}=\bigcup_{(x, t) \in E_{0}}\left(\mathrm{I}_{a}^{-}(x, t) \cap V_{\varepsilon}^{r}\right) .
$$

Обозначим $\partial W_{0}^{+}=\partial W_{0} \cap \partial V_{\varepsilon}^{r}, \partial W_{0}^{-}=\partial W_{0} \backslash \partial W_{0}^{+}$. Дальнейшее доказательство вытекает из следующих утверждений.

Утверждение 1. Пусть $\theta=(\beta-1) / 2, z_{0}=\left(0, a^{-1} r\right), v(z, t)=u(z, t)-u\left(z_{0}, \tau_{0}\right)$. Тогда

$$
\begin{equation*}
|v(z, t)| \leq \frac{a}{\xi}\left(1+\frac{a}{\xi}\right) \delta \lambda,(z, t) \in \partial W_{0}^{+} . \tag{16}
\end{equation*}
$$

Если выполнено условие

$$
\begin{equation*}
\delta<\frac{\theta \xi^{2}}{2} \frac{1}{a(\xi+a)+2 \xi}, \tag{17}
\end{equation*}
$$

то

$$
\begin{gather*}
|v(z, t)|<\frac{\theta \lambda}{2},(z, t) \in \partial W_{0}^{+}, \tag{18}\\
\sup \left\{|v(z, \tau)|,(z, \tau) \in \Gamma_{a}(x, t) \cap W\right\}>\theta \lambda,(x, t) \in E_{0} . \tag{19}
\end{gather*}
$$

Введем при $x \in R^{n}, t \in R_{+}^{1}, l>0$ обозначения

$$
\begin{gathered}
\Gamma(x, t ; l)=\left\{(s, y, \tau):|s-x|<a(y-l),|\tau-t|<a^{2}\left(y^{2}-l^{2}\right)\right\}, \\
M(x, t ; l)=\sup \left\{|v(s, y, \tau)| ;(s, y, \tau) \in \Gamma(x, t ; l) \cap W_{0}\right\}, \\
W=\left\{(x, l, t) \in W_{0}: M(x, t ; l)<\theta \lambda\right\}, \\
l_{1}^{(x, t)}=\inf \{l:(x, l, t) \in W\} .
\end{gathered}
$$

Кроме того, $\partial W^{+}=\Gamma(x, t ; l) \cap \partial V_{\varepsilon}^{r}, \partial W^{-}=\partial W \backslash \partial W^{+}$. Ввиду непрерывности $u(z, t)$ вблизи ∂W_{0}^{+}из (18) следует, что W не пусто и $\partial W^{+}=\partial W_{0}^{+}$. Покажем, что на ∂W^{-}выполнено условие

$$
\begin{equation*}
\left|l_{1}^{(s, \tau)}-l_{1}^{(x, t)}\right| \leq \max \left\{\frac{|s-x|}{a}, \frac{|t-\tau|}{a^{2}\left[l_{1}^{(s, \tau)}+l_{1}^{(x, t)}\right]}\right\} \tag{20}
\end{equation*}
$$

Действительно, пусть выполнено противоположное неравенство, и, следовательно, можно считать справедливыми неравенства

$$
\begin{gathered}
l_{1}^{(s, \tau)}-l_{1}^{(x, t)} \geq \frac{1}{a}|s-x| \\
l_{1}^{(s, \tau)}-l_{1}^{(x, t)} \geq \frac{|\tau-t|}{a^{2}\left[l_{1}^{(s, \tau)}+l_{1}^{(x, t)}\right]}
\end{gathered}
$$

Тогда $\left(s, l_{1}^{(s, \tau)}, \tau\right) \in \Gamma\left(x ; t ; l_{1}^{(x, t)}\right)$. Найдется такое $l>l_{1}^{(x, t)}$ и столь близкое к $l_{1}^{(x, t)}$, что $M(x, t ; l)<\theta \lambda$ и $\left(s, l_{1}^{(s, \tau)}, \tau\right) \in \Gamma(x ; t ; l)$. Теперь можно выбрать $l^{\prime}<$ $<l_{1}^{(s, \tau)}$ так, чтобы $\left(s, l^{\prime}, \tau\right) \in \Gamma(x ; t ; l)$. При этом $\Gamma\left(s ; \tau ; l^{\prime}\right) \subset \Gamma(x ; t ; l)$. В самом деле, если $(\tilde{x}, \tilde{y}, \tilde{t}) \in \Gamma\left(s ; \tau ; l^{\prime}\right)$, то $|\tilde{x}-s|<a\left(\tilde{y}-l^{\prime}\right),|\tau-\tilde{t}|<a^{2}\left(\tilde{y}^{2}-l^{\prime 2}\right)$. Поскольку из $\left(s, l^{\prime}, \tau\right) \in \Gamma(x ; t ; l)$, имеем $|s-x|<a\left(l^{\prime}-l\right),|\tau-t|<a^{2}\left(l^{2}-l^{2}\right)$. Поэтому $|x-\tilde{x}|<a(\tilde{y}-l),|t-\tilde{t}|<a^{2}\left(\tilde{y}^{2}-l^{2}\right)$, что и доказывает включение $(\tilde{x}, \tilde{y}, \tilde{t}) \in \Gamma(x$; $t ; l)$. Из включения $\Gamma\left(s ; \tau ; l^{\prime}\right) \subset \Gamma(x ; t ; l)$ имеем $M\left(s ; \tau ; l^{\prime}\right) \subset M(x ; t ; l)<\theta \lambda$. Отсюда следует принадлежность точки (s, l^{\prime}, τ) множеству W, а это противоречит определению $l_{1}^{(s, \tau)}$.

Введем множество

$$
S=\left\{\left(x, l_{1}^{(x, t)}, t\right):\left|v\left(x, l_{1}^{(x, t)}, t\right)\right|>\frac{\theta \lambda}{2}\right\} \subset \partial W^{-} .
$$

Обозначим через $P(S)$ проекцию множества S на $R_{x}^{n} \times R_{t,+}^{1}$. Справедливо следующее утверждение.

Утверждение 2. При условии (17) существует такая константа $c=$ $=c(n, \alpha)>0$, что

$$
\begin{equation*}
\operatorname{mesp}(S) \geq c \operatorname{mes} Q \tag{21}
\end{equation*}
$$

Утверждение 3. Существует $a_{0}=a_{0}\left(n, \alpha, \beta, v_{0}\right)$ такое, что для любого $a>a_{0}$ найдутся такие $\delta(\alpha, \beta, a), r_{0}(\alpha, \beta, a, \omega, \rho)$, что при $r<r_{0}$ выполнено неравенство

$$
\begin{equation*}
\int_{W} y\left|\frac{\partial u(z, t)}{\partial z}\right|^{2} d z d t \geq c \operatorname{mes} Q \lambda^{2} \tag{22}
\end{equation*}
$$

где $c=c(n, \alpha, \beta)>0$.
Доказательстөо. Достаточно оценить интеграл

$$
\sum_{i, j=1}^{n+1} \int_{W} y a_{i j}(z, t) \frac{\partial v}{\partial z_{i}} \frac{\partial v}{\partial z_{j}} d z d t
$$

Будем интегрировать по частям, используя уравнение (7).
Если v - внешняя нормаль к ∂W, то

$$
\sum_{i, j=1}^{n+1} \int_{W} y a_{i j}(z, t) \frac{\partial v}{\partial z_{i}} \frac{\partial v}{\partial z_{j}} d z d t=2 \sum_{i, j=1}^{n+1} \int_{\partial W} y a_{i j} \frac{\partial v}{\partial z_{i}} v \cos \left(v, z_{j}\right) d \sigma-
$$

$$
\begin{align*}
& -\int_{\partial W^{-}} a_{n+1, n+1} v^{2} \cos (v, y) d \sigma-\int_{\partial W^{+}} a_{n+1, n+1} v^{2} \cos (v, y) d \sigma- \\
& -\sum_{i=1}^{n+1} \int_{\partial W} a_{i n+1} v^{2} \cos \left(v, x_{i}\right) d \sigma+\sum_{i=1}^{n+1} \int_{W} y \frac{\partial a_{i n+1}}{\partial z_{i}} v^{2} d z d t- \\
& -2 \sum_{i, j=1}^{n+1} \int_{W} y \frac{\partial a_{i j}}{\partial z_{j}} \frac{\partial v}{\partial z_{i}} v d z d t-2 \int_{W} y v \frac{\partial v}{\partial t} d z d t- \\
& -\sum_{i=1}^{n+1} \int_{W} \dot{y} a_{i} \frac{\partial v}{\partial z_{i}} v d z d t-2 \int_{W} y a_{0} v u d z d t+2 \int_{W} y f v d z d t=\sum_{k=1}^{10} I_{k} . \tag{23}
\end{align*}
$$

Оценим каждый из интегралов $I_{k}, k=1, \ldots, 10$, использовав определения W, W_{0}, E_{0} и утверждения 1,2. Получим

$$
\begin{gathered}
\left|I_{1}\right| \leq c \theta \delta \lambda^{2} \sum_{j=1}^{n+1} \int_{\partial W} \cos \left(v, z_{j}\right) d \sigma \leq \frac{c \theta \delta \lambda^{2}}{a} \int_{\mathrm{p}(\partial W)} d x d t \leq c \frac{\theta \delta}{a} \lambda^{2} \operatorname{mes} Q, \\
I_{2} \geq-\int_{S} a_{n+1, n+1}(z, t) v^{2}(z, t) \cos (v, y) d \sigma= \\
=\int_{\mathrm{p}(S)} a_{n+1, n+1}\left(x, l_{1}^{(x, t)}, t\right) v^{2}\left(x, l_{1}^{(x, t)}, t\right) d x d t \geq \\
\geq v_{0}^{-1}\left(\frac{\theta \lambda}{2}\right)^{2} \operatorname{mesp}(S) \geq c \frac{\theta^{2}}{4} \lambda^{2} \operatorname{mes} Q, \\
\left|I_{3}\right| \leq c \frac{a^{2}}{\xi^{2}}\left(1+\frac{a}{\xi}\right)^{2} \delta^{2} \lambda^{2} \int_{\partial W^{+}}|\cos (v, y)| d \sigma \leq c \frac{a}{\xi^{2}}\left(1+\frac{a}{\xi}\right)^{2} \delta^{2} \lambda^{2} \operatorname{mes} Q, \\
\left|I_{4}\right| \leq c \frac{\theta^{2} \lambda^{2}}{a^{2}} \sqrt{1-a^{2}} \operatorname{mes} Q, \\
\left|I_{5}\right|+\left|I_{6}\right|+\left|I_{8}\right| \leq c \frac{r}{a} \theta \delta \lambda^{2} \operatorname{mes} Q, \\
\left|I_{9}\right| \leq c \frac{r^{2}}{a^{2}} \omega \theta \lambda^{2} \operatorname{mes} Q, \\
\left|I_{10}\right| \leq c \frac{r}{a} \rho \omega \lambda^{2} \operatorname{mes} Q .
\end{gathered}
$$

Осталось оценить I_{7}. Приблизим W семейством областей W_{ε} с гладкой границей. Определим

$$
l_{2}^{(x, t)}=\sup \{l:(x, l, t) \in W\} \in \partial V^{r} .
$$

Имеем

$$
l_{2}^{(x, t)}=\frac{1}{a} \min \left\{r-|x|, \sqrt{r^{2}-\left|t-\tau_{0}\right|}\right\} .
$$

Легко проверить, что

$$
\begin{equation*}
\left|l_{2}^{(x, t)}-l_{2}^{(s, \tau)}\right| \leq \max \left\{\frac{|s-x|}{a}, \frac{|\tau-t|}{a^{2}\left[2_{2}^{(x, t)}+l_{2}^{(s, \tau)}\right]}\right\} . \tag{24}
\end{equation*}
$$

Доопределим $l_{1}^{(s, \tau)}$ на Q. На $\partial \mathscr{P}(W)$ имеем $\lim _{(s, \tau) \rightarrow(x, t)_{1}^{l_{1}^{(s, \tau)}}=l_{2}^{(x, t)} \text {. Поэтому оп- }}$ $(s, \tau) \in p(W)$
ределим $\tilde{l}^{(s, \tau)}$ на Q следующим образом:

$$
\tilde{l}^{(s, \tau)}=\left\{\begin{array}{c}
l_{1}^{(s, \tau)},(s, \tau) \in \mathrm{p}(W) ; \\
l_{2}^{(s, \tau)},(s, \tau) \in Q \backslash \mathrm{p}(W) .
\end{array}\right.
$$

Она является непрерывной на Q. Так как $P(W)$ - строго внутреннее множество Q, то на нем и в его малой окрестности с некоторой константой c^{*} выполнено неравенство

$$
\begin{equation*}
\tilde{l}^{(s, \tau)} \geq c^{*}>0, \tag{25}
\end{equation*}
$$

причем $\tilde{l}^{(s, \tau)}$ является липшицевой на Q. Пусть $\varepsilon>0$ - малое число. Определим в $Q_{\varepsilon}=\left\{(x, t)\right.$: $\left.|x|<r-\varepsilon,\left|t-\tau_{0}\right|<r^{2}-\varepsilon^{2}\right\}$ функции

$$
\begin{aligned}
& l_{1, \varepsilon}^{(x, t)}=\frac{1}{\varepsilon^{n+1}} \int_{R^{n}} \int_{R^{1}} \varphi_{1}\left(\frac{|x-s|}{\varepsilon}\right) \varphi_{2}\left(\frac{|t-\tau|}{\varepsilon}\right) l_{1}^{(s, \tau)} d s d \tau, \\
& l_{2, \varepsilon}^{(x, t)}=\frac{1}{\varepsilon^{n+1}} \int_{R^{n}} \int_{R^{1}} \varphi_{1}\left(\frac{|x-s|}{\varepsilon}\right) \varphi_{2}\left(\frac{|t-\tau|}{\varepsilon}\right) \ell_{2}^{(s, \tau)} d s d \tau,
\end{aligned}
$$

где $\varphi_{1}, \varphi_{2} \in C^{\infty}$, с носителями на $[-1,1]$ такие, что

$$
\int_{R^{n}} \varphi_{1}(|s|) d s=1, \int_{R^{1}} \varphi_{2}(|\tau|) d \tau==1 .
$$

Теперь

$$
W_{\varepsilon}=\left\{(x, y, t) \in Q_{\varepsilon}, l_{1, \varepsilon}^{(x, t)}<y<l_{2, \varepsilon}^{(x, t)}\right\} .
$$

В силу (20) имеем

$$
\begin{aligned}
& \left|l_{i, \varepsilon}^{\left(x^{\prime}, t\right)}-l_{i, \varepsilon}^{\left(x^{\prime \prime}, t\right)}\right| \leq \frac{1}{\varepsilon^{n+1}} \iint_{R^{n}} \varphi_{R^{1}}\left(\frac{|\zeta|}{\varepsilon}\right) \varphi_{2}\left(\frac{\left|\zeta \zeta_{0}\right|}{\varepsilon}\right) \times \\
\times & \left|l_{i}^{\left(x^{\prime}+\zeta_{,}, t \zeta_{0}\right)}-l_{i}^{\left(x^{\prime \prime}+\zeta_{,}, t \zeta_{0}\right)}\right| d \zeta d \zeta_{0} \leq \frac{\left|x^{\prime}-x^{\prime \prime}\right|}{a}, i=1,2 .
\end{aligned}
$$

Поэтому

$$
\begin{align*}
& \left|\frac{\partial l_{i, \varepsilon}^{(x, t)}}{\partial x}\right| \leq \frac{1}{a}, i=1,2, \tag{26}\\
& \left.\left|l_{i, \varepsilon}^{\left(x, t^{\prime}\right)}-l_{i, \varepsilon}^{\left(x, t^{\prime \prime}\right)}\right| \leq \frac{1}{\varepsilon^{n+1}} \int_{R^{n} R^{1}} \varphi_{1}\left(\frac{|\zeta|}{\varepsilon}\right)\left|\varphi_{2}\left(\frac{\left|\zeta_{0}\right|}{\varepsilon}\right)\right| l_{i}^{\left(x+\zeta, t^{\prime}+\zeta_{0}\right)}-l_{i}^{\left(x+\zeta, t^{\prime \prime}+\zeta_{0}\right)} \right\rvert\, d \zeta d \zeta_{0} \leq \\
& \leq \frac{\left|t^{\prime}-t^{\prime \prime}\right|}{a^{2}} \max _{|\zeta|<\varepsilon,\left|\zeta_{0}\right|<\varepsilon}\left[l_{i}^{\left(x+\zeta, t^{\prime}+\zeta_{0}\right)}+l_{i}^{\left(x+\zeta, t^{\prime \prime}+\zeta_{0}\right)}\right]^{-1}, i=1,2
\end{align*}
$$

Так как выполнено (24), то при достаточно малом $\varepsilon>0$

$$
\frac{1}{2} l_{i}^{(x, t)}<l_{i}^{\left(x+\zeta, t+\zeta_{0}\right)}<2 l_{i}^{(x, t)},|\zeta|<\varepsilon,\left|\zeta_{0}\right|<\varepsilon, i=1,2 .
$$

Тогда

$$
\begin{equation*}
\left|\frac{\partial l_{i, \varepsilon}^{(x, t)}}{\partial t}\right| \leq \frac{1}{a^{2} l_{i, \varepsilon}^{(x, t)}}, i=1,2 . \tag{27}
\end{equation*}
$$

Имеем

$$
\begin{aligned}
& \left.\left|I_{7, \varepsilon}\right|=2\left|\int_{W_{\varepsilon}} y \frac{\partial v}{\partial t} v \cos (v, t) d \sigma\right|=2 \right\rvert\, \int_{\partial W_{\varepsilon}^{-}} y v^{2} \cos (v, t) d \sigma+ \\
& +\int_{\partial W_{\varepsilon}^{+}} y v^{2} \cos (v, t) d \sigma \left\lvert\, \leq \frac{2}{a^{2}} \int_{p\left(\partial W_{\varepsilon}\right)} v^{2} d x d t \leq \frac{c}{a^{2}} \theta^{2} \lambda^{2} \operatorname{mes} Q .\right.
\end{aligned}
$$

Выберем a_{0} так, чтобы при $a>a_{0}$ вполнялось неравенство

$$
\begin{equation*}
I_{2}-\left|I_{4}\right|-\left|I_{7}\right| \geq 2^{-4} \cdot c \theta^{2} \lambda^{2} \operatorname{mes} Q \tag{28}
\end{equation*}
$$

Зафиксировав a, выберем δ, r_{0} столь малыми, чтобы при $r<r_{0}$

$$
\begin{equation*}
\left|I_{1}\right|+\left|I_{3}\right|+\left|I_{5}\right|+\left|I_{6}\right|+\left|I_{8}\right|+\left|I_{9}\right|+\left|I_{10}\right| \leq 2^{-8} \cdot c \theta^{2} \lambda^{2} \operatorname{mes} Q \tag{29}
\end{equation*}
$$

Теперь из (28), (29) следует (22).
Введем множества

$$
\begin{gathered}
E_{1}=\left\{\psi_{\gamma, \lambda, \varepsilon}^{*} \leq \frac{1}{2}\right\} \cap Q, E_{1}=\left\{A_{P_{\varepsilon}, a} \leq \gamma \lambda\right\} \cap Q \\
W_{1}=\bigcup_{(x, t) \in E_{1}}\left(\Gamma_{a}(x, t) \cap V_{\varepsilon}^{r}\right) .
\end{gathered}
$$

Утверждение 4. Справедливо неравенство

$$
\begin{equation*}
\int_{W_{1}} y\left|\frac{\partial u(z, t)}{\partial z}\right|^{2} d z d t \leq c \frac{1}{a^{n+2}} \gamma^{2} \lambda^{2} \operatorname{mes} Q \tag{30}
\end{equation*}
$$

В завершение доказательства теоремы 3 заметим, что при достаточно малых γ неравенства (22), (30) противоречат одно другому. Поэтому неравенство, противоположное (15), невозможно, а значит, теорема доказана.

1. Burkholder D. L., Gundy R. F. Distribution function inequalities for the area integral// Studia Math.- 1972.- 44, N6.- P. 527-544.
2. Ладыженская О. А., Солонников В.А., Уральцева Н. Н. Линейные и квазилинейные уравнения параболического типа.- М.: Наука, 1967.- 736 с.
3. Стейн И. Сингулярные интегралы и дифференциальные свойства функций.- М.: Мир, 1973.- 342 c.
4. Шелепов В. Ю. О граничных свойтвах решений эллиптических уравнений в многомерных областях, представимых с помощью разности выпуклых функций // Мат. сб.- 1987.133, $\mathrm{N}^{2} 4 .-\mathrm{C} .446-468$.

Получено 01.04.92

