А.Ф. Тедеев, канд. Физ-мат. наук (Ин-т прикл. математики и механики АН Украины, Донецк)

СТАБИЛИЗАЦИЯ РЕІІЕНИЙ НАЧАЛЬНО-КРАЕВЫХ ЗАДАЧ ДЛЯ КВАЗИЛИНЕЙНЫХ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ

Для решения начально-краевой задачи Дирихле уравнения высокого порядка получены оценки снизу. Получены также точные оценки $\underset{\Omega}{\operatorname{esss}}|\nabla u(x, t)|$ начально-краевой задачи Неймана
для уравнения второго порядка в $D=\Omega \times(t>0)$, где $\Omega \subset R^{n}, n \geq 2$, - область с некомпактнои выпуклой границей.

Для розв'язку початково-крайової задачі Діріхле рівняння високого порядку одержані оцінки знизу. Одержані також точні оцінки $\underset{\Omega}{\operatorname{esssup}}|\nabla u(x, t)|$ початково-крайової задачі Неймана для рівняння другого порядку в $D=\Omega \times(t>0)$, де $\Omega \subset R^{n}, n \geq 2,-$ область з некомпактною опуклою межею.

1. Введение..Вопросам стабилизации решений нестационарных начально-краевых задач уделяется большое внимание [1]. В работе [2] получены точные оценки скорости стабилизации $|\nabla u(x, t)|$ решения задачи Неймана:

$$
\begin{gather*}
u_{t}=\operatorname{div}\left(|\nabla u|^{m-1} \nabla u\right), m>1, \tag{1}\\
\left.\frac{\partial u}{\partial v}\right|_{\partial \Omega \times(t>0)}=0, \tag{2}\\
u(x, 0)=u_{0}(x), x \in \Omega, \tag{3}
\end{gather*}
$$

в цилиндре $D=\Omega \times(t>0)$, где Ω - ограниченная гладкая выпуклая область. Задача Коши (1)-(3), $\Omega=R^{n}$, изучалась в работе [3]. В работах автора [4-6] изучалась задача Неймана для уравнений типа (1) и его обобщений в неограниченной по x области $\Omega \subset R^{n}, n \geq 2$. Основным требованием к области Ω было условие изопериметрического типа. Получены точные оценки $M(t)=$ $\underset{\Omega}{\operatorname{esssup}}|\nabla u(x, t)|$ при $t \rightarrow \infty$, зависящие от геометрии области. Впервые зави-
сящие от геометрии области оценки $M(t)$ в линейном случае были получены в работах $[7,8]$ (см. также список литературы в [8]).

Цель данной работы - получить оценку $N(t)=\underset{\Omega}{\operatorname{esssup}}|\nabla u(x, t)|$ при $t \rightarrow \infty$ решения задачи Неймана для квазилинейных параболических уравнений в D, где Ω - выпуклая область с некомпактной границей.
2. Допустимая скорость стабилизации решения. Пусть $\Omega \subset R^{n}, n \geq 2,-$ произвольная, вообще говоря, неограниченная область с достаточно гладкой границей, $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$.

Рассмотрим в $D=\Omega \times(t>0)$ решение следующей задачи:

$$
\begin{gather*}
\frac{\partial u}{\partial t}+L u+g\left(u^{2}\right) u=0 \tag{4}\\
\left.D^{\beta} u\right|_{\partial \Omega \times(t>0)}=0,|\beta| \leq m-1, m \geq 1, \tag{5}
\end{gather*}
$$

$$
\begin{equation*}
u(x, 0)=u_{0}(x), x \in \Omega . \tag{6}
\end{equation*}
$$

Здесь использованы следующие обозначения:

$$
\begin{gathered}
L u \equiv(-1)^{m} \sum_{|\alpha|=m} D^{\alpha}\left(a\left(\left|D^{m} u\right|^{2}\right) D^{\alpha} u\right), \\
D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}},|\alpha|=\alpha_{1}+\ldots+\alpha_{n}, D^{m} u=D^{\alpha} u,|\alpha|=m .
\end{gathered}
$$

Предположим, что неотрицательные функции $a(s)$ и $g(s), 0 \leq s<\infty$, удовлетворяют следующим условиям: $a(0)=g(0)=0, a(s), g(s) \in C^{1}(0, \infty)$. Кроме того, пусть существуют положительные постоянные $v_{1}, v_{2}, c_{i}, i=1, \ldots, 6$, такие, что

$$
\begin{gather*}
v_{1} \leq 1+a^{\prime}(s) s / a(s) \leq c_{1} \tag{7}\\
v_{2} \leq 1+g^{\prime}(s) s / g(s) \leq c_{2} \tag{8}\\
c_{3} s^{\frac{p-2}{2}} \leq a(s) \leq c_{4} s^{\frac{p-2}{2}}, c_{5} s^{\frac{q-2}{2}} \leq g(s) \leq c_{6} s^{\frac{q-2}{2}} \tag{9}
\end{gather*}
$$

$p \geq 2, q \geq 2$. Обозначим через $\stackrel{\circ}{W}_{p}^{m}(\Omega)$ пространство С. Л. Соболева, полученное пополнением $C_{0}^{\infty}(\Omega)$ по норме

$$
\left(\int_{\Omega} \sum_{|\alpha| \leq m}\left|D^{\alpha} u\right|^{p} d x\right)^{1 / p}
$$

Пусть $u_{0}(x) \in \stackrel{\circ}{W_{p}^{m}}(\Omega) \cap L_{2}(\Omega) \cap L_{q}(\Omega)$. Под решением задачи (4)-(6) в D понимается функция $u(x, t)$, принадлежащая при любом $T>0 \quad W_{T}=L_{p}(0, T$; $\left.\stackrel{\circ}{W}_{p}^{m}(\Omega)\right) \cap C\left([0, T] ; L_{2}(\Omega)\right) \cap L_{q}\left((0, T) ; L_{q}(\Omega)\right)$ и удовлетворяющая (4)-(6) в слабом смысле [9]. Как известно [9], такое решение существует и единственно. Отметим, что в вопросах существования и единственности в данном случае неограниченность области не играет существенной роли. Пусть

$$
\begin{gathered}
\mathcal{A}(s)=\int_{0}^{s} a(\tau) d \tau . G(s)=\int_{0}^{s} g(\tau) d \tau, E(t)=\int_{\Omega} u^{2} d x, \\
F(t)=\int_{\Omega}\left(\mathcal{A}\left(\left|D^{m} u\right|^{2}\right)+G\left(u^{2}\right)\right) d x, \gamma=\min \left(v_{1}, v_{2}\right) .
\end{gathered}
$$

Справедлива следующая теорема.
Теорема 1. Пусть $u(x, t)$ - решение задачи (4)-(6) в D.Тогда для всех $t>0$ справедливы следующие оценки:

$$
\begin{equation*}
E(t) \geq E(0)\left(c_{7}(F(0) / E(0)) t+1\right)^{-1 /(\gamma-1)} n p u \quad \gamma>1 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
E(t) \geq E(0) \exp \left(-c_{8} \frac{F(0)}{E(0)} t\right) n p u \quad \gamma=1 \tag{11}
\end{equation*}
$$

Доказательство. Пусть $\Omega(R)$ - гладкое исчерпание Ω : при $R \rightarrow \infty$: $\Omega(R) \subset \Omega, \Omega\left(R_{1}\right) \subset \Omega\left(R_{2}\right), R_{1}<R_{2}$. Рассмотрим в $D_{T, R}=\Omega(R) \times(0, T)$ следующую задачу:

$$
\begin{gather*}
v_{t}+L v+g\left(v^{2}\right) v=0, \tag{12}\\
D^{\beta} v_{\mid \partial \Omega(R)}=0, \tag{13}\\
v(x, 0)=v_{0}(x), x \in \Omega(R), \tag{14}
\end{gather*}
$$

где $v(x, t) \equiv u_{R}(x, t), u_{0 R}(x)=0, x \in \Omega \backslash \Omega(R), u_{0 R}(x) \rightarrow u_{0}(x)$ в $\quad \stackrel{\circ}{W_{p}^{m}}(\Omega) \cap L_{2}(\Omega) \cap$ $\cap L_{q}(\Omega)$. Не ограничивая общности, можем считать, что функции $v(x, t)$ достаточно гладкие: этого всегда можно добиться, переходя к галеркинским приближениям [9]. Умножим обе части (12) на v_{t} и результат проингегрируем по $\Omega(R)$. Порлучим

$$
\begin{equation*}
\int_{\Omega(R)} v_{t}^{2} d x+\frac{1}{2} \frac{d}{d t} \int_{\Omega(R)}\left(A\left(\left|D^{m} v\right|^{2}\right)+G\left(v^{2}\right)\right) d x \tag{15}
\end{equation*}
$$

Умножая обе части (12) на v и интегрируя по $\Omega(R)$, имеем

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega(R)} v^{2} d x=-\int_{\Omega(R)}\left(a\left(\left|D^{m} v\right|^{2}\right)\left|D^{m} v\right|^{2}+g\left(v^{2}\right) v^{2}\right) d x \tag{16}
\end{equation*}
$$

Далее

$$
-\int_{\Omega(R)} v v_{t} d x \leq\left(\int_{\Omega\left(R^{\prime}\right)} v^{2} d x\right)^{1 / 2}\left(\int_{\Omega(R)} v_{t}^{2} d x\right)^{1 / 2}
$$

Учитывая (15) и (16), а также (7) и (8), получаем

$$
\begin{equation*}
\gamma F_{R}(t) \dot{E}_{R}(t) \geq E_{R}(t) \dot{F}_{R}(t) \tag{17}
\end{equation*}
$$

где

$$
E_{R}(t)=\int_{\Omega(R)} v^{2} d x, F_{R}(t)=\int_{\Omega(R)}\left(\mathcal{A}\left(\left|D^{m} v\right|^{2}\right)+G\left(v^{2}\right)\right) d x
$$

Интегрируя (17), имеем

$$
\begin{gather*}
F_{R}(t) \leq\left(F_{R}(0) /\left(E_{R}(0)\right)^{\gamma}\right)\left(F_{R}(t)\right)^{\gamma}, \gamma>1 \tag{18}\\
F_{R}(t) \leq\left(F_{R}(0) / E_{R}(0)\right) E_{R}(t), \gamma=1 \tag{19}
\end{gather*}
$$

Из неравенства (16) с учетом оценок (18), (19), (7) и (8) находим

$$
\begin{equation*}
\frac{d E_{R}}{E_{R}^{\gamma}} \geq c_{9} \frac{F_{R}(0)}{\left(E_{R}(0)\right)^{\gamma}} d t, \gamma>1 \text {, } \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d E_{R}}{E_{R}} \geq-c_{10} \frac{F_{R}(0)}{E_{R}(0)} d t, \gamma=1 \tag{21}
\end{equation*}
$$

Интегрируя (20) и (21), получаем

$$
\begin{align*}
E_{R}(t) & \geq E_{R}(0)\left(c_{11}\left(F_{R}(0) / E_{R}(0)\right) t+1\right)^{-\frac{1}{\gamma-1}}, \gamma<1 \tag{22}\\
E_{R}(t) & \geq E_{R}(0) \exp \left(-c_{12}\left(F_{R}(0) / E_{R}(0)\right) t\right), \gamma=1 \tag{23}
\end{align*}
$$

Устремляя в неравенствах (22) и (23) $R \rightarrow \infty$, получаем неравенства (10) и (11). Теорема 1 доказана.

Пусть Ω - ограниченная область в $R^{n}, g(s) \equiv 0, a(s)=s^{(p-2) / 2}$. Тогда из неравенства (10) следует

$$
\begin{equation*}
F(t) \geq c_{13} t^{-2 /(p-2)} \tag{24}
\end{equation*}
$$

Кроме того, в силу неравенства Пуанкаре, из (24) получаем оценку

$$
\begin{equation*}
I(t)=\left.\iint_{\Omega} D^{m} u\right|^{p} d x \geq c_{14} t^{-p /(p-2)} . \tag{25}
\end{equation*}
$$

Далее, рассуждая так же, как при доказательстве теоремы 1 , имеем

$$
\frac{1}{p} \dot{I}(t) \leq-(I(t))^{2} / F(t) \leq-c_{15}(|\Omega|)(I(t))^{2-2 / p}
$$

Интегрируя это неравенство, находим

$$
\begin{equation*}
I(t) \leq c_{16} t^{-p /(p-2)} \tag{26}
\end{equation*}
$$

Из неравенства (16) легко получить

$$
\begin{equation*}
F(t) \leq c_{17} t^{-2 /(p-2)} \tag{27}
\end{equation*}
$$

Кроме того, из (24) имеем

$$
\begin{equation*}
\|u(x, t)\|_{L_{\infty}(\Omega)} \geq c_{18} t^{-1 /(p-2)} \tag{28}
\end{equation*}
$$

Если $n<m p$, то в силу неравенства Ниренберга-Гальярдо

$$
\begin{gather*}
\|u(x, t)\|_{L_{\infty}(\Omega)} \leq c_{19}\left\|D^{m} u\right\|_{L_{p}(\Omega)}^{\theta}\|u\|_{L_{2}(\Omega)}^{1-\theta} \leq c_{20} t^{-1 /(p-2)}, \tag{29}\\
\theta=n /(n(p-2)+2 p m) .
\end{gather*}
$$

Неравенства (24)-(29) показывают, что теорема 1 дает точную оценку снизу по крайней мере в частных случаях. Пусть теперь Ω - снова произвольная неограниченная область в $R^{n}, n \geq 2, g \equiv 0, u_{0} \in \stackrel{\circ}{W_{p}^{m}}(\Omega) \cap L_{2}(\Omega)$ и выполнены условия (7) и (9). Тогда справедлива следующая теорема.

Теорема 2. Для решения $u(x, t)$ задачи (4)-(6) для всех $t>0$ справедливы следующие оценки:

$$
\begin{gather*}
\|u(x, t)\|_{L_{q}(\Omega)} \leq c_{21} t^{-n(q-2) /(n(p-2)+2 p m) q}, n \geq m p \tag{30}\\
\|u(x, t)\|_{L_{\infty}(\Omega)} \leq c_{22} t^{-n /(n(p-2)+2 p m)}, n<m p \tag{31}
\end{gather*}
$$

Доказательство. Как и при доказательстве теоремы 1 достаточно установить неравенства (30) и (31) для решения $u_{R}(x, t)=v(x, t)$ аппроксимирующей задачи.

Интегрируя неравенство (15) в пределах от t_{1} до t_{2}, получаем

$$
\begin{equation*}
\int_{\Omega(R)} \mathfrak{A}\left(\left|D^{m} v\left(x, t_{2}\right)\right|^{2}\right) d x \leq \int_{\Omega(R)} \mathfrak{A}\left(\left|D^{m} v\left(x, t_{1}\right)\right|^{2}\right) d x . \tag{32}
\end{equation*}
$$

Далее, интегрируя (16), находим

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega(R)} v^{2}(x, t) d x+\int_{0}^{t} \int_{\Omega(R)} a\left(\left|D^{m} v\right|^{2}\right)\left|D^{m} v\right|^{2} d x d \tau=\frac{1}{2} \int_{\Omega(R)} v^{2}(x, 0) d x . \tag{33}
\end{equation*}
$$

Учитывая оценку (32) и условия (7) и (9), имеем

$$
\int_{\Omega(R)}\left|D^{m} v(x, t)\right|^{p} d x \leq c_{23} / t .
$$

В силу неравенства Ниренберга-Гальярдо отсюда получаем

$$
\begin{gathered}
\|v(x, t)\|_{L_{q}(\Omega(R))} \leq c_{24}\left\|D^{m} v(x, t)\right\|_{L_{p}(\Omega(R))}^{\theta_{1}}\|v(x, t)\|_{L_{2}(\Omega(R))}^{1-\theta_{1}} \leq \\
\leq c_{25^{2}} t^{-\frac{(q-2) n}{q(n(p-2)+2 p m)}}, \theta_{1}=\frac{(q-2) n}{q(n(p-2)+2 p m)}, n>m p, \\
\|v(x, t)\|_{L_{m}(\Omega)} \leq c_{26^{2}} t^{-\frac{n}{n(p-2)+2 p m}}, n<m p .
\end{gathered}
$$

Устремляя в этих неравенствах $R \rightarrow \infty$, приходим к неравенствам (30) и (31). Теорема 2 доказана.

В заключение данного пункта отметим, что результаты теорем 1 и 2 справедливы для решения задачи Коши. Оценка снизу для решения задачи Коши при $m=1, a(s)=s^{(m-1) / 2}, g(s) \equiv 0$ получена также в работе [3].
3. Равномерные оценки esssup $|\nabla u(x, t)|$. В цилиндре $D=\Omega \times(t>0)$, где Ω $\subset R^{n}, n \geq 2, \Omega$ - неограниченная область с некомпактной границей $\partial \Omega$, рассмотрим решение $u(x, t)$ следующей задачи:

$$
\begin{gather*}
u_{t}=\operatorname{div}\left(a\left(|\nabla u|^{2}\right) \nabla u\right), \tag{34}\\
\left.\frac{\partial u}{\partial v}\right|_{\partial \Omega \times(t>0)}=0, \tag{35}\\
u(x, 0)=u_{0}(x), x \in \Omega, u_{0} \in L_{2}(\Omega) \cap L_{\infty}(\Omega) \cap W_{m+1}^{1}(\Omega) \tag{36}
\end{gather*}
$$

Здесь функция $a(s)>0, s>0, a(0)=0, a(s) \in C^{\infty}\left(R_{t}^{1} \backslash 0\right)$ и, кроме того, удовлетворяет условиям (7) и

$$
\begin{equation*}
c_{27} s^{(m-1) / 2} \leq a(s) \leq c_{28} s^{(m-1) / 2}, m \geq 1, \tag{37}
\end{equation*}
$$

$\frac{d u}{d v}$ - производная по внешней нормали к $\partial \Omega$. Под решением $u(x, t)$ задачи (34)-(36) в D понимается функция, принадлежащая классу $V_{T}=C([0, \mathrm{~T}]$, $\left.L_{2}(\Omega)\right) \cap L_{m+1}\left((0, T), W_{m+1}^{1}(\Omega)\right) \forall T>0$ и удовлетворяющая (34)-(36) в слабом смысле [6]. Существование и единственность решения доказываются обычны-

Предположим, что $\partial \Omega \subset C^{2}$ и выпукла. Кроме того, предположим, что Ω удовлетворяет условию изопериметрического типа в следующем смысле [8]. Рассмотрим функцию $l(v)=\inf \operatorname{mes}_{n-1}(\partial Q \cap \Omega)$, где Q - произвольное открытое подмножество в Ω, a inf берется по всем Q таким, для которых $|Q|=$ $=v$. Будем говорить, что $\Omega \in-\mathcal{U}(g)$, если $\forall v>0 \quad l(v) \geq g(v)$, где $g(v)$ - положительная непрерывная монотонно неубывающая функция такая, что $v^{1-\varepsilon_{0}} / g(v)\left(0<\varepsilon_{0} \leq 1 / n\right)$ монотонно не убывает для всех $v>0$. Пусть $\Omega(R) \subset \Omega$, $R>0$ - семейство выпуклых областей класса C^{2}, исчерпывающих Ω при $R \rightarrow \infty$, причем $\Omega\left(R_{1}\right) \subset \Omega\left(R_{2}\right), R_{1}<R_{2}$. Рассмотрим в цилиндре $D_{R}=\Omega(R) \times(t>0)$ следующее семейство задач:

$$
\begin{gather*}
\frac{\partial u_{R}}{\partial t}=\operatorname{div}\left(a\left(\left|\nabla u_{R}\right|^{2}+R^{-\lambda}\right) \nabla u_{R}\right), \lambda>\lambda_{0}(n, m) \tag{38}\\
\left.\frac{\partial u_{R}}{\partial v}\right|_{\partial \Omega(R)}=0 \tag{39}\\
u_{R}(x, 0)=u_{0 R}(x), x \in \Omega(R) \tag{40}
\end{gather*}
$$

Здесь $u_{0 R}(x) \in C^{\infty}(\overline{\Omega(R)}), u_{0 R}=0, x \in \Omega \backslash \Omega(R), u_{0 R} \rightarrow u_{0}$ в $L_{2}(\Omega) \cap W_{m+1}^{1}(\Omega)$.
Из общей теории невырожденных квазилинейных параболических уравнений следует, что решение задачи $u_{R}(x, t) \in C^{\infty}\left(\bar{\Omega}(R), R^{+}\right)$. В дальнейшем нам потребуются следующие леммы.

Лемма 1. Пусть $u(x, t)$ - решение задачи (34)-(36) в D. Тогда равномерно no $t \in(0, \infty)$

$$
\left\|u_{\underline{R}}(x, t)-u(x, t)\right\|_{L_{2}(\Omega(R))} \rightarrow 0 \text { npu } R \rightarrow \infty .
$$

Лемма 2. Пусть $u(x, t)$ - решение задачи (34) - (36) в D. Тогда для всех $t>0$ справедливы следуюцие оценки:

$$
\begin{equation*}
\|u(x, t)\|_{L_{2}(\Omega)}^{2} \leq c_{29}\left\|u_{0}\right\|_{L_{1}\left(\Omega_{2 K(t)}\right)}^{2}\left(J_{--1}\left(\left\|u_{0}\right\|_{L_{1}\left(\Omega_{2 K(t)}\right)}^{m-1} t\right)\right)^{-1} \equiv \tilde{w}_{1}(t) \tag{41}
\end{equation*}
$$

где

$$
J(s)=s^{m-1} \mathcal{P}_{m}(s), \mathcal{P}_{m}(s)=\int_{0}^{s} \frac{d \xi}{\xi} \int_{0_{0}}^{\xi} \frac{\theta^{m}}{(g(\theta))^{m+1}} d \theta
$$

$\Omega_{R}=\Omega \cap(|x|<R)$, функция $R(t) \forall t>0$ определяется из условия

$$
\begin{equation*}
t \leq K J\left(\frac{\left\|u_{0}\right\|_{L_{1}\left(\Omega_{2 R}\right)}^{2}}{\left\|u_{0}\right\|_{L_{2}\left(\Omega \backslash \Omega_{R}\right)}^{2}}\right)\left\|u_{0}\right\|_{L_{1}\left(\Omega_{2 R}\right)}^{(m-1)}, K>0 \tag{42}
\end{equation*}
$$

Если дополнительно $u_{0} \in L_{1}(\Omega) \cap L_{\infty}(\Omega)$, то

$$
\begin{equation*}
\|u(x, t)\|_{L_{2}(\Omega)}^{2} \leq c_{30}\left\|u_{0}\right\|_{L_{1}(\Omega)}^{2}\left(J_{-1}\left(\left\|u_{0}\right\|_{L_{1}(\Omega)}^{m-1} t\right)\right)^{-1} \equiv \tilde{w}_{2}(t) \tag{43}
\end{equation*}
$$

Лемма 3. Пусть $u(x, t)$ - решение задачи (34)-(36) в $D \quad и \quad \tilde{w}(t)$ - пюбая оценивающая $\|u(x, t)\|_{L_{2}(\Omega)}^{2}$ функция, удовлетворяющая условию: существует такая положительная постоянная $\kappa>0$, что $t^{\kappa} \tilde{w}(t)$ монотонно не убывает при всех $t>0$. Тогда для всех $t>0$ справедлива оценка

$$
\begin{equation*}
\|\nabla u(x, t)\|_{L_{m+1}(\Omega)}^{m+1} \leq c_{31} \tilde{w}(t) / t \tag{44}
\end{equation*}
$$

Доказательство лемм 1-3 опускаем. Лемма 2 доказывается методами, приведенными в работе [6]. Перейдем к равномерным оценкам $N(t)=\operatorname{esssup}|\nabla u(x, t)|$. Обозначим

$$
\tilde{N}(t)=\tilde{E}_{1}(t) /\left(\tilde{J}_{-1}\left(\left(\tilde{E}_{1}(t)\right)^{m-1} t\right)\right)^{1 /(m+1)},
$$

где

$$
\tilde{J}(s)=s^{(m-1) /(m+1)} \mathcal{P}_{1}(s), \tilde{E}_{1}(t)=\left(\tilde{w}_{1}(t) / t\right)^{1 /(m+1)},
$$

если $u_{0}(x) \in L_{2}(\Omega) \cap L_{\infty}(\Omega) ; \tilde{E}_{1}(t)=\left(\tilde{w}_{2}(t) / t\right)^{1 /(m+1)}$, если $u_{0} \in L_{1}(\Omega) \cap L_{\infty}(\Omega)$.
Справедлива следующая теорема.
Теорема 3. Пусть $u(x, t)$ - решение задачи (34)-(36) в $D, u_{0}(x) \in L_{2}(\Omega) \cap$ $\cap L_{\infty}(\Omega) \cap W_{p}^{1}(\Omega), m+1 \leq p \leq \infty$. Предположим, что существует $\kappa_{1}>0$ такая, что $\tilde{N}(t) t^{\kappa_{1}}$ монотонно не убывает при всех $t>0$. Тогда для всех $t>0$ справедлива оценка

$$
\begin{equation*}
N(t) \leq c_{32} \tilde{N}(t) \tag{45}
\end{equation*}
$$

Доказательство. Пусть $\zeta_{R}(x)$ - гладкая срезающая функция $\Omega(R): \zeta_{R}=1$ при $x \in \Omega(R / 4) ; 0 \leq \zeta_{R} \leq 1$ при $x \in \Omega(R), \zeta_{R}=0$ при $x \in \Omega \backslash \Omega(R / 2)$. Продифференцируем обе части (38) по x_{j}, полученное соотношение умножим на

$$
\left(|\nabla v|^{2}+R^{-\lambda}\right)^{(p-1) / 2} v_{x_{j}} \zeta_{R}^{p+1}, v=u_{R}(x, t), p \geq m+1,
$$

и результат проинтегрируем по $\Omega(R)$.В итоге получим

$$
\begin{gather*}
\frac{1}{p+1} \frac{d}{d t} \int_{\Omega(R)}\left(|\nabla v|^{2}+R^{-\lambda}\right)^{\frac{p+1}{2}} \zeta_{R}^{p+1} d x= \\
=\int_{\Omega(R)}\left(a\left(|\nabla v|^{2}+R^{-\lambda}\right) v_{x_{i}}\right) x_{i} x_{j} \zeta_{R}^{p+1}\left(|\nabla v|^{2}+R^{-\lambda}\right)^{\frac{p}{2}} d x \equiv A_{1} \tag{46}
\end{gather*}
$$

Правую часть в (46) преобразуем интегрированием по частям следующим образом:

$$
\begin{aligned}
A_{1} & \left.=-\int_{\Omega(R)}\left(|\nabla v|^{2}+R^{-\lambda}\right)^{\frac{p-1}{2}} v_{x_{j}} \zeta_{R}^{p+1}\right)_{x_{i}}\left(a\left(|\nabla v|^{2}+R^{-\lambda}\right) v_{x_{i}}\right)_{x_{j}} d x+ \\
& +\int_{\partial \Omega(R)} a\left(|\nabla v|^{2}+R^{-\lambda}\right) v_{x_{i}} v_{i}\left(|\nabla v|^{2}+R^{-\lambda}\right)^{\frac{p-1}{2}} v_{x_{j}} \zeta_{R}^{p+1} d s \equiv A_{2}+A_{3} .
\end{aligned}
$$

В силу выпуклости $\Omega(R)$ [2] и условия (39) интеграл по границе A_{3} неполо-

жителен. Далее, с помощью преобразований, аналогичных приведенным в [2], легко получить неравенство

$$
\begin{align*}
-A_{2} & \geq c_{33} \frac{p-1}{(p+m)^{2}} \int_{\Omega(R)}\left|\nabla\left(|\nabla v|^{2}+R^{-\lambda}\right)^{\frac{p+m}{4}}\right|^{2} \zeta_{R}^{p+1} d x- \\
& -c_{34}(p+1) \int_{\Omega(R)}\left(|\nabla v|^{2}+R^{-\lambda}\right)^{\frac{p+m}{2}}\left|\nabla \zeta_{R}\right|^{2} \zeta_{R}^{p-1} d x \tag{47}
\end{align*}
$$

Обозначим $w=\zeta_{R}\left(|\nabla v|^{2}+R^{-\lambda}\right)^{1 / 2}$. Из неравенств (46), (47) имеем

$$
\begin{gather*}
\frac{d}{d t} \int_{\Omega} w^{p+1} d x \leq-c_{35} \int\left|\nabla w^{\frac{p+m}{2}}\right|^{2} d x+ \\
+c_{36}(p+1)^{2} \int_{\Omega(R)}\left(|\nabla v|^{2}+R^{-\lambda}\right)^{\frac{p+m}{2}}\left|\nabla \zeta_{R}\right|^{2} \zeta_{R}^{p-1} d x . \tag{48}
\end{gather*}
$$

Воспользуемся мультипликативным неравенством

$$
\begin{equation*}
\|\nabla f\|_{L_{2}(\Omega)}^{2} \geq c_{37} \frac{\|f\|_{L_{\lambda}(\Omega)}^{\lambda /(\lambda-1)}\|f\|_{L_{1}(\Omega)}^{-(2-\lambda) /(\lambda-1)}}{\mathcal{P}_{1}\left(\frac{\|f\|_{L_{1}(\Omega)}^{\lambda /(\lambda-1)}}{\|f\|_{L_{\lambda}(\Omega)}^{\lambda /(\lambda-1)}}\right)} \tag{49}
\end{equation*}
$$

$f \in W_{2}^{1}(\Omega) \cap L_{1}(\Omega), \Omega \in U(\mathrm{~g}), 1<\lambda \leq 2$. Неравенство (49) и его обобщения можно найти в работах $[5,7,10]$. Полагая в неравенстве (49) $f=w^{(p+m) / 2}$, из (48) получаем

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} w^{p+1} d x \leq-c_{38} \frac{\left(\int_{\Omega} w^{p+1} d x\right)^{(p+m) /(p+2-m)}}{\left(\int_{\Omega} w^{\frac{p+m}{2}} d x\right)^{\frac{2(m-1)}{p+2-m}}\left(\mathcal{P}_{1}\left(\frac{\left.\int_{\Omega} w^{\frac{p+m}{2}} d x\right)^{\frac{2(p+1)}{p+2-m}}}{\left(\iint_{\Omega} w^{p+1} d x\right)^{\frac{p+m}{p+2-m}}}\right)\right.} \tag{50}
\end{equation*}
$$

где $\varepsilon_{p}(R)=c_{39} \frac{(p+1)^{2}}{R^{2}}\left\|\nabla u_{0}\right\|_{L_{p+m}(\Omega)}^{p+m}$. Здесь мы воспользовались (48) при $\zeta_{R} \equiv 1$:

$$
\begin{equation*}
\|w\|_{L_{p+1}(\Omega(R))}^{p+1} \leq\left\||\nabla v|^{2}+R^{-\lambda}\right\|_{L_{(p+1) / 2}(\Omega(R))}^{(p+1) / 2} \leq\left\|\left|\nabla v_{0}\right|^{2}+R^{-\lambda}\right\|_{L_{(p+1) / 2}(\Omega)}^{(p+1) / 2} . \tag{51}
\end{equation*}
$$

Рассмотрим последовательность чисел $p_{k}=2^{k+1}+m-2, k=1,2, \ldots$, и последовательность

$$
E_{k}(t)=\|w\|_{L_{p_{k}+1}}^{p_{k}+1}(\Omega(R)) .
$$

Тогда из неравенства (50) следует

$$
\begin{equation*}
\frac{d}{d t} E_{k}(t) \leq-c_{38} \frac{\left(E_{k}(t)\right)^{\beta_{k}}}{\left(E_{k-1}(t)\right)^{\beta_{k}-1} P_{1}\left(\frac{\left(E_{k}(t)\right)^{\beta_{k}+1}}{\left(E_{k-1}(t)\right)^{\beta_{k}}}\right)} \tag{52}
\end{equation*}
$$

где $\beta_{k}=\left(p_{k-1}+1\right) /\left(p_{k}-p_{k-1}\right)$.

Рассмотрим

$$
\begin{gathered}
\Delta_{k}(t)=\tilde{E}_{k}(t)-E_{k}(t), \tilde{E}_{k}(t)=c_{40}\left(\tilde{E}_{1}(t)\right)^{p_{k}+1} \times \\
\times\left(\tilde{J}_{-1}\left(\left(\tilde{E}_{1}(t)\right)^{m-1} t\right)\right)^{-\frac{\left(p_{k}-m\right)}{m+1}}\left(\prod_{i=1}^{k}\left(\theta_{1} p_{i}\right)^{\frac{\theta_{2}}{p_{i}+1}}\right)^{p_{k}+1}, \theta_{1}, \theta_{2}>0 .
\end{gathered}
$$

При $k=1$ справедливо неравенство

$$
\begin{equation*}
E_{1}(t) \leq c_{40} \tilde{E}_{1}^{m+1}(t) \quad \forall t>0 \tag{53}
\end{equation*}
$$

при достаточно больших $R>R_{0}$. Дёйствительно, несложно показать, что при достаточно больших $R>R_{0}$

$$
\begin{align*}
& \|v\|_{L_{2}(\Omega(R))}^{2} \leq c_{41} \tilde{w}_{1}(t), u_{0} \in L_{2}(\Omega) \cap L_{\infty}(\Omega), \tag{54}\\
& \|v\|_{L_{2}(\Omega(R))}^{2} \leq c_{42} \tilde{w}_{2}(t), u_{0} \in L_{1}(\Omega) \cap L_{\infty}(\Omega) . \tag{55}
\end{align*}
$$

Кроме того, точно так же, как при доказательстве теоремы 1 , имеем

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega(R)} \mathcal{A}\left(|\nabla v|^{2}+R^{-\lambda}\right) d x \leq-c_{43}\left(\int_{\Omega(R)} \mathcal{A}\left(|\nabla v|^{2}+R^{-\lambda}\right) d x\right)^{2} / \int_{\Omega(R)} v^{2} d x \tag{56}
\end{equation*}
$$

Следовательно, интегрируя (56) с учетом (54) и (55), получаем

$$
\int_{\Omega(R)}\left(|\nabla v|^{2}+R^{-\lambda}\right)^{\frac{m+1}{2}} d x \leq c_{44} \tilde{E}_{1}^{m+1}(t) .
$$

Точно так же, как в работах $[5,6]$, доказывается, что при достаточно больших $\theta_{1}>\tilde{\theta}_{1}, R>R_{0}$ для всех $t>0, k>1$ справедливо неравенство $\Delta_{k}(t) \geq 0$, т.е.

$$
\begin{equation*}
\left(E_{k}(t)\right)^{1 /\left(p_{k}+1\right)} \leq\left(\tilde{E}_{k}(t)\right)^{1 /\left(p_{k}+1\right)} . \tag{57}
\end{equation*}
$$

Переходя к пределу при $k \rightarrow \infty$, получаем

$$
\begin{equation*}
\left.N_{R}(t)=\underset{\Omega(R)}{\operatorname{esssup}}\left(\left.| | \nabla u_{R}\right|^{2}+R^{-\lambda}\right) \zeta_{R}^{2}\right)^{1 / 2} \leq c_{45} \tilde{N}(t) \tag{58}
\end{equation*}
$$

В силу леммы 1 и оценки (51) находим $\lim _{R \rightarrow \infty} N_{R}(t) \leq c_{45} \tilde{N}(t)$. Кроме того,

$$
\lim _{R \rightarrow \infty}\|\nabla u(x, t)\|_{L_{R}(\Omega)} \leq \lim _{R \rightarrow \infty}\left(\int_{\Omega(R)}\left(\zeta_{R}\left(|\nabla v|^{2}+R^{-\lambda} \cdot\right)^{1 / 2}\right)^{R} d x\right)^{1 / R} \leq
$$

$$
\leq \varliminf_{R \rightarrow \infty}|\Omega(R)|^{1 / R} N_{R}(t) \leq c_{45} \tilde{N}(t) .
$$

Следовательно, теорема 3 доказана.
Примеры. 1. Пусть $\Omega \in \mathcal{U}(g), g(v) \geq c_{46} v^{1-\alpha_{0}}, v>v_{0}, 1 / n \leq \alpha_{0} \leq 1, u_{0} \in$ $\in L_{1}(\Omega) \cap L_{\infty}(\Omega)$. Тогда при достаточно больших $t>0$

$$
E_{1}(t) \leq c_{47} t^{-\left((m+1) \alpha_{0}+m\right) /(m+1)\left((m+1) \alpha_{0}+m-1\right)} \equiv c_{47} \tilde{E}_{1}(t)
$$

Следовательно, в качестве $\tilde{N}(t)$ можно взять

$$
\begin{equation*}
\tilde{N}(t)=c_{48} t^{-\left(1+\alpha_{0}\right) /\left(m-1+\alpha_{0}(m+1)\right)}=c_{48} t^{-\beta_{1}\left(\alpha_{0}\right)} . \tag{59}
\end{equation*}
$$

Отметим, что в случае $\alpha_{0}=\frac{1}{n}, \beta_{1}=\frac{n+1}{(m-1) n+m+1}, \Omega-$ область типа конуса. Если же $\alpha_{0}=1, \beta_{1}=1 / m, \Omega$ - область типа цилиндра.
2. Пусть $\Omega \in \mathcal{U}(g), g(v) \geq c_{46} v^{1-\alpha_{0}}, v>v_{0}, 1 / n \leq \alpha_{0} \leq 1, c_{49}(1+|x|)^{-\alpha} \leq u_{0}(x) \leq$ $\leq c_{50}(1+|x|)^{-\alpha}, \frac{1}{2 \alpha_{0}}<\alpha \leq \frac{1}{\alpha_{0}}$. Тогда при $\frac{1}{2 \alpha_{0}}<\alpha<\frac{1}{\alpha_{0}}$ для достаточно больших $t>0$

$$
\begin{equation*}
\tilde{N}(t)=c_{51} t^{-(1+\alpha) /(\alpha(m-1)+m+1)}, \tag{60}
\end{equation*}
$$

если же $\alpha=1 / \alpha_{0}$, то при достаточно больших $t>0$

$$
\begin{equation*}
\tilde{N}(t)=c_{52}(\ln \tau)^{1+2 \alpha_{0}} \tau^{-\left(\alpha_{0}+1\right) /\left(m-1+(m+1) \alpha_{0}\right)} \tag{61}
\end{equation*}
$$

где $t=c_{53} \tau /(\ln \tau)^{m-1+2 \alpha_{0}(m+1)}$.
В заключение отметим, что результаты теоремы 3 являются новыми, повидимому, и для случая $m=1$.

1. Калашников А.C. Некоторые вопросы качественной теории нелинейных вырождающихся параболических уравнений второго порядка/Успехи мат. наук.-1987.-42, вып.2.-С. 135-176.
2. Alikakos N., Rostamian R. Gradient estimates for degenerate diffusion equations. I. // Math. Ann. -1982.- 259.- P. 53-70.
3. Alikakos N., Rostamian R. Gradient estimates for degenerate diffusion equations. II. // Proc. Roy. Soc. Edinburgh.- 1982.- 91, Ne 3-4.- P. 335-346.
4. Тедеев А.Ф. Двусторонние оценки скорости стабилизации решения второй смешанной задачи для квазилинейного параболического уравнения второго порядка // Докл. АН УССР.-1991.- N^{2} 14.- C. 11-13.
5. Тедеев А.Ф. Стабилизация решения третьей смешанной задачи для квазилинейных параболических уравнений второго порядка в нецилиндрической области // Изв. вузов. Математи-ка.- 1991.- ${ }^{\circ}$ 1.- С. 63-73.
6. Тедеев А.Ф. Оценки скорости стабилизации при $t \rightarrow \infty$ решения второй смешанной задачи для квазилинейного параболического уравнения второго порядка // Дифференц. уравне-ния.- 1991.- 27, N^{N} 10.- С. 1795-1806.
7. Гучин А.К. Об оценках решений краевых задач для параболического уравнения второго порядка // Тр. Мат. ин-та АН СССР. - 1973.- 126.- С. 5-45.
8. Гущин А.К. О равномерной стабилизации решений второй смешанной задачи для параболического уравнения // Мат. с6.- 1982.- 119, №4.- С. 451-508.
9. Вишик М.И. О разрешимости краевых задач для квазилинейных параболических уравнений высоких порядков // Там же.- 1962.- 59 (доп).- С. 289-325.
10. Тедеев А.Ф. О мультипликативных неравенствах в областях с некомпактной границей // Укр. мат. журн.- 1992.- 44, №2.- С. 260-268.

Получено 01.04.92

