А. Ашыралыев. канд. физ.-мат. наук (Ин-т математики АН Украины, Киев)

КОРРЕКТНАЯ РАЗРЕШИМОСТЬ РАЗНОСТНЫХ СХЕМ ПАДЕ ДЛЯ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ В ПРОСТРАНСТВАХ ГЕЛЬДЕРА

Исследуются разностные схемы Паде приближенного решения задачи Коши для параболических уравнений, порожденные дробями Паде $R_{j,l}$ аппроксимации экспоненты. Устанавливаются оценки коэрцитивности разностних схем при j=l-2, l-1 или четных j=l в разностном аналоге $C_0^{\alpha}(E)$ пространства Гельдера с весом и при нечетных j=l в более узком пространстве чем пространства $C_0^{\alpha}(E)$.

Досліджуються різницеві схеми Паде наближеного розв'язку задачі Коші для параболічних рівнянь, породжених дробами Паде $R_{j,l}$ апроксимації експоненти. Установлюються оцінки коерцитивності різницевих схем при $j=l-2,\ l-1$ або парних j=l в різницевому аналогові $C_0^\alpha(E)$ простору Гельдера з вагою і при непарних j=l в більш вузькому просторі, ніж простір $C_0^\alpha(E)$.

В работах [1-6] исследовалась устойчивость (корректность) и сходимость разностных схем Паде приближенного решения задачи Коши

$$v'(t) + Av(t) = f(t), 0 \le t \le 1, v(0) = v_0$$
 (1)

для дифференциального уравнения в банаховом пространстве E с неограниченным сильно позитивным оператором A. Эти разностные схемы строятся с помощью дробей Паде $R_{j,l}$ аппроксимации экспоненты. К задаче (1), как известно [7], могут быть сведены различные краевые задачи для параболических уравнений.

Важным видом устойчивости является коэрцитивная устойчивость (корректная разрешимость) разностных схем. Такая устойчивость в отличие от других видов устойчивости позволяет устанавливать двусторонние оценки быстроты стремления к нулю погрешности решения разностных схем. Коэрцитивная устойчивость разностной схемы Роте, по—видимому, впервые исследована в [8] для первой краевой задачи для параболических уравнений второго порядка в L_2 . Затем появились работы [9–11], посвященные коэрцитивной устойчивости простейших разностных схем приближенного решения начально–краевых задач для различных параболических уравнений.

В работе [12] разностные схемы трактуются как операторные уравнения в банаховых пространствах и к исследованию разностных схем привлекается теория аналитических полугрупп. Установлены неравенства коэрцитивности разностной схемы Роте в с $_0^{\alpha}(E)$ -разностном аналоге пространства Гельдера с

весом t^{α} . Привлечение теории аналитических полугрупп операторов оказалось эффективным при исследовании этих и других простейших разностных схем в разностных аналогах пространств Гельдера и Бохнера [13–18].

В настоящей статье результаты работ [12, 16–18] переносятся на широкий класс разностных схем Паде, порожденных дробями Паде аппроксимации экспоненты. Устанавливаются оценки устойчивости и коэрцитивности разностных схем Паде при j = l - 2, l - 1 или четных j = l в $c_0^{\alpha}(E)$ и при нечетных j = l в более узком пространстве чем пространство $c_0^{\alpha}(E)$.

1. Сильно позитивные операторы. Пусть E — произвольное банахово пространство и A — действующий в E линейный оператор с областью определения D(A).

Определение 1. Оператор А называется сильно позитивным, если его

© A. АШЫРАЛЫЕВ, 1992

ной полуоси угла $L(\varphi)$ раствора $0 < 2\varphi < \pi$, а на сторонах $S_1 = \{ \rho \exp(i\varphi),$ $0 \le \rho < \infty\}$ и $S_2 = \{\rho \exp(-i\phi), 0 \le \rho < \infty\}$ этого угла и вне его для резольвенты

 $(\lambda - A)^{-1}$ оператора A справедлива оценка

спектр $\sigma(A)$ находится внутри симметричного относительно положитель-

$$\left\| (\lambda - A)^{-1} \right\|_{E \to E} \le \frac{M(\phi)}{1 + |\lambda|}. \tag{2}$$
 Нижняя грань таких углов ϕ называется спектральным углом сильно пози-

тивного оператора и обозначается $\varphi(A) = \varphi(A, E)$. Для любой аналитической внутри $L(\phi)$ функции f(z), непрерывной на $L(\phi)$, модуль которой достаточно быстро стремится к нулю, когда $|z| \to \infty$,

определен ограниченный оператор
$$f(A)$$
 и справедлива формула Коши – Риса
$$f(A) = \frac{1}{2\pi i} \int_{S \setminus I(S)} f(z)(z-A)^{-1} dz. \tag{3}$$

Так определены операторы $\exp\{-tA\}$, t > 0, образующие аналитическую полугруппу операторов с производящим оператором -A и с экспоненциально убывающей нормой [7].

2. Разностные схемы Паде. Известно [7], что задача Коши (1) имеет единственное решение

сетку $[0, 1]_{\tau} = \{t_k = k\tau, k = 0, 1, ..., N; N\tau = 1\}$ с шагом $\tau > 0$. Воспользовавшись

$$v(t) = \exp\{-tA\}v_0 + \int_0^t \exp\{-(t-s)A\}f(s) \, ds,$$
 (4)

если $v_0 \in D(A)$ и f'(t) непрерывна. На отрезке [0, 1] введем равномерную

формулой (4), получим следующее соотношение между $v(t_k)$ и $v(t_{k-1})$:

$$v(t_k) = \exp\{-\tau A\}v(t_{k-1}) + \int_{t_{k-1}}^{t_k} \exp\{-(t_k - s)A\}f(s) ds.$$
 (5)

Отсюда следует равенство

$$\tau^{-1}(v(t_k) - v(t_{k-1})) + \tau^{-1}(I - \exp\{-\tau A\})v(t_{k-1}) = \varphi_k, \tag{6}$$

$$\varphi_k = \tau^{-1} \int_{-\infty}^{t_k} \exp\{-(t_k - s)A\} f(s) ds.$$

Заменив оператор $\exp\{-\tau A\}$ приближением Паде $R_{i,l}(\tau A)$, а элементы φ_k

близкими (более простыми) элементами $\varphi_k^{j,l}$, удовлетворяющими оценке

$$\|\varphi_k - \varphi_k^{j,l}\|_E \le M \tau^{j+l},\tag{7}$$

получим разностные схемы Паде

$$\tau^{-1}(u_k - u_{k-1}) + \tau^{-1}(I - R_{j,l}(\tau A))u_{k-1}^i = \varphi_k^{j,l}, \ 1 \le k \le N, \ u_0 = v_0. \tag{8}$$

Здесь [19]

$$R_{j,l}(z) = \frac{P_{j,l}(z)}{Q_{j,l}(z)}, \ P_{j,l}(z) = \sum_{r=0}^{j} \frac{(j+l-r)! \ j! \ (-z)^r}{(j+l)! \ r! \ (j-r)!}, \ Q_{j,l}(z) = \sum_{r=0}^{l} \frac{(j+l-r)! \ l! \ z^r}{(j+l)! \ r! \ (l-r)!}.$$

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11

(2)

Известно [19], что при $l-4 \le j \le l$ корни многочлена $Q_{j,l}(z)$ лежат в открытой полуплоскости Re z < 0. Следовательно, $R_{i,j}(z)$ имеет все свои полюсы в открытой левой полуплоскости. Отсюда и из сильной позитивности оператора А следует существование оператора $[Q_{i,l}(\tau A)]^{-1}$ и его равномерная по τ раниченность в Е. Более того, равномерно по т ограничены операторы $(\tau A)^k [Q_{i,l}(\tau A)]^{-1}$ при k = 0, 1, ..., l. Следовательно, равномерно по τ ограничен

оператор $R_{j,l}(\tau A)$ при $l-4\leq j\leq l$. Поэтому при любых $\phi_k^{j,l}$, $1\leq k\leq N$, и u_0 решение разностных схем (8) u_k , $1 \le k \le N$, существует и справедлива формула

$$u_k = R_{j,l}^k(\tau A) + u_0 + \sum_{r=1}^k R_{j,l}^{k-r}(\tau A) \varphi_r^{j,l} \tau. \tag{9}$$
Otherwise, $R_{j,l}(\tau A)$ otherwise agreement presupportunity of each $R_{j,l}(\tau A)$ otherwise $R_{j,l}(\tau A)$

Оператор $R_{j,l}(\tau A)$, определяющий разностную схему, принято называть оператором шага. Отметим, что при построении таких разностных схем важно уметь строить правую часть $\varphi_k^{j,l}$, которая удовлетворяла бы оценке (7) и была бы достаточно простой. Выбор $\phi_{k}^{j,l}$ не единствен. В работе [2] показано, что $\phi_{k}^{j,l}$ можно определить формулой

$$\begin{split} \phi_k^{j,l} &= \sum_{r=0}^{j+l-1} \mathfrak{I}_r f^{(r)}(t_{k-1}) \quad \mathfrak{I}_0 = (\tau A)^{-1} (l - R_{j,l}(\tau A)), \\ \mathfrak{I}_r &= (-A)^{-r} \mathfrak{I}_0 + \sum_{i=1}^r (-1)^{r-i} A^{-(r-i+1)} \tau^{i-1} / i!, \quad 1 \le r \le j+l-1, \end{split}$$

если функция f(t) имеет (j+l) непрерывную производную, причем $f^{(r)}(t) \in$ $\in D(A^{j+l-r})$ при всех $0 \le r \le j+l$.

Разностные схемы (8) можно рассматривать как операторное уравнение

$$D_{\tau}\Pi(u_0)u^{\tau} + A_{j,l}u^{\tau} = \varphi_{j,l}^{\tau}$$
 (10)
в линейном пространстве $E(\tau)$ векторов $\psi^{\tau} = \{\psi_k\}_1^N$ с компонентами из E .

Здесь оператор D_{τ} действует из пространства $E \times E(\tau)$ векторов $u = (u_0, u_1, ...$ \ldots , u_N) в пространство $E(\tau)$ векторов $v=(v_1,\ldots,v_N)$ согласно формуле

$$v = D_{\tau}u, \ v_k = \tau^{-1}(u_k - u_{k-1}), \ k = 1, \dots, N;$$

оператор $A_{i,l}$ действует из пространства $E(\tau)$ векторов $u=(u_0,\ldots,u_{N-1})$ в пространство $E(\tau)$ векторов $v = (v_1, ..., v_N)$ согласно формуле

$$v = A_{j,l} u, \ v_k = \tau^{-1} (I - R_{j,l} (\tau A)) u_{k-1}, \ 1 \le k \le N;$$
 продолжения $\Pi(u_k)$ действует из $E(\tau)$ в пространство $E \times E(\tau)$ по

оператор продолжения $\Pi(u_0)$ действует из $E(\tau)$ в пространство $E \times E(\tau)$ по формуле

$$\Pi(u_0) (u_1, \ldots, u_N) = (u_0, u_1, \ldots, u_N).$$

Если в $E(\tau)$ ввести нормы

$$\|\psi^{\tau}\|_{C(\tau,E)} = \max_{1 \le k \le N} \|\psi_{k}\|_{E},$$

$$\sum_{k=1}^{t-1} \|\psi^{\tau}\|_{L^{2}} = \|\psi^{\tau}\|_{L^{2}} + \max_{k=1}^{t} \frac{k^{\alpha} \|\psi_{k+r} - \psi_{k}\|_{L^{2}}}{k^{\alpha}}$$

$$\sum_{r=0}^{j+l-1} \left\| \psi^{\tau} \right\|_{C_0^{\alpha}(\tau,E)} = \left\| \psi^{\tau} \right\|_{C(\tau,E)} + \max_{1 \le k < k+r \le N} \frac{k^{\alpha} \left\| \psi_{k+r} - \psi_k \right\|_{E}}{r^{\alpha}},$$

ваются корректной (устойчивой) схемой в пространстве $E(\tau)$, если оператор $u^{\tau}(\phi_{i,l}^{\tau}, u_0)$ непрерывен. Так как оператор $u^{\tau}(\phi_{i,l}^{\tau}, u_0)$ аддитивен и однороден, то корректность разностных схем (8) эквивалентна выполнению неравенства $\left\| u^{\tau}(\varphi_{j,l}^{\tau}, u_o) \right\|_{E(\tau)} \le M \left\| \left\| u_0 \right\|_E + \left\| \varphi_{j,l}^{\tau} \right\|_{E(\tau)} \right\},$

При исследовании разностных схем изучаются не отдельные схемы при фиксированном τ , а совокупность таких схем при всех $0 < \tau \le \tau_0$. Следуя [13], рассмотрим линейное пространство $\varepsilon(E)$ векторов $\psi = \{\psi^{\tau}\}, \ 0 < \tau \le \tau_0, \ c$ бесконечным числом компонент; вся совокупность схем (8) порождает операторную задачу в $\varepsilon(E)$. Для этого определим действующие в $\varepsilon(E)$ операторы \overline{D} , $\overline{\Pi}$ и $\overline{A}_{i,l}$ покомпонентно по операторам $D(\tau)$, Π и $A_{i,l}$ соответственно и придем к

где M не зависит от u_0 и $\phi_{i,l}^{\tau}$, но, вообще говоря, зависит от τ .

то оно превратится в соответственно банаховы пространства $C(\tau, E)$ и $C_0^{\alpha}(\tau, E)$. Из формулы (9) следует, что u^{τ} определяет аддитивный и однородный оператор $u^{\tau}(\phi_{i,l}^{\tau}, u_0)$, действующий из $E(\tau) \times E$ в $E(\tau)$. Разностные схемы (8) назы-

лостью формул (9). Определим для элементов
$$\psi \in \varepsilon(E)$$

$$\|\psi\|_{\mathfrak{C}(E)} = \|\psi\|_{C(\varepsilon)} = \sup_{0 < \tau \leq \tau_0} \|\psi^{\tau}\|_{C(\tau, L)}$$

операторному уравнению

ностью формул (9). Определим для элементов $\psi \in \varepsilon(E)$ нормы $\|\psi\|_{\mathfrak{T}(E)} = \|\psi\|_{C(\varepsilon)} = \sup_{0 < \tau \leq \tau_0} \|\psi^{\tau}\|_{C(\tau, E)},$

 $\overline{D}\,\overline{\Pi}(u_0)u + \overline{A}_{i,l}u = \varphi_{i,l}$

в векторном пространстве $\varepsilon(E)$. Его решение $u = \{u^{\tau}\}$ определяется совокуп-

$$\|\psi\|_{C_0^\alpha(E)} = \|\psi\|_{C_0^\alpha(E)} = \sup_{0<\tau\leq\tau_0} \|\psi^\tau\|_{C_0^\alpha(\tau,E)}.$$
 В отличие от случая фиксированного τ эти пространства не совпадают: спра-

ведливы строгие вложения $C_0^{\alpha}(E) \subset \mathfrak{C}(E)$, причем операторы вложения непрерывны. Очевидно, операторное уравнение (13) однозначно разрешимо при любых

 $u_0 \in E$ и $\phi_{i,l} \in \varepsilon(E)$. Эта разрешимость, очевидно, эквивалентна однозначной разрешимости в $E(\tau)$ задачи (10). По формулам (9) определяется аддитивный и однородный оператор $u(\phi_{i,l}, u_0)$, действующий из пространства $\varepsilon(E)$ в $\varepsilon(E)$.

Определение 2. Будем говорить, что задача (11) корректна в банаховом

пространстве $\varepsilon(E)$, если оператор $u(\phi_{i,l}, u_0)$ как оператор из $\varepsilon(E) \times E$ в $\varepsilon(E)$ непрерывен. Так как $u(\phi_{i,l}, u_0)$ – линейный оператор, то корректность задачи (11) в $\varepsilon(E)$

так как
$$u(\phi_{j,l}, u_0)$$
 – линенный оператор, то корректи эквивалентна справедливости неравенства:
$$\|u^{\tau}\|_{E(\tau)} \leq M \Big[\|u_0\|_E + \|\phi_{j,l}^{\tau}\|_{E(\tau)} \Big]$$

с M, не зависящим не только от u_0 и $\phi_{i,l}^{\tau}$, но и от τ .

Очевидно, для корректности задачи (11) в $\mathfrak{C}(E)$ необходимо и достаточно,

чтобы для любого k = 1, ..., N и $\tau > 0$ была справедлива оценка

(11)

$$\left\| R_{i,l}^{k}(\tau A) \right\|_{\Gamma \to \Gamma} \le M. \tag{12}$$

В работах [1–6, 20] оценка (12) установлена для широкого класса разностных схем Паде в произвольном банаховом пространстве E.

Рассмотрим задачу (11) в пространстве $C_0^{\alpha}(E)$.

Теорема 1. Для корректности разностной задачи (11) в $C_0^{\alpha}(E)$ необходимо и достаточно, чтобы были справедливы оценки (12) и

$$\left\|R_{j,\,l}^k(\tau A) - R_{j,\,l}^{k+r}(\tau A)\right\|_{E \to E} \le M r^{\alpha} k^{-\alpha}, \ 1 \le k < k+r \le N, \ 0 \le \alpha \le 1.$$

Доказательство теоремы 1 в случае j=0 и l=1 проводилось в [13]. В общем случае оно проводится аналогично.

3. Корректная разрешимость разностных схем в $\mathfrak{G}(E)$. Здесь будем рассматривать уравнение (11) в банаховом пространстве $\mathfrak{G}(E)$. Элемент $u \in \mathfrak{G}(E)$

будет теперь называться решением (11), если элементы $\overline{D} \Pi(u_0)u$ и $\overline{A}_{j,l}u$ принадлежат $\mathfrak{C}(E)$. Если задача (11) разрешима в $\mathfrak{C}(E)$, то, очевидно, $\phi_{i,l} \in \mathfrak{C}(E)$.

Из определения решения в $\mathfrak{C}(E)$ следует, что нормы $\|A_{j,l}(u^{\tau})_1\|_E = \|A_{j,l}u_1\|_E$ равномерно по τ ограничены.

Поэтому необходимым условием существования в $\mathfrak{C}(E)$ решения задачи (11) является равномерная по τ ограниченность норм

$$\| \tau^{-1} (I - R_{j, l}(\tau A)) R_{j, l}(\tau A) u_0 \|_{E}.$$

Вывести отсюда необходимое условие для u_0 в общем случае пока не удалось. Для такой ограниченности, очевидно, достаточно, чтобы $u_0 \in D(A)$. Будем считать это условие выполненным.

Определение 3. Будем говорить, что задача (11) корректно разрешима

(коэрцитивно устойчива) в С(Е), если выполнены следующие условия:

1) при любых $u_0 \in D(A)$ и $\varphi_{j, l} \in \mathfrak{C}(E)$ существует единственное ее решение в $\mathfrak{C}(E)$;

2) задача (11) корректна в °С(Е).

Как отмечалось выше, эта корректная разрешимость, очевидно, эквивалентна корректной разрешимости в $C(\tau, E)$ задачи (10) равномерно по τ , $0 < \tau \le \tau_0$. Методом работы [13] доказывается, что неравенство коэрцитивности

$$\|\overline{D}\,\overline{\Pi}(u_0)u\|_{\mathfrak{T}(E)} + \|\overline{A}_{j,l}u\|_{\mathfrak{T}(E)} \le M \left[\|Au_0\|_E + \|\varphi_{j,l}\|_{\mathfrak{T}(E)} \right] \tag{13}$$

является необходимым и достаточным условием корректной разрешимости в $\mathfrak{C}(E)$ корректной задачи (11). Неравенство (13) верно тогда и только тогда, когда справедливо неравенство

$$\left\| D_{\tau} \overline{\Pi}(u_0) u^{\tau} \right\|_{C(\tau, E)} + \left\| A_{j, l} u^{\tau} \right\|_{C(\tau, E)} \le M \left[\left\| A u_0 \right\|_{E} + \left\| \phi_{j, l}^{\tau} \right\|_{C(\tau, E)} \right]$$
(14)

с M, не зависящим от τ . Предельный переход в (14) приводит к неравенству коэрцитивности в C(E)-пространстве непрерывных функций f(t) со значениями из E. Поэтому аналитичность полугруппы $\exp\{-tA\}$ является необходимым условием корректной разрешимости разностной задачи (11) в $\mathfrak{C}(E)$. Ниже предполагается, что -A – производящий оператор аналитической полугруппы $\exp\{-tA\}$. Так как дифференциальная задача в общем случае не является корректно разрешимой в $\mathfrak{C}(E)$, то для разностных схем (8) не может выполняться

неравенство коэрцитивности (14) с $M = M(\tau)$, не зависящим от τ . Это означает, что $M(\tau) \to \infty$ при $\tau \to 0$. Изучение задачи (11) позволяет выявить порядок стремления $M(\tau)$ к ∞.

Вначале рассмотрим разностные схемы (8), порожденные дробями Паде R_{ij} при j = l - 2, l - 1. Справедливы оценки [1, 2]

 $\left\|R_{j,l}^k(\tau A)\right\|_{E\to E} \leq M, \left\|AR_{j,l}^k(\tau A)\right\|_{E\to E} \leq M/k\tau$

для $1 \le k \le N$, $\tau = N^{-1}$, с M, не зависящим от τ . Эти оценки позволяют установить следующий результат.

Теорема 2. Для решения задачи (10) справедливо почти коэрцитивное неравенство

$$\begin{split} & \left\| D\Pi(u_0) u^{\tau} \right\|_{C(\tau,E)} + \left\| A_{j,l} u^{\tau} \right\|_{C(\tau,E)} \le M \Big[\left\| A u_0 \right\|_{E} + \\ & + \min \left\{ \ln \frac{1}{\tau}, 1 + \left| \ln \| A \right\|_{E \to E} \right| \right\} \left\| \phi_{j,l}^{\tau} \right\|_{C(\tau,E)} \Big] \end{split}$$

c M, не зависящим от τ (и A). (Здесь $\|A\|_{E \to E} = \infty$ в случае дискретизации

только по времени [13].)

Доказательство теоремы 2 в случае j = 0, l = 1 проводилось в [13]. В общем случае оно проводится аналогично. Перейдем теперь к рассмотрению разностной задачи (10), порожденной

дробями Паде $R_{i,l}$ Оператор шага $R_{i,l}$ (τA) обладает "худшими" свойствами по

сравнению с оператором шага $R_{l-2,l}(\tau A)$ и $R_{l-1,l}(\tau A)$. Справедливы оценки [1, 2] $\left\|R_{l,l}^k(\tau A)(I+\tau A)^{-1}\right\|_{E\to E}\leq M,$ (15)

$$\left\|AR_{l,l}^{k}(\tau A)(I+\tau A)^{-2}\right\|_{E\to E}\leq \frac{M}{k\tau} \tag{16}$$
 для $1\leq k\leq N$ с M , не зависящим от τ . Эти оценки позволяют установить

следующий результат. **Теорема 3.** Пусть $\varphi_k^{l,l} \in D(A), 1 \le k \le N$. Тогда для решений задачи (10)

справедливо неравенство

$$\|D\Pi(u_0)u^{\tau}\|_{C(\tau,E)} + \|A_{l,l}u^{\tau}\|_{C(\tau,E)} \le M[\|Au_0\|_E + \\ + \min\left\{\ln\frac{1}{\tau}, 1 + \left|\ln\|A\|_{E\to E}\right|\right\} \|(I + \tau A)\phi_{l,l}^{\tau}\|_{C(\tau,E)}]$$

$$(17)$$

с М, не зависящим от т (и А).

Доказательство теоремы 3 в случае l=1 проводилось в [16]. В общем случае оно проводится аналогично. Неравенство (17) — это более слабое неравенство, чем неравенства в теореме 2. Однако получение таких неравенств важно для приложения. Обозначим через V^{τ} вектор аппроксимации. Тогда

$$\|(I+\tau A)\mathsf{V}^\tau\|_{C(\tau,E)} \sim \|\mathsf{V}^\tau\|_{C(\tau,E)} \sim O(\tau^{j+l}),$$

если предположить, что $\| \tau A V^{\tau} \|_{C(\tau, E)}$ стремится к нулю при $\tau \to 0$ не мед-

леннее, чем $\| v^{\tau} \|_{C(\tau, E)}$. Это будет иметь место в приложениях при дополнительных ограничениях на гладкость данных по пространственным переменным. **4.** Случай общего пространства $C_0^{\alpha}(E)$. В [13] показано, что аналитич-

ность полугруппы $\exp\{-tA\}$ является необходимым и достаточным условием корректной разрешимости простейшей разностной задачи (11) при j=0 и l=1, если пространство $\mathfrak{G}(E)$ определенным образом сузить или расширить. Оказывается, такой факт справедлив для широкого класса разностных схем Паде.

Решение u задачи (11) называется решением в $C_0^{\alpha}(E)$ этой задачи, если

$$\overline{D} \; \overline{\Pi}(u_0) u \in \; \mathcal{C}^{\alpha}_0(E), \; \overline{A}_{j,l} u \in \; \mathcal{C}^{\alpha}_0(E).$$

Очевидно, для разрешимости в $C_0^{\alpha}(E)$ задачи (11) необходимо, чтобы $\phi_{j,l} \in C_0^{\alpha}(E)$. Здесь также не удалось найти необходимое условие на u_0 . Будем предполагать, что $u_0 \in D(A)$.

Определение 4. Будем говорить, что задача (13) корректно разрешима в пространстве $C_0^{\alpha}(E)$, если выполнены следующие условия:

- 1) при любых $\varphi_{j,l} \in C_0^{\alpha}(E)$ и $u_0 \in D(A)$ существует единственное решение $u = u(\varphi_{j,l}, u_0)$ в $C_0^{\alpha}(E)$ задачи (11);
 - 2) задача (11) корректна в $C_0^{\alpha}(E)$.

Методом работы [13] доказывается, что неравенство коэрцитивности

$$\left\| \overline{D} \, \overline{\Pi}(u_0) u \right\|_{\mathcal{C}^{\alpha}_0(E)} + \left\| \overline{A}_{j,l} u \right\|_{\mathcal{C}^{\alpha}_0(E)} \le M(\alpha) \left[\left\| A u_0 \right\|_E + \left\| \varphi_{j,l} \right\|_{\mathcal{C}^{\alpha}_0(E)} \right]$$

является необходимым и достаточным условием корректной разрешимости в $C_0^{\alpha}(E)$ корректной задачи (11). Как и в случае пространства $\mathfrak{T}(E)$, из корректной разрешимости разностной задачи (11) в $C_0^{\alpha}(E)$ выводится корректная разрешимость дифференциальной задачи Коши (1) в $C_0^{\alpha}(E)$, установленная в [21]. Поэтому аналитичность полугруппы $\exp\{-tA\}$ является необходимым условием корректной разрешимости разностной задачи (11) в $C_0^{\alpha}(E)$. Это условие не только необходимо, но и достаточно для корректной разрешимости в $C_0^{\alpha}(E)$ для широкого класса разностных схем Паде.

Сначала рассматривается разностная задача (11), порожденная дробями Паде $R_{j,l}$ при j=l-2,l-1. Прежде всего приведем некоторые оценки гладкости для степеней оператора шага.

Лемма 1. Для любых $1 \le k < k + r \le N$ и $0 \le \alpha \le 1$ справедливы оценки

$$\left\| R_{j,l}^k(\tau A) - R_{j,l}^{k+r}(\tau A) \right\|_{E \to E} \le M r^{\alpha} k^{-\alpha},$$

$$\left\| \tau A \left[R_{j,l}^k(\tau A) - R_{j,l}^{k+r}(\tau A) \right] \right\|_{E \to E} \le M r^{\alpha} k^{-(1+\alpha)}.$$

Эти оценки позволяют установить следующий результат.

Теорема 4. Разностная задача (11) корректна в пространстве $C_0^{\alpha}(E)$.

Теорема 5. Разностная задача (12) корректно разрешима в пространстве $C_0^{\alpha}(E)$.

Доказательства теорем 4, 5 проводятся по той же схеме, что и доказательства соответствующих результатов в случае j = 0 и l = 1 [13].

Рассмотрим разностную задачу (11), порожденную дробями Паде $R_{j,l}$. Справедлива следующая лемма.

Лемма 2. Для любых $1 \le k < k + r \le N$ и $0 \le \alpha \le 1$ справедливы оценки

$$\left\| \left[R_{l,l}^{k}(\tau A) - R_{l,l}^{k+r}(\tau A) \right] (I + \tau A)^{-1} \right\|_{E \to E} \le M r^{\alpha} k^{-\alpha}, \tag{18}$$

$$\left\| \tau A \left[R_{l,l}^{k}(\tau A) - R_{l,l}^{k+r}(\tau A) \right] (I + \tau A)^{-3} \right\|_{E \to E} \le M r^{\alpha} k^{-(1+\alpha)}. \tag{19}$$

Доказательство оценок (18) и (19) опирается на оценку

$$\left\| (I + \tau A) \left(I - R_{l,l}(\tau A) \right) (\tau A)^{-1} \right\|_{E \to E} \le M \tag{20}$$

и оценки (15) и (16).

Оценки (18) и (19) позволяют установить следующие результаты.

Теорема 6. Пусть u_0 , $\varphi_k^{l,l} \in D(A)$. Тогда для решений разностной задачи (10) справедливо неравенство

$$\left\| u^{\tau} \right\|_{C_0^{\alpha}(\tau,E)} \leq M \left[\left\| (I+\tau A) u_0 \right\|_E + \left\| (I+\tau A) \phi_{l,l}^{\tau} \right\|_{C_0^{\alpha}(\tau,E)} \right].$$

Теорема 7. Пусть $\varphi_k^{l,l} \in D(A^2), 1 \le k \le N$. Тогда для решений разностной задачи (10) справедливо неравенство

$$\|D_{\tau}\Pi(u_{0})u^{\tau}\|_{C_{0}^{\alpha}(\tau,E)} + \|A_{l,l}u^{\tau}\|_{C_{0}^{\alpha}(\tau,E)} \le$$

$$\le M \left[\|Au_{0}\|_{E} + \frac{1}{\alpha(1-\alpha)} \|(I+\tau A)^{2} \varphi_{l,l}^{\tau}\|_{C_{0}^{\alpha}(\tau,E)} \right]. \tag{21}$$

Доказательство теорем (6) и (7), так же, как и доказательство теорем 4 и 5, проводится по схеме доказательства соответствующих результатов в случае j = 0, l = 1 из [13].

Из тождества

$$1 - R_{l, \, l}(z) = [Q_{l, \, l}(z) - Q_{l, \, l}(-z)] \, / \, Q_{l, \, l}(z)$$

в случае четного l, очевидно, следует оценка

$$\|(I + \tau A)^2 (I - R_{l,l}(\tau A))(\tau A)^{-1}\|_{E \to E} \le M$$
 (22)

с M, не зависящим от τ . Это позволяет в неравенстве вида (21) освободиться в правой части от оператора $I + \tau A$. Справедлива следующая лемма.

Лемма 3. Для любых $1 \le k < k + r \le N$ и $0 \le \alpha \le 1$ и четных l справедлива оценка

$$\left\| \tau A \left[R_{l,l}^k(\tau A) - R_{l,l}^{k+r}(\tau A) \right] (I + \tau A)^{-2} \right\|_{E \to E} \le M r^{\alpha} k^{-(1+\alpha)}.$$

Отсюда вытекает следующий результат.

Теорема 8. Пусть $\varphi_k^{l,l} \in D(A)$, $1 \le k \le N$. Тогда для решений разностной задачи (10) при четных l справедливо неравенство

$$\begin{split} & \left\| D_{\tau} \Pi(u_0) u^{\tau} \, \right\|_{C_0^{\alpha}(\tau,E)} + \left\| A_{l,l} u^{\tau} \, \right\|_{C_0^{\alpha}(\tau,E)} \leq \\ & \leq M \Bigg[\left\| A u_0 \, \right\|_E + \frac{1}{\alpha(1-\alpha)} \left\| (I+\tau A) \phi_{l,l}^{\tau} \, \right\|_{C_0^{\alpha}(\tau,E)} \Bigg]. \end{split}$$

Теорема 9. Если разностная задача (11) при четных l корректна в $\mathfrak{T}(E)$, то она корректно разрешима в $C_0^{\alpha}(E)$.

Справедливы ли аналогичные результаты для разностной задачи (11) в $C_0^{\alpha}(E)$ при нечетных I, автору неизвестно. Однако, удается установить близкие результаты для разностной задачи (11) при нечетных I, но в более узком пространстве, чем пространства $C_0^{\alpha}(E)$. Этому посвящен следующий пункт.

5. Случай специального пространства $ilde{\mathcal{C}}_0^{lpha}(E)$. Рассмотрим разностную задачу (11), порожденную дробями Паде R_l , при нечетных l. В случае l=1приходим к схеме Кранка - Николсон. Легко проверить, что отсутствует равномерная по τ и k, k = 1, ..., N, оценка

$$\|k(I-R_{1,1}(\tau A))R_{1,1}^k(\tau A)\|_{E\to E} \le M$$
 даже в случае самосопряженного и положительно определенного оператора A , действующего в гильбертовом пространстве, $E=H$. Однако справедлива

A, действующего в гильбертовом пространстве E = H. Однако справедлива равномерная по τ и k, k = 1, ..., N, оценка

$$\|k(I-R_{1,1}^2(\tau A))R_{1,1}^k(\tau A)\|_{E\to E} \le M$$
 в случае произвольного сильно позитивного оператора, действующего в бана-

ховом пространстве Е. Поэтому в [17] корректнуя разрешимость схемы Кранка – Николсон удалось установить в $\tilde{C}_0^{\alpha}(E) = \tilde{C}_0^{\alpha}(\epsilon)$ с нормой

$$\|\psi\|_{\tilde{\mathcal{C}}_0^\alpha(E)} = \sup_{0<\tau\leq\tau_0} \|\psi^\tau\|_{\tilde{\mathcal{C}}_0^\alpha(\tau,E)}.$$
 Здесь $\tilde{\mathcal{C}}_0^\alpha(\tau,E), 0<\alpha<1,$ — векторное пространство сеточных функций ψ^τ с

нормой $\| \psi^{\tau} \|_{\tilde{C}_{0}^{\alpha}(\tau,E)} = \| \psi^{\tau} \|_{C(\tau,E)} + \max_{1 \le k < k+2r \le N} \frac{k^{\alpha} \| \psi_{k+2r} - \psi_{k} \|_{E}}{(2r)^{\alpha}}.$

$$\| \Psi \|_{\tilde{C}_0^{\alpha}(\tau,E)} \| \Psi \|_{C(\tau,E)} \|_{1 \le k < k+2r \le N}$$
 (2 r) $^{\alpha}$
Указанное выше свойство разностной схемы Кранка – Николсон наследуется для всех разностных схем Паде при нечетных l . Именно: в силу (20) в случае

нечетных І имеем $||(I+\tau A)(I-R_{l,l}(\tau A))(\tau A)^{-1}||_{F\to F} \le M$.

Эта оценка "хуже", чем оценка (22), из-за того, что потеряна одна степень оператора $I + \tau A$. Поэтому не выполняется равномерная по τ и k, k = 1, ..., N, оценка $\left\| k \left(I - R_{l,l}(\tau A) \right) R_{l,l}^k(\tau A) \right\|_{F \to F} \le M.$

$$\left\| (I+\tau A) \Big(I+R_{l,l}(\tau A)\Big) \right\|_{E\to E} \leq M\,.$$
 Из оценок (20) и (23) следует равномерная по $\, \tau \,$ и $\, k,\, k=1,...,\, N,\,$ оценка

(23)

 $\left\| k \left(I - R_{l,l}^2(\tau A) \right) R_{l,l}^k(\tau A) \right\|_{E \to E} \le M.$

Этот факт позволяет установить некоторое улучшение оценок гладкости сте-

пеней оператора шага $R_{l,l}(\tau A)$ и в случае произвольных нечетных l.

Лемма 4. Для любых $1 \le k \le N$ справедлива оценка

$$\left\| \sum_{r=0}^{k-1} R_{l,l}^k(\tau A) \right\|_{E \to E} \le Mk.$$

Лемма 5. Для любых $1 \le k < k+2r \le N$ и $0 \le \alpha \le 1$ справедлива оценка

$$\left\| \tau A \left(R_{l,l}^{k+2r} (\tau A) - R_{l,l}^{k} (\tau A) \right) (I + \tau A)^{-2} \right\|_{E \to E} \le M r^{\alpha} k^{-(1+\alpha)}.$$

Лемма 6. Для любых $1 \le k < k+2r \le N$ справедлива оценка

$$\|R_{l,l}^{k+2r}(\tau A) - R_{l,l}^{k}(\tau A)\|_{E \to E} \le Mrk^{-1}.$$

Эти оценки гладкости степеней оператора шага $R_{l,l}(A)$ позволяют установить о поличий розгии так

новить следующий результат. **Теорема 10.** Пусть выполнено условие $\|R^k\|_{E \to E} \le M$. Пусть оператор

 $I+R_{l,l}(\tau A)$ имеет обратный $(I+R_{l,l}(\tau A))^{-1}$ и $\phi_k^{l,l}$ принадлежит области определения этого оператора для всех $1 \le k \le N$. Тогда для решений разностной задачи (10) справедливо неравенство

$$\begin{split} & \left\| D_{\tau} \Pi(u_0) u^{\tau} \right\|_{C_0^{\alpha}(\tau, E)} + \left\| A_{l, l} u^{\tau} \right\|_{\tilde{C}_0^{\alpha}(\tau, E)} \leq \\ \leq & M \bigg[\left\| A u_0 \right\|_{E} + \frac{1}{\alpha (1 - \alpha)} \left\| (I + R_{l, l}(\tau A))^{-1} \varphi_{l, l}^{\tau} \right\|_{\tilde{C}_0^{\alpha}(\tau, E)} \bigg]. \end{split}$$

 $3\partial ec_b M$ не зависит от τ , α , u_0 и $\phi_{l,l}^{\tau}$.

Входящее в формулировку теоремы 10 условие существования обратного к оператору $I + R_{L_i}(\tau A)$, очевидно, выполнено при l = 1, так как

$$(I + R_{1,1}(\tau A))^{-1} = I + \tau A / 2.$$

Для произвольных нечетных l справедлива следующая лемма.

Лемма 7. Если A — сильно позитивный оператор со спектральным углом $\phi(A,E) < \pi / 2l$, то существует обратный к оператору $I + R_{l,l}(\tau A)$ и справедлива оценка

$$\|(I+R_{I,I}(\tau A))^{-1}(I+\tau A)^{-1}\|_{E\to E} \le M.$$
 (24)

Доказательство. Так как

$$\| \tau A (I + \tau A)^{-1} \|_{E \to E} \le M,$$

$$[1 + R_{l,l}(z)]^{-1} = Q_{l,l}(z) [Q_{l,l}(z) + Q_{l,l}(-z)]^{-1},$$

то для доказательства (24) достаточно установить оценки

$$\| (\tau A)^k [Q_{l,l}(\tau A) + Q_{l,l}(-\tau A)]^{-1} \|_{E \to E} \le M,$$
 (25)

при всех $k, 0 \le k < l-1$. Пусть сначала 0 < k < l-1. Тогда, воспользовавшись формулой Коши – Риса (3), получим

$$(\tau A)^{k} [Q_{l,l}(\tau A) + Q_{l,l}(-\tau A)]^{-1} = \frac{1}{2\pi i} \int_{S_{l,l}(z)} \frac{z^{k}}{Q_{l,l}(z) + Q_{l,l}(-z)} (z - \tau A)^{-1} dz.$$

Так как

$$Q_{l,l}(z) + Q_{l,l}(-z) = 2 \sum_{l=0}^{(i-1)/2} \frac{(2l-2r)! \ l! \ z^{2r}}{(2l)! \ (2r)! \ (l-2r)!}$$

TO

$$\begin{split} \left|Q_{l,l}(z) + Q_{l,l}(-z)^{2}\right| &= 4 \sum_{r=0}^{(i-1)/2} \left[\frac{(2l-2r)! \ l! \ \rho^{r}}{(2l)! \ (2r)! \ (l-2r)!}\right]^{2} + \\ &+ 8 \sum_{r=0}^{i-1} \sum_{s=r+1}^{i-1} \left[\frac{l!}{(2l)!}\right]^{2} \frac{(2l-2r)! \ (2l-2s)! \ \rho^{2r+2s} \cos 2(s-r)\phi}{(2r)! \ (l-2r)! \ (2s)! \ (l-2s)!} = \psi(\rho). \end{split}$$

Поэтому $\psi(\rho)$ не обращается в нуль в угле

$$\mathcal{F} = \{ z \in \mathbb{C}^+ : z = \rho e^{\pm i \varphi}, 0 \le \rho < \infty, 0 \le \varphi \le \pi / 2l \}$$

$$\Psi^{-1}(\rho) \le M \min\{1, \rho^{-2(l-1)}\}.$$

Отсюда из оценки (2) вытекает

$$\left\| (\tau A)^{k} \left[Q_{l,l}(\tau A) + Q_{l,l}(-\tau A) \right]^{-1} \right\|_{E \to E} \le M \int_{-\infty}^{\infty} \frac{\rho^{k}}{\left[\psi(\rho) \right]^{1/2}} \frac{d\rho}{\rho + \tau} \le$$

$$\le M_{1} \left[\int_{0}^{1} \rho^{k-1} d\rho + \int_{1}^{\infty} \rho^{k-l} d\rho \right] \le M_{2}.$$

Оценка (25) при $1 \le k \le l-2$ установлена. Оценка (25) при k=0 и l-1очевидна. Лемма 7 доказана.

- Соболевский П. Е. Хоанг Ван Лай. Разностные схемы оптимального типа приближенного решения параболических уравнений (банахов случай) // Укр. мат. журн,- 1981.- 33, №1.-C.39 - 46.
- Алибеков Х. А., Соболевский П. Е. Об одном способе построения и исследования схем класса Паде // Дифференц. уравнения и их применения. – 1982. – Вып. 32. – С. 9 – 29.
- Hersh R., Kato T. High-accuracy stable difference schemes for well-posed initial value problem // SIAM J. Numer. Anal. – 1979. – 16, № 4. – P. 670 – 682.
- Brenner Ph., Thomee V. On rational approximations of semigroups // Ibid. P. 683 694.
- 5. Brenner Ph., Grouzeix M., Thomee V. Single step methods for inhomogeneous linear differential equations in Banach space // PAIRO J. Numer. Anal. -1982. -16. No 1. -P. 5-26.
- 6. Бакаев Н. Ю. Оценки устойчивости разностных схем для дифференциального уравнения с постоянным оператором. І // Дифференциальные уравнения с частными производными. --Новосибирск: Наука, 1989. - С. 3 - 14.
- 7. Крейн С. Г. Линейные дифференциальные уравнения в банаховом пространстве. - М.: Наука, 1966. - 464 с.
- 8. Соболевский П. Е., Тиунчук М. Ф. О разностном методе приближенного решения квазилинейных эллиптических и параболических уравнений // Тр. мат. ф-та Воронеж. ун-та. -1970. – Вып. 1. – С. 82 – 106.
- 9. Андреев В. Б. Об устойчивости по начальным данным разностных схем для параболических уравнений // Журн. вычислит. математики и мат. физики.— 1971.— 11, №6.— С. 1462 — 1475.
- 10. $\Gamma pu\phi A$. Γ . Об устойчивости в $W_2^{2,1}$ разностных схем для параболических уравнений // Исследования по теории разностных схем для эллиптических и параболических уравнений. – М.: Изд-во Моск. ун-та, 1973. – С. 88 – 112.
- 11. Ионкин Н. И., Мокин Ю. И. О параболичности разностных схем // Журн. вычислит. математики и мат. физики. - 1974. - 14, № 2. - С. 402 - 417.
- 12 Соболевский П. Е. О коэрцитивной разрешимости разностных уравнений // Докл. АН CCCP. – 1971. – 201, № 5. – C. 1063 – 1066.
- 13. Соболевский П. Е. Теория полугрупп и устойчивость разностных схем // Теория операторов в функциональных пространствах. - Новосибирск: Наука, 1977. - С. 304. - 337.
- 14. Поличка А. Е., Соболевский П. Е. О корректной разрешимости разностных параболических
- уравнений в пространствах Бохнера // Тр. Моск. мат. о-ва. 1978. 36. C. 29 57. 15. Поличка А. Е., Соболевский П. Е. Новые L_p —оценки для разностных параболических задач
- // Журн. вычислит. математики и мат. физики. -1963. -3, № 2. С. 266 -298. 16. Ашыралыев А. О., Соболевский П. Е. Корректная разрешимость разностной схемы
- Кранка-Николсон для параболических уравнений // Изв. АН Туркм. ССР. Сер. физ. техн., хим. и геолог. наук. – 1981. – N° 6. – С. 10 – 16. 17. Ашыралыев А. О., Соболевский П. Е. О коэрцитивной устойчивости разностной схемы
- Кранка-Николсон в пространствах // Приближенные методы исследования дифференциальных уравнений и их применение. – Куйбышев: Куйбышев. ун-т, 1982. – С. 16 – 24.
- Ашыралыев А. О. Об одной чисто неявной разностной схеме второго порядка аппроксимации для параболических уравнений // Изв. АН Туркм. ССР. Сер. физ. техн., хим. и геолог. наук. 1987. № 4. С. 3 13.
 Бейкер Дж., Грейвс-Морис П. Аппроксимация Паде. М.: Мир, 1986. 504 с.
- 20. Ашыралыев А. О., Соболевский П. Е. Разностные схемы для параболических уравнений // Дифференциальные уравнения и их приложения: Тез. докл. Всесоюз. конф. – Ашхабад,
- 21. Соболевский П. Е. Неравенства коэрцитивности для абстрактных параболических уравнений //Докл. АН СССР. – 1964. – 157, № 1. – С. 52 – 56.

Получено 23. 04. 91