УдК 517.9

А. Е. Іишков, д-р физ.-мат. наук (Ин-т прикл. математики и механики АН Украины, Донецк)

ОБ ОЦЕНКАХ СКОРОСТИ РАСПРОСТРАНЕНИЯ ВОЗМУЩЕНИЙ В КВАЗИЛИНЕЙНЫХ ДИВЕРГЕНТНЫХ ВЫРОЖДАЮЩИХСЯ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЯХ ВЫСОКОГО ПОРЯДКА

Предложен метод получения интегральных лемм возрастания решений краевых задач для широкого класса квазилинеиных эволюционных уравнении. В качестве возможного применения получена точная оценка зависимости от времени носителя решения смешанной задачи и задачи Коши для общего квазилинейного дивергентного параболического уравнения.

Запропоновано метод одержання інтегральних лем зростання розв’язків граничних задач для широкого класу квазілініиних еволюціинни рівнянь. Можливим застосуванням є одержана точна оцінка залежності від часу носія розв'язку змішаної задачі і задачі Коші для загального квазілініиноого дивергентного параболічного рівняння.

В произвольной (возможно и неограниченной) области $G=\Omega \times(0, T), \Omega \subset \subset$ $R^{n}, n \geq 1, T<\infty$, рассматривается смешанная задача

$$
\begin{gather*}
u_{t}+A_{p}^{(2 m)} u \equiv u_{t}+(-1)^{m} \sum_{|\alpha|=m} D_{x}^{\alpha} a_{\alpha}\left(x, t, u, \nabla_{x} u, \ldots, \nabla_{x}^{m} u\right)=0, m \geq 1, \tag{1}\\
\left.u\right|_{t=0}=u_{0}(x) \in L_{2}(\Omega) ;\left.\quad D_{x}^{\alpha} u\right|_{\Gamma=\partial \Omega \times(0, T)}=0 \quad \forall \alpha:|\alpha| \leq m-1 \tag{2}
\end{gather*}
$$

Здесь каратеодориевы функции $a_{\alpha}(x, t, \xi)$ удовлетворяют соотношениям

$$
\begin{gather*}
\sum_{|\alpha|=m} a_{\alpha}\left(x, t, \xi^{(0)}, \xi^{(1)}, \ldots, \xi^{(m)}\right) \xi_{\alpha}^{(m)} \geq d_{1}\left|\xi^{(m)}\right|^{p}, d_{1}>0, p>2 \tag{3}\\
a_{\alpha}\left(x, t, \xi^{(0)}, \ldots, \xi^{(m)}\right) \leq d_{2}\left|\xi^{(m)}\right|^{p-1}, d_{2}<\infty \tag{4}
\end{gather*}
$$

Рассматривается произвольное обобщенное решение (с ограниченным интегралом энергии в случае неограниченной области Ω) задачи (1), (2), под которым понимается функция $u(x, t)$ такая, что для любой ограниченной подобласти $\Omega^{\prime} \subset \Omega \quad u(x, t) \in L_{p}\left(0, T ; \stackrel{\circ}{W}_{p}^{m}\left(\Omega^{\prime}, \partial \Omega^{\prime} \backslash \partial \Omega\right)\right), u_{t} \in L_{2}\left(\Omega^{\prime} \times(0, T)\right),\left.u\right|_{t=0}=u_{0}(x)$, а также выполнено интегральное тождество

$$
\begin{equation*}
\int_{\Omega^{\prime} \times(0, T)}\left[u_{t} v+\sum_{|\alpha|=m} a_{\alpha}\left(x, t, u, \nabla_{x} u, \ldots, \nabla_{x}^{m} u\right) D^{\alpha} v\right] d x d t=0 \tag{5}
\end{equation*}
$$

для произвольной функции $v(x, t) \in L_{p}\left(0, T ; \stackrel{\circ}{W}_{p}^{m}\left(\Omega^{\prime}\right)\right)$.
В работе [1] предложен метод получения интегральных лемм возрастания (в терминологии Е.М. Ландиса) для обобщенных решений задачи (1), (2) и на их основе установлены точные теоремы типа Фрагмена-Линделефа. В настоящей статье показана применимость указанного метода при изучении асимптотических свойств решений с ограниченным интегралом энергии, в частности для описания геометрии носителя решения по известной геометрии носителя начальной функции $u_{0}(x)$.

Обозначим $\Omega(\tau) \equiv \Omega \bigcap\{|x|<\tau\} \forall \tau<\infty, G(\tau)=\Omega(\tau) \times(0, T), \mu=$ const >0, $g(t)=\exp (-\mu t)$.

Теорема 1. Пусть для некоторого $\tau_{0}<\infty \operatorname{supp} u_{0}(x) \cap \Omega\left(\tau_{0}\right)=\varnothing$ и $u(x, t)$

- произвольное обобщенное решение задачи (1), (2). Тогда для произвольньхх τ_{1}, $\tau_{2}: 0<\tau_{1}<\tau_{2}<\tau_{0}$ выполняется следующее соотноиение:

$$
\begin{align*}
& \mathcal{J}\left(\tau_{1}\right)=\int_{G\left(\tau_{1}\right)}|u|^{p} g(t) d x d t \leq\left[D_{1} \mu^{-1} \tau_{1}^{-n(p-2) / 2}\left(\tau_{2}-\tau_{1}\right)^{-m p^{2} / 2}\left(I\left(\tau_{2}\right)-I\left(\tau_{1}\right)\right)^{\langle p-2 / 2}+\right. \\
& \left.\quad+D_{2} \mu^{\theta-1}\left(\tau_{2}-\tau_{1}\right)^{-m p \theta-m p^{2}(1-\theta) / 2}\left(I\left(\tau_{2}\right)-I\left(\tau_{1}\right)\right)^{(1-\theta)(p-2) / 2}\right]\left(J\left(\tau_{2}\right)-J\left(\tau_{1}\right)\right. \tag{6}
\end{align*}
$$

где $D_{1}, D_{2}<\infty$-постоянные, зависящие только от известньх параметров задачи (1), (2), $\theta=n(p-2)(2 m p+n(p-2))^{-1}, I(\tau) \equiv \int_{G(\tau)}|u|^{p} d x d t$.

Следствием соотношения (6) является непрерывная зависимость $\operatorname{supp} u(x, t)$ от t, а также точные оценки $\operatorname{supp} \dot{u}(x, t)$ при различных конкретных $\operatorname{supp} u_{0}(x)$. Так, в частности, справедлива следующая теорема.

Теорема 2. Пусть для некоторого $\tau_{0}<\infty \operatorname{supp} u_{0}(x) \cap\left\{x: x_{n}<\tau_{0}\right\}=\varnothing$. Тогда для функции $f(T) \equiv \operatorname{supp}\left\{s: \operatorname{supp} u(x, T) \cap\left\{x \in R^{n}: x_{n}<s\right\}=\varnothing\right\}$. выполняemcs

$$
\begin{equation*}
f(0)-f(T) \leq D_{3} T^{\alpha} I_{0, T}^{\beta}, \tag{7}
\end{equation*}
$$

где $D_{3}<\infty$ не зависит от $T, I_{0, T} \equiv \int_{G \cap\left(x_{n}<\tau_{0}, t<T\right\}}|u|^{p} d x d t, \quad \alpha=\frac{2}{m p^{2}+n(p-2)}$,
$\beta=\frac{p-2}{m p^{2}+n(p-2)}$.
Замечание 1. В силу неравенства Пуанкаре

$$
I_{0, T} \leq c(f(0)-f(T))^{m p} E_{0}(T)
$$

rде $E(T)=\int_{G \cap\left(x_{n}<\tau, t<T\right)}\left|\nabla_{x}^{m} u\right|^{p} d x d t, c<\infty$ не зависит от T. Поэтому, продолжая оценку (7), получаем неравенство

$$
\begin{gather*}
f(0)-f(T) \leq D_{4} T^{\alpha_{1}} E_{0}(T)^{\beta_{1}} \tag{8}\\
\alpha_{1}=\frac{\alpha}{1-\beta m p} \equiv \frac{2}{2 m p+n(p-2)}, \beta_{1}=\frac{\beta}{1-\beta m p} \equiv \frac{p-2}{2 m p+n(p-2)}
\end{gather*}
$$

Оценка (8) для некоторых классов уравнений вида (1) получена Бернисом [2, 3] на основе доказанных весовых интерполяционных неравенств.

В дальнейшем понадобится следующая лемма.
Лемма 1. Пусть непрерывная при всех $\tau \leq \tau_{0}<\infty$ 'неубывающая неотрицательная функция $I(\tau)$ удовлетворяет следующему функциональному неравенству:

$$
\begin{equation*}
I(\tau-d I(\tau)) \leq \theta I(\tau) \forall \tau \leq \tau_{0}, 0<\theta<1,0<d<\infty, 0<\alpha \tag{9}
\end{equation*}
$$

Toгда $I(\tau) \equiv 0$ при всех $\tau<\tau^{\prime}=\tau_{0}-\frac{d}{1-\theta^{\alpha}} I\left(\tau_{0}\right)$..
Доказательство. Определим последовательность τ_{j} рекуррентным соотношением

$$
\begin{equation*}
\tau_{j}=\tau_{j-1}-d I\left(\tau_{j-1}\right)^{\alpha}, \quad j=1,2, \ldots \tag{10}
\end{equation*}
$$

В силу соотношения (9) $I\left(\tau_{j}\right) \leq \theta I\left(\tau_{j-1}\right)$, поэтому

$$
\begin{equation*}
I\left(\tau_{j}\right) \leq \theta^{j} I\left(\tau_{0}\right) \tag{11}
\end{equation*}
$$

Теперь из соотношения (10) с учетом (11) получаем

$$
\tau_{j}=\tau_{0}-d \sum_{i=0}^{j-1} I\left(\tau_{i}\right)^{\alpha} \geq \tau_{0}-d I\left(\tau_{0}\right)^{\alpha} \sum_{i=0}^{j-1} \theta^{\alpha i}=\tau_{0}-\frac{d\left(1-\theta^{\alpha j}\right)}{1-\theta^{\alpha}} I\left(\tau_{0}\right)^{\alpha}
$$

Отсюда следует $\lim _{j \rightarrow \infty} \tau_{j}=\tau^{\prime}$. Так как в силу (11) $\lim _{j \rightarrow \infty} I\left(\tau_{j}\right)=0$, то в силу монотонности, неотрицательности и непрерывности $I(\tau)$ следует справедливость леммы 1.

Доказательство теоремы 1 начнем с формулировки интерполяционного неравенства Ниренберга-Гальярдо [4, с. 67]. Пусть $\Omega \subset R^{n}$ - ограниченная область, $s \geq 1, r>0$. Тогда для любого натурального $j<m$ справедливо вложение $W_{q}^{j}(\Omega) \subset W_{s}^{m}(\Omega) \cap L_{r}(\Omega)$ при любом q, удовлетворяющем соотношению

$$
1 / q=j / n+\theta(1 / s-m / n)+(1-\theta) 1 / r
$$

с каким-либо $\theta \in[j / m, 1]$, а также для любого $v(x) \in W_{s}^{m}(\Omega) \cap L_{r}(\Omega)$ выполняется неравенство

$$
\begin{equation*}
\left\|\nabla_{x}^{j} v\right\|_{L_{q}(\Omega)} \leq K_{1}(\operatorname{mes} \Omega)^{\frac{1}{q}-\frac{1}{r}-\frac{j}{n}}\|v\|_{L_{n}(\Omega)}+K_{2}\left\|\nabla_{x}^{m} v\right\|_{L_{s}(\Omega)}^{\theta}\|v\|_{L_{r}(\Omega)}^{1-\theta} \tag{12}
\end{equation*}
$$

где постоянные $k_{1}, k_{2}<\infty$ не зависят от v.
Введем необходимые срезающие функции. Пусть $\zeta(t) \in C^{m}\left(R^{t}\right): \zeta(t)=1$ при $t \leq 0, \zeta(t)=0$ при $t \geq 1,0<\zeta(t)<1$ при $0<t<1$. Обозначим $\zeta_{\tau, \tau^{\prime}}(x)=$ $=\zeta\left(\frac{|x|-\tau}{\tau^{\prime}-\tau}\right), x \in R^{n}, \tau<\tau^{\prime}<\infty$. Очевидно, $\zeta_{\tau, \tau^{\prime}}(x)=0$ при $|x|>\tau^{\prime}$, $D_{x}^{\alpha} \zeta_{\tau, \tau^{\prime}}(x)=0$ при $|x|<\tau \quad \forall \alpha: 1 \leq|\alpha| \leq m$, а также

$$
\begin{equation*}
\left|D_{x}^{\alpha} \zeta_{\tau, \tau^{\prime}}(x)\right| \leq \frac{a}{\left(\tau^{\prime}-\tau\right)^{|\alpha|}}, \quad a<\infty,|\alpha| \leq m \tag{13}
\end{equation*}
$$

Подставим в интегральное тождество (5) в качестве пробной функции $v(x, t)=$ $=u(x, t) g(t) \eta(x), \eta(x)=\zeta_{\tau, \tau^{\prime}}^{m p}(x)$. После простых преобразований с использованием условий (3), (4), оценок (13), неравенства Юнга с ε и интерполяционного неравенства (12) при $s=r=q=p$ в области $\Omega\left(\tau^{\prime}\right) \backslash \Omega(\tau)$ получаем

$$
\begin{align*}
& g(t) \int_{\Omega_{T}\left(\tau^{\prime}\right)} u^{2} \eta d x+\mu \int_{G\left(\tau^{\prime}\right)} u^{2} g \eta d x d t+2 d_{1} \int_{G\left(\tau^{\prime}\right)}\left|\nabla_{x}^{m} u\right|^{p} g \eta d x d t \leq \\
\leq & \varepsilon \int_{K\left(\tau, \tau^{\prime}\right)}\left|\nabla_{x}^{m} u\right|^{p} g d x d t+\frac{\varepsilon^{-(p-1)} c_{1}}{\Delta_{0}^{m p}} \int_{K\left(\tau, \tau^{\prime}\right)}|u|^{p} g d x d t \quad \forall \varepsilon>0, c_{1}<\infty, \tag{14}
\end{align*}
$$

где $K\left(\tau, \tau^{\prime}\right)=G\left(\tau^{\prime}\right) \backslash G(\tau), \Delta_{0}=\tau^{\prime}-\tau$. Определив последовательность $\Delta_{j+1}=2^{-1} \Delta_{j}$, $j=0,1, \ldots$, положим в (14) $\tau=\tau_{0}^{\prime}-\Delta_{j}, \tau^{\prime}=\tau_{0}^{\prime}-\Delta_{j+1}$, и умножив на $\left(\tau^{\prime}-\tau\right)^{m p} \equiv$ $\equiv \Delta_{j+1}^{m p} \equiv 2^{-m p} \Delta_{j}^{m p}$, получим

$$
\begin{gather*}
g(T) A\left(\Delta_{j}\right)+\mu B\left(\Delta_{j}\right)+2 d_{1} R\left(\Delta_{j}\right) \leq \varepsilon 2^{m p} R\left(\Delta_{j+1}\right)+ \\
\quad+c_{1} \varepsilon^{-(p-1)} 2^{m p} F\left(\Delta_{j+1}\right), j=0,1, \ldots, \tag{15}
\end{gather*}
$$

где $A\left(\Delta_{j}\right)=\Delta_{j}^{m p} \int_{\Omega_{T}\left(\tau^{\prime}-\Delta_{j}\right)} u^{2} d x, \quad B\left(\Delta_{j}\right)=\Delta_{j}^{m p} \int_{G\left(\tau_{0}^{\prime}-\Delta_{j}\right)} u^{2} g d x d t$,

$$
R\left(\Delta_{j}\right)=\Delta_{j}^{m p} \int_{G\left(\tau_{0}^{\prime}-\Delta_{j}\right)}\left|\nabla_{x}^{m} u\right|^{p} g d x d t, \quad F\left(\Delta_{j}\right)=\int_{K\left(\tau_{0}^{\prime}-\Delta_{j-1}, \tau_{0}^{\prime}-\Delta_{j}\right)}|u|^{p} g d x d t
$$

Полагая $\varepsilon=2^{-m p} d_{1}$ и итерируя соотношение (15) по j от 0 до N, получаем

$$
\begin{gathered}
g(t) A\left(\Delta_{0}\right)+\mu B\left(\Delta_{0}\right)+2 d_{1} R\left(\Delta_{0}\right) \leq 2^{-N_{2}} 2 d R\left(\Delta_{N}\right)+ \\
+c_{2} \sum_{i=1}^{N} 2^{-i+1} F\left(\Delta_{i}\right), c_{2}=c_{1} 2^{m p} \varepsilon^{-(p-1)} \equiv c_{1} 2^{m p+m p(p-1)} d_{1}^{-(p-1)}
\end{gathered}
$$

Устремляя теперь $N \rightarrow \infty$ и учитывая, что $R\left(\Delta_{N}\right) \rightarrow 0$ при $\Delta_{N} \rightarrow 0$, окончательно имеем

$$
\begin{gather*}
g(T) \int_{\Omega_{T}\left(\tau_{0}^{\prime}-\Delta_{0}\right)} u^{2} d x+\mu \int_{G\left(\tau_{0}^{\prime}-\Delta_{0}\right)} u^{2} g d x d t+2 d_{1} \int_{G\left(\tau_{0}^{\prime}-\Delta_{0}\right)}\left|\nabla_{x}^{m} u\right|^{p} g d x d t \leq \\
\leq 2 c_{2} \Delta_{0}^{-m p} \int_{K\left(\tau_{0}^{\prime}-\Delta_{0}, \tau_{0}^{\prime}\right)}^{\int_{i}}|u|^{p} g d x d t \quad \forall \Delta_{0}<\tau_{0}^{\prime} . \tag{16}
\end{gather*}
$$

Применим интерполяционное неравенство (12) к функции $u(x, t)$ при $s=q=$ $=p, r=2, j=0$ в области $\Omega_{t}(\tilde{\tau}), \tilde{\tau}=\tau_{0}^{\prime}-\Delta_{0}$, потом умножим на $g(t)$ и проинтегрируем по t :

$$
J(\tilde{\tau}) \equiv \int_{G(\tilde{\tau})}|u|^{p} g d x d t \leq K_{1}^{p} \tilde{\tau}^{-n\left(\frac{p-2}{2}\right)} \psi\left(\tilde{\tau}, \frac{p}{2}\right)+K_{2}^{p} \psi\left(\tilde{\tau}, \frac{p}{2}\right)^{1-\theta}\left(\left.\int_{G(\tilde{\tau})} \nabla_{x}^{m} u\right|^{p} g d x d t\right)^{\theta}
$$

Оценивая последний сомножитель справа с помощью неравенства (16), получаем

$$
\begin{equation*}
J(\tilde{\tau}) \leq K_{1}^{p} \tilde{\tau}^{-n(p-2) / 2} \psi\left(\tilde{\tau}, \frac{p}{2}\right)+K_{2}^{p} \psi\left(\tilde{\tau}, \frac{p}{2}\right)^{1-\theta} \frac{c_{3}}{\Delta_{0}^{m p \theta}}\left(J\left(\tau_{0}^{\prime}\right)-J\left(\tau_{0}^{\prime}-\Delta_{0}\right)\right)^{\theta} \tag{17}
\end{equation*}
$$

где $\theta=\frac{n(p-2)}{2 m p+n(p-2)}, \quad \psi(\tilde{\tau}, h)=\int_{0}^{T}\left(\int_{\Omega_{t}(\tilde{\tau})} u^{2} d x\right)^{h} g d t$.
Теперь оценим функцию $\psi(\tilde{\tau}, p / 2)$. Подставим в исходное интегральное тождество пробную функцию

$$
\begin{aligned}
& v(x, t)=u(x, t) \eta(x) \chi_{i}(t) ; \eta(x) \equiv \zeta_{\tilde{\tau}, \tau_{c}}^{m p}(x), \tau_{c}=\tilde{\tau}+\frac{\Delta_{0}}{2} \equiv \\
& \quad \equiv \tau_{0}^{\prime}-\frac{\Delta_{0}}{2}, \chi_{i}(t)=\int_{0}^{t}\left(\int_{\Omega_{s}\left(\tau_{c}\right)} u^{2}(x, s) \eta(x) d x\right)^{i} g(s) d s
\end{aligned}
$$

i - натуральное. Легко заметить, что

$$
\int_{G\left(\tau_{c}\right)} u_{t} v d x d t=2^{-1} \Phi\left(\tau_{c}, i\right) \int_{\Omega_{T}\left(\tau_{c}\right)} u^{2} \eta d x-2^{-1} \Phi\left(\tau_{c}, i+1\right)
$$

где $\Phi\left(\tau_{c}, h\right) \equiv \int_{0}^{T}\left(\int_{\Omega_{s}\left(\tau_{c}\right)} u^{2} \eta d x\right)^{h} g d t=\chi_{h}(T)$.
Поэтому после указанной подстановки имеем

$$
\begin{equation*}
\Phi\left(\tau_{c}, i+1\right)=\Phi\left(\tau_{c}, i\right) \int_{\Omega_{T}\left(\tau_{c}\right)} u^{2} \eta d x d t+\int_{G\left(\tau_{c}\right)} \sum_{|\alpha|=m} a_{\alpha}\left(x, t, \ldots, \nabla_{x}^{m} u\right) D^{\alpha} v d x d t \tag{18}
\end{equation*}
$$

Второе слагаемое в правой части (18) стандартно с использованием интерполяционного неравенства (12) и основной оценки (16) при $\mu=0$ оценивается сверху через

$$
\Phi\left(\tau_{c}, i\right) \frac{c_{3}}{\Delta_{0}^{m p}} \int_{K\left(\tau_{0}^{\prime}-\Delta_{0}, \tau_{0}^{\prime}\right)}|u|^{p} d x d t \equiv \frac{c_{3 \Phi\left(\tau_{c}, i\right)}^{\Delta_{0}^{m p}}}{\Delta_{0}^{m}}\left(I\left(\tau_{0}^{\prime}\right)-I\left(\tau_{0}^{\prime}-\Delta_{0}\right)\right) .
$$

Поэтому, еще раз применяя при оценке $\int_{\Omega_{t}\left(\tau_{c}\right)} u^{2} d x d t$ сверху неравенство (16) с $\mu=0$, из (18) получаем

$$
\begin{equation*}
\Phi\left(\tau_{c}, i+1\right) \leq \frac{c_{4} \Phi\left(\tau_{c}, i\right)}{\Delta_{0}^{m p}}\left(I\left(\tau_{0}^{\prime}\right)-I\left(\tau_{0}^{\prime}-\Delta_{0}\right)\right) \tag{19}
\end{equation*}
$$

Отметим легко получаемую с помощью неравенства Гельдера оценку

$$
\Phi\left(\tau_{c}, \frac{p}{2}\right) \leq\left(\Phi\left(\tau_{c},\left[\frac{p}{2}\right]+1\right)\right)^{\theta_{1}}\left(\Phi\left(\tau_{c},\left[\frac{p}{2}\right]\right)\right)^{1-\theta_{1}}
$$

где $\theta_{1}=p / 2 \dot{-}[p / 2]$, [h] - целая часть числа h. Комбинируя эту оценку и неравенство (19), находим

$$
\psi(\tilde{\tau}, p / 2) \leq \Phi\left(\tau_{c}, p / 2\right) \leq c_{5} \Delta_{0}^{-m p(p-2) / 2}\left(I\left(\tau_{0}^{\prime}\right)-I(\tilde{\tau})\right)^{(p-2) / 2} \Phi\left(\tau_{c}, 1\right) .
$$

Оценивая $\Phi\left(\tau_{c}, 1\right)$ с помощью (16), получаем

$$
\begin{equation*}
\psi(\tilde{\tau}, p / 2) \leq c_{6} \mu^{-1} \Delta_{0}^{-m p^{2} / 2}\left(I\left(\tau_{0}^{\prime}\right)-I(\tilde{\tau})\right)^{(p-2) / 2}\left(J\left(\tau_{0}^{\prime}\right)-J(\tilde{\tau})\right) \tag{20}
\end{equation*}
$$

Подставив эту оценку в (17), получаем необходимую оценку (6) с $D_{1}=c_{6} K_{1}^{p}$, $D_{2}=c_{3} c_{6}^{1-\theta} K_{2}^{p}, \tau_{2}=\tau_{0}^{\prime}, \tau_{1}=\tilde{\tau}$. Тем самым теорема 1 доказана.

Доказательство теоремь 2 . Положим в неравенстве (6) $\mu=T^{-1}, \tau_{2}=\tau, \tau_{2}$ -$-\tau_{1}=\Delta \tau \equiv T^{\alpha} I(\tau)^{\beta}$, где

$$
\begin{aligned}
& \alpha=\frac{1-\theta}{m p \theta+\frac{m p^{2}}{2}(1-\theta)} \equiv \frac{2}{m p^{2}+n(p-2)} \\
& \beta=\frac{(1-\theta)(p-2)}{2 m p \theta+m p^{2}(1-\theta)} \equiv \frac{p-2}{m p^{2}+n(p-2)}
\end{aligned}
$$

При этом в силу неотрицательности $I(\tau)$ получаем соотношение.

$$
\begin{equation*}
I\left(\tau-T^{\alpha} I(\tau)^{\beta}\right) \leq e R\left[I(\tau)-I\left(\tau-T^{\alpha} I(\tau)^{\beta}\right)\right], \tag{21}
\end{equation*}
$$

где

$$
\begin{gathered}
R=D_{2}+D_{1}(\tau-\Delta \tau)^{-n(p-2) / 2} \Delta \tau^{m p \theta /(1-\theta)} \equiv \\
\equiv D_{2}+D_{1}(\tau-\Delta \tau)^{-n(p-2) / 2} T^{\alpha m p \theta /(1-\theta)} I(\tau)^{\beta p m \theta /(1-\theta)} .
\end{gathered}
$$

Обозначим $v=2 e D_{2} /\left(1+2 e D_{2}\right)$. Зафиксируем теперь произвольное $T<\infty$ и найдем столь большое $s<\infty$, чтобы выполнялось неравенство

$$
\begin{equation*}
D_{1}\left(\tau_{0}+s-\frac{1}{1-v^{\beta}} T^{\alpha} I_{0, T}^{\beta}\right)^{-n(p-2) / 2} T^{\alpha m p \theta /(1-\theta)} I_{0, T}^{\beta m p \theta /(1-\theta)} \leq D_{2} . \tag{22}
\end{equation*}
$$

Поскольку мы рассматриваем решение задачи (1), (2) с ограниченным интегралом энергии, то $I_{0, T}<\infty$. Поэтому при любом $T<\infty$ требуемое конечное s можно найти. Зафиксируем теперь точку $x_{0}=\left(x_{0}^{\prime}, x_{0}^{(n)}\right) \in R^{n}, x_{0}^{\prime} \in R^{n-1}$,
$x_{0}^{(n)}=-s$, и в качестве исходного семейства конечных подобластей, исчерпывающих Ω, будем иметь $\Omega^{\prime}(\tau)=\Omega \cap\left\{x:\left|x-x_{0}\right|<\tau\right\}$. Очевидно, неравенство (21) остается справедливым для функции $I(\tau)=\int_{\Omega^{\prime}(\tau) \times(0, T)}|u|^{p} d x d t$ при всех $\tau<\tau_{0}+$ $s ; I\left(\tau_{0}+s\right) \leq I_{0} \equiv \int_{G \cap\left(x: x_{n}<\tau_{0}\right)}|u|^{p} d x d t<\infty$. Определим последовательность $\tau_{i+1}=\tau_{i}-$
$-\Delta \tau_{i} \equiv \tau_{i}-T^{\alpha} I\left(\tau_{i}\right)^{\beta}, i=1,2, \ldots, \tau_{1}=\tau_{0}+s+T^{\alpha} I\left(\tau_{0}+s\right)^{\beta}$.Тогда соотношение (21) можно записать в виде

$$
\begin{equation*}
I\left(\tau_{i+1}\right) \leq v I\left(\tau_{i}\right), \quad v_{i}=\frac{e R\left(\tau_{i}\right)}{1+e R\left(\tau_{i}\right)}<1 \tag{23}
\end{equation*}
$$

Покажем, что для всех номеров $i>0 \quad v_{i} \leq v$ или

$$
\begin{equation*}
R\left(\tau_{i}\right) \leq 2 D_{2} \tag{24}
\end{equation*}
$$

Пусть это неравенство справедливо для $i \leq j-1$. Покажем, что оно справедливо и для $i=j$:

$$
R\left(\tau_{j}\right)=D_{2}+D_{1}\left(\tau_{j}-T^{\alpha} I\left(\tau_{j}\right)^{\beta}\right)^{-n(p-2) / 2} T^{\alpha m p \theta /(1-\theta)} I\left(\tau_{j}\right)^{\beta m p \theta /(1-\theta)}
$$

Из определения последовательности τ_{i} и неравенства (24) для $i \leq j-1$ следует

$$
\begin{gathered}
\tau_{j}-T^{\alpha} I\left(\tau_{j}\right)^{\beta}=\tau_{0}+s-\sum_{i=1}^{j} T^{\alpha} I\left(\tau_{i}\right)^{\beta}-T^{\alpha} I\left(\tau_{0}+s\right)^{\beta} \geq \\
\geq \\
\tau_{0}+s+T^{\alpha} I\left(\tau_{0}+s\right)^{\beta} \frac{\left(1-v^{\beta(j+1)}\right)}{\left(1-v^{\beta}\right)} \geq \tau_{0}+s-\frac{1}{1-v^{\beta}} T^{\alpha} I_{0}^{\beta} .
\end{gathered}
$$

Отсюда в силу условия (22) на выбор s вытекает справедливость оценки (24) и при $i=j$. Следовательно, $v_{i}<v<1 \quad \forall i>0$. Тогда в силу леммы 1 из неравенства (23) следует $I(\tau) \equiv 0$ при $\tau<\tau^{\prime} \equiv \tau_{0}+s-\frac{1}{1-v^{\beta}} T^{\alpha} I\left(\tau_{0}+s\right)^{\beta}$, а это доказывает теорему 2.

Замечание 2. Предложенный метод изучения геометрических свойств решений уравнений вида (1) достаточно универсален. Во-первых, его использование позволяет получать эффекты, связанные с наличием в уравнении дополнительных нелинейностей: двойного вырождения старшей части уравнения, младших нелінейных слагаемых, учитывающих, например, абсорбцию. Во-вторых, этот метод применим при изучении аналогичных вопросов для других типов уравнений, например для квазилинейных дивергентных уравнений второго порядка по t вида

$$
u_{t} A_{p}^{(2 m)} u_{t}+A_{q}^{(2 m+2)} u+F\left(u, u_{t}\right)=0
$$

где $A_{p}^{(2 m)}, A_{q}^{(2 m+2)}$ - квазилинейные эллиптические операторы порядков $2 m$ и $2 m+2, m \geq 1$.

1. Акулов В.Ф., Шишков А.E. Об асимптотических свойствах решений смешанных задач для квазилинейных параболических уравнений в неограниченных областях // Мат.сб.- 1991. 182, N⒏- C. 1200-1210.
2. Bernis F. Finite speed of propagation and asymptotic rates for some nonlinear higher order parabolic equations with absorption //Proc. Roy. Soc. Edinburgh.-1986.-104.-P.1-19.
3. Bernis F. Quaiitative prorerties for some nonlinear higher order degenerate parabolic equations.IMA Prepr.184. Univ. of Minnesota, 1985.
4. Мазья В.Г. Пространства Соболева.- Л.: Изд-во Ленингр. ун-та, 1985.- 416с.

Получено 01.04.92

