А. Ашыралыев. канд. физ.-мат. наук (Ин-т математики АН Украины, Киев)

КОРРЕКТНАЯ РАЗРЕШИМОСТЬ РАЗНОСТНЫХ СХЕМ ПАДЕ ДЛЯ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ В ПРОСТРАНСТВАХ ГЕЛЬДЕРА

Исследуются разностные схемы Паде приближенного решения задачи Коши для параболических уравнений, порожденные дробями Паде $R_{j, l}$ аппроксимации экспоненты. Устанавливаются оценки коэрцитивности разностних схем при $j=l-2, l-1$ или четных $j=l$ в разностном аналоге $C_{0}^{\alpha}(E)$ пространства Гельдера с весом и при нечетных $j=l$ в более узком пространстве чем пространства $C_{0}^{\alpha}(E)$.

Досліджуються різницеві схеми Паде наближеного розв'язку задачі Коші для параболічних рівнянь, породжених дробами Паде $R_{j,!}$ апроксимації експоненти. Установлюються оцінки коерцитивності різницевих схем при $j=l-2, l-1$ або парних $j=l$ в різницевому аналогові $C_{0}^{\alpha}(E)$ простору Гельдера з вагою і при непарних $j=l$ в більш вузькому просторі, ніж прос$\operatorname{rip} C_{0}^{\alpha}(E)$.

В работах [1-6] исследовалась устойчивость (корректность) и сходимость разностных схем Паде приближенного решения задачи Коши

$$
\begin{equation*}
v^{\prime}(t)+A \dot{v}(t)=f(t), 0 \leq t \leq 1, v(0)=v_{0} \tag{1}
\end{equation*}
$$

для дифференциального уравнения в банаховом пространстве E с неограниченным сильно позитивным оператором A. Эти разностные схемы строятся с помощью дробей Паде $R_{j, l}$ аппроксимации экспоненты. К задаче (1), как известно [7], могут быть сведены различные краевые задачи для параболических уравнений.

Важным видом устойчивости является коэрцитивная устойчивость (корректная разрешимость) разностных схем. Такая устойчивость в отличие от других видов устойчивости позволяет устанавливать двусторонние оценки быстроты стремления к нулю погрешности решения разностных схем. Коэрцитивная устойчивость разностной схемы Роте, по-видимому, впервые исследована в [8] для первой краевой задачи для параболических уравнений второго порядка в L_{2}. Затем появились работы [9-11], посвященные коэрцитивной устойчивости простейших разностных схем приближенного решения началь-но-краевых задач для различных параболических уравнений.

В работе [12] разностные схемы трактуются как операторные уравнения в банаховых пространствах и к исследованию разностных схем привлекается теория аналитических полугрупп. Установлены неравенства коэрцитивности разностной схемы Роте в $c_{0}^{\alpha}(E)$-разностном аналоге пространства Гельдера с весом t^{α}. Привлечение теории аналитических полугрупп операторов оказалось эффективным при исследовании этих и других простейших разностных схем в разностных аналогах пространств Гельдера и Бохнера [13-18].

В настоящей статье результаты работ $[12,16-18]$ переносятся на широкий класс разностных схем Паде, порожденных дробями Паде аппроксимации экспоненты. Устанавливаются оценки устойчивости и коэрцитивности разностных схем Паде при $j=l-2, l-1$ или четных $j=l$ в $c_{0}^{\alpha}(E)$ и при нечетных $j=l$ в более узком пространстве чем пространство с $0_{0}^{\alpha}(E)$.

1. Сильно позитивные операторы. Пусть E - произвольное банахово пространство и A - действующий в E линейный оператор с областью определения $D(A)$.

Определение 1. Oператор А называется сильно позитивным, если его © А. АШЫРАЛЫЕВ, 1992

спектр $\sigma(A)$ паходится внутри симметричнюго относителыно положительной полуоси угла $L(\varphi)$ раствора $0<2 \varphi<\pi$, а на сторонах $S_{1}=\{\rho \exp (i \varphi)$, $0 \leq \rho<\infty\}$ и $S_{2}=\{\rho \exp (-i \varphi), 0 \leq \rho<\infty\}$ этого угла и вие его для резольвепть $(\lambda-A)^{-1}$ оператора А справедлива оценка

$$
\begin{equation*}
\left\|(\lambda-A)^{-1}\right\|_{E \rightarrow E} \leq \frac{M(\varphi)}{1+|\lambda|} . \tag{2}
\end{equation*}
$$

Нижняя грань таких углов φ называется спектралыыы углом силыпо позитивного оператора и обозиачается $\varphi(A)=\varphi(A, E)$.

Для любой аналитической внутри $L(\varphi)$ функции $f(z)$, непрерывной на $L(\varphi)$, модуль которой достаточно быстро стремится к нулю, когда $|z| \rightarrow \infty$, определен ограниченный оператор $f(A)$ и справедлива формула Коши - Риса

$$
\begin{equation*}
f(A)=\frac{1}{2 \pi i} \int_{S_{1} \cup S_{2}} f(z)(z-A)^{-1} d z \tag{3}
\end{equation*}
$$

Так определены операторы $\exp \{-t A\}, t>0$, образующие апалитическую полугруппу операторов с производящим оператором $-A$ и с экспонешиально убывающей нормой [7].
2. Разностные схемы Паде. Известно [7], что задача Коши (1) имеет единственное решение

$$
\begin{equation*}
v(t)=\exp \{-t A\} v_{0}+\int_{0}^{t} \exp \{-(t-s) A\} f(s) d s \tag{4}
\end{equation*}
$$

если $v_{0} \in D(A)$ и $f^{\prime}(t)$ непрерывна. На отрезке $[0,1]$ введем равномериую сетку $[0,1]_{\tau}=\left\{t_{k}=k \tau, k=0,1, \ldots, N ; N \tau=1\right\}$ с шагом $\tau>0$. Воспользовавшись, формулой (4), получим следующее соотношение между $v\left(t_{k}\right)$ и $v\left(t_{k-1}\right)$:

$$
\begin{equation*}
v\left(t_{k}\right)=\exp \{-\tau A\} v\left(t_{k-1}\right)+\int_{t_{k-1}}^{t_{k}} \exp \left\{-\left(t_{k}-s\right) A\right\} f(s) d s \tag{5}
\end{equation*}
$$

Отсюда следует равенство

$$
\begin{gather*}
\tau^{-1}\left(v\left(t_{k}\right)-v\left(t_{k-1}\right)\right)+\tau^{-1}(I-\exp \{-\tau A\}) v\left(t_{k-1}\right)=\varphi_{k} \tag{6}\\
\varphi_{k}=\tau^{-1} \int_{t_{k-1}}^{t_{k}} \exp \left\{-\left(t_{k}-s\right) A\right\} f(s) d s
\end{gather*}
$$

Заменив оператор $\exp \{-\tau A\}$ приближением Паде $R_{j,!}(\tau A)$, а элементы φ_{k} близкими (более простыми) элементами $\varphi_{k}^{j, l}$, удовлетворяющими оценке

$$
\begin{equation*}
\left\|\varphi_{k}-\varphi_{k}^{j, l}\right\|_{E} \leq M \tau^{j+l} \tag{7}
\end{equation*}
$$

получим разностные схемы Паде

$$
\begin{equation*}
\tau^{-1}\left(u_{k}-u_{k-1}\right)+\tau^{-1}\left(I-R_{j, l}(\tau A)\right) u_{k-1}=\varphi_{k}^{j, l}, 1 \leq k \leq N, \quad u_{0}=v_{0} . \tag{8}
\end{equation*}
$$

Здесь [19]

$$
R_{j, l}(z)=\frac{P_{j, l}(z)}{Q_{j, l}(z)}, P_{j, l}(z)=\sum_{r=0}^{j} \frac{(j+l-r)!j!(-z)^{r}}{(j+l)!r!(j-r)!}, Q_{j, 1}(z)=\sum_{r=0}^{l} \frac{(j+l-r)!l!z^{r}}{(j+l)!r!(l-r)!} .
$$

Известно [19], что при $l-4 \leq j \leq l$ корни многочлена $Q_{j, \text {, }}(z)$ лежат в открытой полуплоскости $\operatorname{Re} z<0$. Следовательно, $R_{j, \text {. }}(z)$ имеет все свои полюсы в открытой левой полуплоскости. Отсюда и из сильнои позитивности оператора A следует существование оператора $\left[\chi_{j,(}(\tau A)\right]^{-1}$ и его равномерная по τ ограниченность в E. Более того, равномерно по τ ограничены операторы $(\tau A)^{k}\left[Q_{j, 1}(\tau A)\right]^{-1}$ при $k=0,1, \ldots, l$. Следовательно, равномерно по τ ограничен оператор $R_{j, l}(\tau A)$ при $l-4 \leq j \leq l$. Поэтому при любых $\varphi_{k}^{j, l}, 1 \leq k \leq N$, и u_{0} решение разностных схем (8) $u_{k} 1 \leq k \leq N$, существует и справедлива формула

$$
\begin{equation*}
u_{k}=R_{j, l}^{k}(\tau A)+u_{0}+\sum_{r=1}^{k} R_{j, l}^{k-r}(\tau A) \varphi_{r}^{j, l_{l}} \tau . \tag{9}
\end{equation*}
$$

Оператор $R_{j, 1}(\tau A)$, определяющий разностную схему, принято называть оператором шага. Отметим, что при построении таких разностных схем важно уметь строить правую часть $\varphi_{k}^{j, l}$, которая удовлетворяла бы оценке (7) и была бы достаточно простой. Выбор $\varphi_{k}^{j, l}$ не единствен. В работе [2] показано, что $\varphi_{k}^{j, l}$ можно определить формулой

$$
\begin{gathered}
\varphi_{k}^{j, l}=\sum_{r=0}^{j+l-1} \mathrm{~g}_{r} f^{(r)}\left(t_{k-1}\right) \quad J_{0}=(\tau A)^{-1}\left(I-R_{j, l}(\tau A)\right), \\
\unlhd_{r}=(-A)^{-r} \mathrm{~g}_{0}+\sum_{i=1}^{r}(-1)^{r-i} A^{-(r-i+1)} \tau^{i-1} / i!, 1 \leq r \leq j+l-1,
\end{gathered}
$$

если функция $f(t)$ имеет $(j+l)$ непрерывную производную, причем $f^{(r)}(t) \in$ $\in D\left(A^{j+l-r}\right)$ при всех $0 \leq r \leq j+l$.

Разностные схемы (8) можно рассматривать как операторное уравнение

$$
\begin{equation*}
D_{\tau} \Pi\left(u_{0}\right) u^{\tau}+A_{j, l} u^{\tau}=\varphi_{j, l}^{\tau} \tag{10}
\end{equation*}
$$

в линейном пространстве $E(\tau)$ векторов $\psi^{\tau}=\left\{\psi_{k}\right\}_{1}^{N}$ с компонентами из E. Здесь оператор D_{τ} действует из пространства $E \times E(\tau)$ векторов $u=\left(u_{0}, u_{1}, \ldots\right.$ $\left.\ldots, u_{N}\right)$ в пространство $E(\tau)$ векторов $v=\left(v_{1}, \ldots, v_{N}\right)$ согласно формуле

$$
v=D_{\tau} u, v_{k}=\tau^{1}\left(u_{k}-u_{k-1}\right), k=1, \ldots, N
$$

оператор $A_{j, l}$ действует из пространства $E(\tau)$ векторов $u=\left(u_{0}, \ldots, u_{N-1}\right)$ в пространство $E(\tau)$ векторов $v=\left(v_{1}, \ldots, v_{N}\right)$ согласно формуле

$$
v=A_{j, l} u, v_{k}=\tau^{-1}\left(I-R_{j, f}(\tau A)\right) u_{k-1}, 1 \leq k \leq N ;
$$

оператор продолжения $\Pi\left(u_{0}\right)$ действует из $E(\tau)$ в пространство $E \times E(\tau)$ по формуле

$$
\Pi\left(u_{0}\right)\left(u_{1}, \ldots, u_{N}\right)=\left(u_{0}, u_{1}, \ldots, u_{N}\right)
$$

Если в $E(\tau)$ ввести нормы

$$
\left\|\psi^{\tau}\right\|_{C(\tau, E)}=\max _{1 \leq k \leq N}\left\|\Psi_{k}\right\|_{E},
$$

$$
\sum_{r=0}^{j+l-1}\left\|\psi^{\tau}\right\|_{C_{0}^{\alpha}(\tau, E)}=\left\|\psi^{\tau}\right\|_{C(\tau, E)}+\max _{1 \leq k<k+r \leq N} \frac{k^{\alpha}\left\|\psi_{k+r}-\psi_{k}\right\|_{E}}{r^{\alpha}},
$$

то оно превратится в соответственно банаховы пространства $C(\tau, E)$ и $C_{0}^{\alpha}(\tau, E)$. Из формулы (9) следует, что u^{τ} определяет аддитивный и однородный оператор $u^{\tau}\left(\varphi_{j, l}^{\tau}, u_{0}\right)$, действующий из $E(\tau) \times E$ в $E(\tau)$. Разностные схемы (8) называются корректной (устойчивой) схемой в пространстве $E(\tau)$, если оператор $u^{\tau}\left(\varphi_{j, l}^{\tau}, u_{0}\right)$ непрерывен. Так как оператор $u^{\tau}\left(\varphi_{j, l}^{\tau}, u_{0}\right)$ аддитивен и однороден, то корректность разностных схем (8) эквивалентна выполнению неравенства

$$
\left\|u^{\tau}\left(\varphi_{j, l}^{\tau}, u_{o}\right)\right\|_{E(\tau)} \leq M\left[\left\|u_{0}\right\|_{E}+\left\|\varphi_{j, l}^{\tau}\right\|_{E(\tau)}\right]
$$

где M не зависит от u_{0} и $\varphi_{j, l}^{\tau}$, но, вообще говоря, зависит от τ.
При исследовании разностных схем изучаются не отдельные схемы при фиксированном τ, а совокупность таких схем при всех $0<\tau \leq \tau_{0}$. Следуя [13], рассмотрим линейное пространство $\varepsilon(E)$ векторов $\psi=\left\{\psi^{\tau}\right\}, 0<\tau \leq \tau_{0}$, с бесконечным числом компонент; вся совокупность схем (8) порождает операторную задачу в $\varepsilon(E)$. Для этого определим действующие в $\varepsilon(E)$ операторы $\bar{D}, \bar{\Pi}$ и $\bar{A}_{j, l}$ покомпонентно по операторам $D(\tau)$, П и $A_{j, l}$ соответственно и придем к операторному уравнению

$$
\begin{equation*}
\bar{D} \bar{\Pi}\left(u_{0}\right) u+\bar{A}_{j, l} u=\varphi_{j, l} \tag{11}
\end{equation*}
$$

в векторном пространстве $\varepsilon(E)$. Его решение $u=\left\{u^{\tau}\right\}$ определяется совокупностью формул (9). Определим для элементов $\psi \in \varepsilon(E)$ нормы

$$
\begin{gathered}
\|\psi\|_{\tau(E)}=\|\psi\|_{C(\varepsilon)}=\sup _{0<\tau \delta \tau_{0}}\left\|\psi^{\tau}\right\|_{C(\tau, E)} \\
\|\psi\|_{C_{0}^{\alpha}(E)}=\|\psi\|_{C_{0}^{\alpha}(\varepsilon)}=\sup _{0<\tau \tau \tau_{0}}\left\|\psi^{\tau}\right\|_{C_{0}^{\alpha}(\tau, E)}
\end{gathered}
$$

В отличие от случая фиксированного τ эти пространства не совпадают: справедливы строгие вложения $C_{0}^{\alpha}(E) \subset \mho(E)$, причем операторы вложения непрерывны.

Очевидно, операторное уравнение (13) однозначно разрешимо при любых $u_{0} \in E$ и $\varphi_{j, l} \in \varepsilon(E)$. Эта разрешимость, очевидно, эквивалентна однозначной разрешимости в $E(\tau)$ задачи (10). По формулам (9) определяется аддитивный и однородный оператор $u\left(\varphi_{j, l}, u_{0}\right)$, действующий из пространства $\varepsilon(E)$ в $\varepsilon(E)$.

Определение 2. Будем говорить, что задача (11) корректна в банаховом пространстве $\varepsilon(E)$, если оператор $u\left(\varphi_{j, l}, u_{0}\right)$ как оператор из $\varepsilon(E) \times E$ в $\varepsilon(E)$ непрерывен.

Так как $u\left(\varphi_{j, l}, u_{0}\right)$ - линейный оператор, то корректность задачи (11) в $\varepsilon(E)$ эквивалентна справедливости неравенства

$$
\left\|u^{\tau}\right\|_{E(\tau)} \leq M\left[\left\|u_{0}\right\|_{E}+\left\|\varphi_{j, l}^{\tau}\right\|_{E(\tau)}\right]
$$

с M, не зависящим не только от u_{0} и $\varphi_{j, l}^{\tau}$, но и от τ.
Очевидно, для корректности задачи (11) в 乙 (E) необходимо и достаточно, чтобы для любого $k=1, \ldots, N$ и $\tau>0$ была справедлива оценка

$$
\begin{equation*}
\left\|R_{j, l}^{k}(\tau A)\right\|_{E \rightarrow E} \leq M \tag{12}
\end{equation*}
$$

В работах［1－6，20］оценка（12）установлена для широкого класса разност－ ных схем Паде в произвольном банаховом пространстве E ．

Рассмотрим задачу（11）в пространстве $C_{0}^{\alpha}(E)$ ．
Теорема 1．Для корректности разностной задачи（11）в $C_{0}^{\alpha}(E)$ необходи－ мо и достаточно，чтобы были справедливы оценки（12）и

$$
\left\|R_{j, l}^{k}(\tau A)-R_{j, l}^{k+r}(\tau A)\right\|_{E \rightarrow E} \leq M r^{\alpha} k^{-\alpha}, 1 \leq k<k+r \leq N, 0 \leq \alpha \leq 1 .
$$

Доказательство теоремы 1 в случае $j=0$ и $l=1$ проводилось в［13］． В общем случае оно проводится аналогично．

3．Корректная разрешимость разностных схем в $\mathcal{G}(E)$ ．Здесь будем рас－ сматривать уравнение（11）в банаховом пространстве $\mathcal{C}(E)$ ．Элемент $u \in \mathcal{C}(E)$ будет теперь называться решением（11），если элементы $\bar{D} \bar{\Pi}\left(u_{0}\right)$ и и $\bar{A}_{j, l} u$ при－ надлежат $\prec(E)$ ．Если задача（11）разрешима в $\bigodot(E)$ ，то，очевидно，$\varphi_{j, l} \in \bigodot(E)$ ．

Из определения решения в $て(E)$ следует，чго нормы $\left\|A_{j, l}\left(u^{\tau}\right)_{1}\right\|_{E}=\left\|A_{j, l} l_{1}\right\|_{E}$ равномерно по τ ограничены．

Поэтому пеобходимым условием существования в $\mathcal{C}(E)$ решения задачи （11）являяется равномериая по τ ограниченность норм

$$
\left\|\tau^{-1}\left(I-R_{j, 1}(\tau A)\right) R_{j, 1}(\tau A) u_{0}\right\|_{E}
$$

Вывести отсюда пеобходимое условие для u_{0} в общем случае пока не удалось． Для такой ограничешости，очевидно，достаточпо，чтобы $u_{0} \in D(A)$ ．Будем считать это условие выполшешным．

Определение 3．Будем говорить，что задача（11）корректио разреиима （коэрцитивио устойчива）в そ（ $($ ），если выполиены следующце условия：

1）при лобых $u_{0} \in D(A)$ и $\varphi_{j, l} \in \mathcal{C}(E)$ суицествует единственное ее peuenue в $\prec(E)$ ；

2）задача（11）корректна в $\prec(E)$ ．
Как отмечалось выше，эта корректная разрешимость，очевидно，эквивален－ тна корректной разрешимости в $C(\tau, E)$ задачи（10）равномерно по $\tau, 0<\tau \leq$ $\leq \tau_{0}$ ．Методом работы［13］доказывается，что неравенство коэрцитивности

$$
\begin{equation*}
\left\|\bar{D} \bar{\Pi}\left(u_{0}\right) u\right\|_{\mathcal{O}_{(E)}}+\left\|\bar{A}_{j, l} u\right\|_{\mathcal{\Upsilon}_{(E)}} \leq M\left[\left\|A u_{0}\right\|_{E}+\left\|\varphi_{j, l}\right\|_{\mathfrak{\Upsilon}_{(E)}}\right] \tag{13}
\end{equation*}
$$

является необходимым и достаточным условием корректной разрешимости в $\mathcal{C}(E)$ корректной задачи（11）．Неравенство（13）верно тогда и только тогда， когда справедливо неравенство

$$
\begin{equation*}
\left\|D_{\tau} \bar{\Pi}\left(u_{0}\right) u^{\tau}\right\|_{C(\tau, E)}+\left\|A_{j, l} u^{\tau}\right\|_{C(\tau, E)} \leq M\left[\left\|A u_{0}\right\|_{E}+\left\|\varphi_{j, l}^{\tau}\right\|_{C(\tau, E)}\right] \tag{14}
\end{equation*}
$$

с M ，не зависящим от τ ．Предельный переход в（14）приводит к неравенству коэрцитивности в $C(E)$－пространстве непрерывных функций $f(t)$ со зачени－ ями из E ．Поэтому апалитичность полугруппы $\exp \{-t A\}$ является необходи－ мым условием корректной разрешимости разностной задачи（11）в そ（E）．Ниже предполагается，что $-A$－производящий оператор аналитической полугруппы $\exp \{-t A\}$ ．Так как дифференциальная задача в общем случае не является кор－ ректно разрешимой в $\bigodot(E)$ ，то для разностных схем（8）не может выполняться

неравенство коэрцитивности (14) с $M=M(\tau)$, не зависящим от τ. Это означает, что $M(\tau) \rightarrow \infty$ при $\tau \rightarrow 0$. Изучение задачи (11) позволяет выявить порядок стремления $M(\tau)$ к ∞.

Вначале рассмотрим разностные схемы (8), порожденные дробями Паде $R_{j . l}$ при $j=l-2, l-1$. Справедливы оценки $[1,2]$

$$
\left\|R_{j, l}^{k}(\tau A)\right\|_{E \rightarrow E} \leq M,\left\|A R_{j, t}^{k}(\tau A)\right\|_{E \rightarrow E} \leq M / k \tau
$$

для $1 \leq k \leq N, \tau=N^{-1}$, с M, не зависящим от τ. Эти оценки позволяют установить следующий результат.

Теорема 2. Для решения задачи (10) справедливо почти коэрцитивное неравенство

$$
\begin{aligned}
& \left\|D \Pi\left(u_{0}\right) u^{\tau}\right\|_{C(\tau, E)}+\left\|A_{j, l} u^{\tau}\right\|_{C(\tau, E)} \leq M\left[\left\|A u_{0}\right\|_{E}+\right. \\
& \left.\quad+\min \left\{\ln \frac{1}{\tau}, 1+\left|\ln \|A\|_{E \rightarrow E}\right|\right\}\left\|\varphi_{j, l}^{\tau}\right\|_{C(\tau, E)}\right]
\end{aligned}
$$

с $М$, не зависящим от $\tau(и \quad A)$. (Здесь $\|A\|_{E \rightarrow E}=\infty$ в случае дискретизации только по времени [13].)

Доказательство теоремы 2 в случае $j=0, l=1$ проводилось в [13]. В общем случае оно проводится аналогично.

Перейдем теперь к рассмотрению разностной задачи (10), порожденной дробями Паде $R_{j, l}$. Оператор шага $R_{j, l}(\tau A)$ обладает "худшими" свойствами по сравнению с оператором шага $R_{l-2, l}(\tau A)$ и $R_{l-1, l}(\tau A)$. Справедливы оценки $[1,2]$

$$
\begin{align*}
& \left\|R_{l, l}^{k}(\tau A)(I+\tau A)^{-1}\right\|_{E \rightarrow E} \leq M \tag{15}\\
& \left\|A R_{l, l}^{k}(\tau A)(I+\tau A)^{-2}\right\|_{E \rightarrow E} \leq \frac{M}{k \tau} \tag{16}
\end{align*}
$$

для $1 \leq k \leq N$ с M, не зависящим от τ. Эти оценки позволяют установить следующий результат.

Теорема 3. Пусть $\varphi_{k}^{l, l} \in D(A), 1 \leq k \leq N$. Тогда для решений задачи (10) справедливо неравенство

$$
\begin{align*}
& \left\|D \Pi\left(u_{0}\right) u^{\tau}\right\|_{C(\tau, E)}+\left\|A_{l, l} u^{\tau}\right\|_{C(\tau, E)} \leq M\left[\left\|A u_{0}\right\|_{E}+\right. \\
& \left.+\min \left\{\ln \frac{1}{\tau}, 1+\left|\ln \|A\|_{E \rightarrow E}\right|\right\}\left\|(I+\tau A) \varphi_{l, l}^{\tau}\right\|_{C(\tau, E)}\right] \tag{17}
\end{align*}
$$

с $М$, не зависяцим от τ (и A).
Доказательство теоремы 3 в случае $l=1$ проводилось в [16]. В общем случае оно проводится аналогично. Неравенство (17) - это более слабое неравенство, чем неравенства в теореме 2 . Однако получение таких неравенств важно для приложения. Обозначим через V^{τ} вектор аппроксимации. Тогда

$$
\left\|(I+\tau A) v^{\tau}\right\|_{C(\tau: E)} \sim\left\|v^{\tau}\right\|_{C(\tau, E)} \sim O\left(\tau^{j+l}\right)
$$

если предположить, что $\left\|\tau A \nu^{\tau}\right\|_{C(\tau, E)}$ стремится к нулю при $\tau \rightarrow 0$ не медленнее, чем $\left\|v^{\tau}\right\|_{C(\tau, E)}$ Это будет иметь место в приложениях при дополнительных ограничениях на гладкость данных по пространственным переменным.
4. Случай общего пространства $C_{0}^{\alpha}(\boldsymbol{E})$. В [13] показано, что аналитич-

ность полугруппы exp $\{-t A\}$ является необходимым и достаточным условием корректной разрешимости простейшей разностной задачи (11) при $j=0$ и $l=1$, если пространство $\mathcal{C}(E)$ определенным образом сузить или расширить. Оказывается, такой факт справедлив для широкого класса разностных схем Паде.

Решение u задачи (11) называется решением в $C_{0}^{\alpha}(E)$ этой задачи, если

$$
\bar{D} \bar{\Pi}\left(u_{0}\right) u \in C_{0}^{\alpha}(E), \bar{A}_{j, l} u \in C_{0}^{\alpha}(E) .
$$

Очевидно, для разрешимости в $C_{0}^{\alpha}(E)$ задачи (11) необходимо, чтобы $\varphi_{j, l} \in$ $\in C_{0}^{\alpha}(E)$. Здесь также не удалось найти необходимое условие на u_{0}. Будем предполагать, что $u_{0} \in D(A)$.

Определение 4. Будем говорить, что задача (13) корректно разрешима в пространстве $C_{0}^{\alpha}(E)$, если выполнены следующие условия:

1) при любых $\varphi_{j, l} \in C_{0}^{\alpha}(E)$ и $u_{0} \in D(A)$ суиествует единственное решение $u=u\left(\varphi_{j, 1}, u_{0}\right)$ в $C_{0}^{\alpha}(E)$ задачи (11);
2) задача (11) корректна в $C_{0}^{\alpha}(E)$.

Методом работы [13] доказывается, что неравенство коэрцитивности

$$
\left\|\bar{D} \bar{\Pi}\left(u_{0}\right) u\right\|_{C_{0}^{\alpha}(E)}+\left\|\bar{A}_{j, l} u\right\|_{C_{0}^{\alpha}(E)} \leq M(\alpha)\left[\left\|A u_{0}\right\|_{E}+\left\|\varphi_{j, l}\right\|_{C_{0}^{\alpha}(E)}\right]
$$

является необходимым и достаточным условием корректной разрешимости в $C_{0}^{\alpha}(E)$ корректной задачи (11). Как и в случае пространства そ(E), из корректной разрешимости разностной задачи (11) в $C_{0}^{\alpha}(E)$ выводится корректная разрешимость дифференциальной задачи Коши (1) в $C_{0}^{\alpha}(E)$, установленная в [21]. Поэтому аналитичность полугруппы $\exp \{-t A\}$ является необходимым условием корректной разрешимости разностной задачи (11) в $C_{0}^{\alpha}(E)$. Это условие не только необходимо, но и достаточно для корректной разрешимости в $C_{0}^{\alpha}(E)$ для широкого класса разностных схем Паде.

Сначала рассматривается разностная задача (11), порожденная дробями Паде $R_{j, l}$ при $j=l-2, l-1$. Прежде всего приведем некоторые оценки гладкости для степеней оператора шага.

Лемма 1. Для любых $1 \leq k<k+r \leq N$ и $0 \leq \alpha \leq 1$ справедливы оценки

$$
\begin{gathered}
\left\|R_{j, l}^{k}(\tau A)-R_{j, l}^{k+r}(\tau A)\right\|_{E \rightarrow E} \leq M r^{\alpha} k^{-\alpha}, \\
\left\|\tau A\left[R_{j, l}^{k}(\tau A)-R_{j, l}^{k+r}(\tau A)\right]\right\|_{E \rightarrow E} \leq M r^{\alpha} k^{-(1+\alpha)} .
\end{gathered}
$$

Эти оценки позволяют установить следующий результат.
Теорема 4. Разностная задача (11) корректна в пространстве $C_{0}^{\alpha}(E)$.
Теорема 5. Разностная задача (12) корректно разрешима в пространстве $c_{0}^{\alpha}(E)$.

Доказательства теорем 4,5 проводятся по той же схеме, что и доказательства соответствующих результатов в случае $j=0$ и $l=1$ [13].

Рассмотрим разностную задачу (11), порожденную дробями Паде $R_{j, l}$. Справедлива следующая лемма.

Лемма 2. Для любых $1 \leq k<k+r \leq N$ и $0 \leq \alpha \leq 1$ справедливы оценки

$$
\begin{equation*}
\left\|\left[R_{l, l}^{k}(\tau A)-R_{l, l}^{k+r}(\tau A)\right](I+\tau A)^{-1}\right\|_{E \rightarrow E} \leq M r^{\alpha} k^{-\alpha}, \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\tau A\left[R_{l, l}^{k}(\tau A)-R_{l, l}^{k+r}(\tau A)\right](I+\tau A)^{-3}\right\|_{E \rightarrow E} \leq M r^{\alpha} k^{-(1+\alpha)} \tag{19}
\end{equation*}
$$

Доказательство оценок (18) и (19) опирается на оценку

$$
\begin{equation*}
\left\|(I+\tau A)\left(I-R_{l, l}(\tau A)\right)(\tau A)^{-1}\right\|_{E \rightarrow E} \leq M \tag{20}
\end{equation*}
$$

и оценки (15) и (16).
Оценки (18) и (19) позволяют установить следующие результаты.
Теорема 6. Пусть $u_{0}, \varphi_{k}^{1, l} \in D(A)$. Тогда для решений разностной задачи (10) справедливо неравенство

$$
\left\|u^{\tau}\right\|_{C_{0}^{\alpha}(\tau, E)} \leq M\left[\left\|(I+\tau A) u_{0}\right\|_{E}+\left\|(I+\tau A) \varphi_{l, l}^{\tau}\right\|_{C_{0}^{\alpha}(\tau, E)}\right] .
$$

Теорема 7. Пусть $\varphi_{k}^{l, l} \in D\left(A^{2}\right), 1 \leq k \leq N$. Тогда для решений разностной задачи (10) справедливо неравенство

$$
\begin{gather*}
\left\|D_{\tau} \Pi\left(u_{0}\right) u^{\tau}\right\|_{C_{0}^{\alpha}(\tau, E)}+\left\|A_{l, l} u^{\tau}\right\|_{C_{0}^{\alpha}(\tau, E)} \leq \\
\leq M\left[\left\|A u_{0}\right\|_{E}+\frac{1}{\alpha(1-\alpha)}\left\|(I+\tau A)^{2} \varphi_{l, l}^{\tau}\right\|_{C_{0}^{\alpha}(\tau, E)}\right] . \tag{21}
\end{gather*}
$$

Доказательство теорем (6) и (7); так же, как и доказательство теорем 4 и 5, проводится по схеме доказательства соответствующих результатов в случае $j=0, l=1$ из [13].

Из тождества

$$
1-R_{l, l}(z)=\left[Q_{l, l}(z)-Q_{l, l}(-z)\right] / Q_{l, l}(z)
$$

в случае четного l, очевидно, следует оценка

$$
\begin{equation*}
\left\|(I+\tau A)^{2}\left(I-R_{l, l}(\tau A)\right)(\tau A)^{-1}\right\|_{E \rightarrow E} \leq M \tag{22}
\end{equation*}
$$

с M, не зависящим от τ. Это позволяет в неравенстве вида (21) освободиться в правой части от оператора $I+\tau A$. Справедлива следующая лемма.

Лемма 3. Для любых $1 \leq k<k+r \leq N$ и $0 \leq \alpha \leq 1$ и четных l справедлива оценка

$$
\left\|\tau A\left[R_{l, l}^{k}(\tau A)-R_{l, l}^{k+r}(\tau A)\right](I+\tau A)^{-2}\right\|_{E \rightarrow E} \leq M r^{\alpha} k^{-(1+\alpha)} .
$$

Отсюда вытекает следующий результат.
Теорема 8. Пусть $\varphi_{k}^{l, l} \in D(A), 1 \leq k \leq N$. Тогда для решений разностной задачи (10) при четньх l справедливо неравенство

$$
\begin{gathered}
\left\|D_{\tau} \Pi\left(u_{0}\right) u^{\tau}\right\|_{C_{0}^{\alpha}(\tau, E)}+\left\|A_{l, l} u^{\tau}\right\|_{C_{0}^{\alpha}(\tau, E)} \leq \\
\leq M\left[\left\|A u_{0}\right\|_{E}+\frac{1}{\alpha(1-\alpha)}\left\|(I+\tau A) \varphi_{l, l}^{\tau}\right\|_{C_{0}^{\alpha}(\tau, E)}\right] .
\end{gathered}
$$

Теорема 9. Если разностная задача (11),при четных l корректна в $て(E)$, то она корректно разрешима в $C_{0}^{\alpha}(E)$.

Справедливы ли аналогичные результаты для разностной задачи (11) в $C_{0}^{\alpha}(E)$ при нечетных l, автору неизвестно. Однако, удается установить близкие результаты для разностной задачи (11) при нечетных l, но в более узком пространстве, чем пространства $C_{0}^{\alpha}(E)$. Этому посвящен следующий пункт.
5. Случай специального пространства $\tilde{C}_{0}^{\alpha}(E)$. Рассмотрим разностную задачу (11), порожденную дробями Паде $R_{l, l}$ при нечетных l. В случае $l=1$ приходим к схеме Кранка - Николсон. Легко проверить, что отсутствует равномерная по τ и $k, k=1, \ldots, N$, оценка

$$
\left\|k\left(I-R_{1,1}(\tau A)\right) R_{1,1}^{k}(\tau A)\right\|_{E \rightarrow E} \leq M
$$

даже в случае самосопряженного и положительно определенного оператора A, действующего в гильбертовом пространстве $E=H$. Однако справедлива равномерная по τ и $k, k=1, \ldots, N$, оценка

$$
\left\|k\left(I-R_{1,1}^{2}(\tau A)\right) R_{1,1}^{k}(\tau A)\right\|_{E \rightarrow E} \leq M
$$

в случае произвольного сильно позитивного оператора, действующего в банаховом пространстве E. Поэтому в [17] корректнуя разрешимость схемы Кранка - Николсон удалось установить в $\tilde{c}_{0}^{\alpha}(E)=\tilde{c}_{0}^{\alpha}(\varepsilon)$ с нормой

$$
\|\psi\|_{\tilde{c}_{0}^{\alpha}(E)}=\sup _{0<\tau \leq \tau_{0}}\left\|\psi^{\tau}\right\|_{\tilde{c}_{0}^{\alpha}(\tau, E)} .
$$

Здесь $\tilde{c}_{0}^{\alpha}(\tau, E), 0<\alpha<1$, векторное пространство сеточных функций ψ^{τ} с нормой

$$
\left\|\psi^{\tau}\right\|_{\tilde{C}_{0}^{\alpha}(\tau, E)}=\left\|\psi^{\tau}\right\|_{C(\tau, E)}+\max _{1 \leq k<k+2 r \leq N} \frac{k^{\alpha}\left\|\psi_{k+2 r}-\psi_{k}\right\|_{E}}{(2 r)^{\alpha}} .
$$

Указанное выше свойство разностной схемы Кранка - Николсон наследуетая для всех разностных схем Паде при нечетных l. Именно: в силу (20) в случае нечетных l имеем

$$
\left\|(I+\tau A)\left(I-R_{l, l}(\tau A)\right)(\tau A)^{-1}\right\|_{E \rightarrow E} \leq M .
$$

Эта оценка "хуже", чем оценка (22), из-за того, что потеряна одна степень оператора $I+\tau A$. Поэтому не выполняется равномерная по τ и $k, k=1, \ldots, N$, оценка

$$
\left\|k\left(I-R_{l, l}(\tau A)\right) R_{l, l}^{k}(\tau A)\right\|_{E \rightarrow E} \leq M .
$$

Однако, можно воспользоваться оценкой

$$
\begin{equation*}
\left\|(I+\tau A)\left(I+R_{l, l}(\tau A)\right)\right\|_{E \rightarrow E} \leq M . \tag{23}
\end{equation*}
$$

Из оценок (20) и (23) следует равномерная по τ и $k, k=1, \ldots, N$, оценка

$$
\left\|k\left(I-R_{l, l}^{2}(\tau A)\right) R_{l, l}^{k}(\tau A)\right\|_{E \rightarrow E} \leq M .
$$

Этот факт позволяет установить некоторое улучшение оценок гладкости степеней оператора шага $R_{l, l}(\tau A)$ и в случае произвольных нечетных l.

Лемма 4. Для любых $1 \leq k \leq N$ справедлива оценка

$$
\left\|\sum_{r=0}^{k-1} R_{l, l}^{k}(\tau A)\right\|_{E \rightarrow E} \leq M k
$$

Лемма 5. Для пюбых $1 \leq k<k+2 r \leq N$ и $0 \leq \alpha \leq 1$ справедлива оценка

$$
\left\|\tau A\left(R_{l, l}^{k+2 r}(\tau A)-R_{l, l}^{k}(\tau A)\right)(I+\tau A)^{-2}\right\|_{E \rightarrow E} \leq M r^{\alpha} k^{-(1+\alpha)} .
$$

Лемма 6. Для любых $1 \leq k<k+2 r \leq N$ справедлива оценка

$$
\left\|R_{l, l}^{k+2 r}(\tau A)-R_{l, l}^{k}(\tau A)\right\|_{E \rightarrow E} \leq M r k^{-1} .
$$

Эти оценки гладкости степеней оператора шага $R_{l, l}(\tau A)$ позволяют установить следующий результат.

Теорема 10. Пусть выполнено условие $\left\|R^{k}\right\|_{E \rightarrow E} \leq$. Пусть оператор $I+R_{l, l}(\tau A)$ имеет обратный $\left(I+R_{l, l}(\tau A)\right)^{-1}$ и $\varphi_{k}^{l, l}$ принадлежит области определения этого оператора для всех $1 \leq k \leq N$.Тогда для решений разностной задачи (10) справедливо неравенство

$$
\begin{gathered}
\left\|D_{\tau} \Pi\left(u_{0}\right) u^{\tau}\right\|_{C_{0}^{\alpha}(\tau, E)}+\left\|A_{l, l} u^{\tau}\right\|_{\tilde{c}_{0}^{\alpha}(\tau, E)} \leq \\
\leq M\left[\left\|A u_{0}\right\|_{E}+\frac{1}{\alpha(1-\alpha)}\left\|\left(I+R_{l, l}(\tau A)\right)^{-1} \varphi_{l, l}^{\tau}\right\|_{\tilde{c}_{0}^{\alpha}(\tau, E)}\right] .
\end{gathered}
$$

здесь $М$ не зависит от τ, α, u_{0} и $\varphi_{l, l}^{\tau}$.
Входящее в формулировку теоремы 10 условие существования обратного к оператору $I+R_{l, l}(\tau A)$, очевидно, выполнено при $l=1$, так как

$$
\left(I+R_{1,1}(\tau A)\right)^{-1}=I+\tau A / 2
$$

Для произвольных нечетных l справедлива следующая лемма.
Лемма 7. Если А-сильно позитивный оператор со спектральным углом $\varphi(A, E)<\pi / 2 l$, то существует обратный к оператору $I+R_{l, l}(\tau A)$ и справедлива оценка

$$
\begin{equation*}
\left\|\left(I+R_{l, l}(\tau A)\right)^{-1}(I+\tau A)^{-1}\right\|_{E \rightarrow E} \leq M . \tag{24}
\end{equation*}
$$

Доказательство. Таккак

$$
\begin{gathered}
\left\|\tau A(I+\tau A)^{-1}\right\|_{E \rightarrow E} \leq M, \\
{\left[1+R_{l, l}(z)\right]^{-1}=Q_{l, l}(z)\left[Q_{l, l}(z)+Q_{l, l}(-z)\right]^{-1},}
\end{gathered}
$$

то для доказательства (24) достаточно установить оценки

$$
\begin{equation*}
\left\|(\tau A)^{k}\left[Q_{l, l}(\tau A)+Q_{l, l}(-\tau A)\right]^{-1}\right\|_{E \rightarrow E} \leq M, \tag{25}
\end{equation*}
$$

при всех $k, 0 \leq k<l-1$. Пусть сначала $0<k<l-1$. Тогда, воспользовавшись формулой Коши - Риса (3), получим

$$
(\tau A)^{k}\left[Q_{l, l}(\tau A)+Q_{l, l}(-\tau A)\right]^{-1}=\frac{1}{2 \pi i} \int_{S_{1} \cup S_{2}} \frac{z^{k}}{Q_{l, l}(z)+Q_{l, l}(-z)}(z-\tau A)^{-1} d z .
$$

Так как

$$
Q_{l, l}(z)+Q_{l, l}(-z)=2 \sum_{r=0}^{(i-1) / 2} \frac{(2 l-2 r)!l!z^{2 r}}{(2 l)!(2 r)!(l-2 r)!}
$$

то

$$
\begin{gathered}
\left|Q_{l, l}(z)+Q_{l, l}(-z)^{2}\right|=4 \sum_{r=0}^{(i-1) / 2}\left[\frac{(2 l-2 r)!l!\rho^{r}}{(2 l)!(2 r)!(l-2 r)!}\right]^{2}+ \\
+8 \sum_{r=0}^{\frac{i-1}{2}-1} \sum_{s=r+1}^{i-1} \frac{2}{2}\left[\frac{l!}{(2 l)!}\right]^{2} \frac{(2 l-2 r)!(2 l-2 s)!\rho^{2 r+2 s} \cos 2(s-r) \varphi}{(2 r)!(l-2 r)!(2 s)!(l-2 s)!}=\psi(\rho) .
\end{gathered}
$$

Поэтому $\psi(\rho)$ не обращается в нуль в угле

$$
X=\left\{z \in \mathbb{C}^{+}: z=\rho e^{ \pm i \varphi}, 0 \leq \rho<\infty, 0 \leq \varphi \leq \pi / 2 l\right\}
$$

и справедлива оценка

$$
\psi^{-1}(\rho) \leq M \min \left\{1, \rho^{-2(l-1)}\right\}
$$

Отсюда из оценки (2) вытекает

$$
\begin{gathered}
\left\|(\tau A)^{k}\left[Q_{l, l}(\tau A)+Q_{l, l}(-\tau A)\right]^{-1}\right\|_{E \rightarrow E} \leq M \int_{-\infty}^{\infty} \frac{\rho^{k}}{[\psi(\rho)]^{1 / 2}} \frac{d \rho}{\rho+\tau} \leq \\
\leq M_{1}\left[\int_{0}^{1} \rho^{k-1} d \rho+\int_{1}^{\infty} \rho^{k-l} d \rho\right] \leq M_{2}
\end{gathered}
$$

Оценка (25) при $1 \leq k \leq l-2$ установлена. Оценка (25) при $k=0$ и $l-1$ очевидна. Лемма 7 доказана.

1. Соболевский П. Е.Хоанг Ван Лай. Разностные схемы оптимального типа приближенного решения параболических уравнений (банахов случай) // Укр. мат. журн,- 1981.- 33, № 1.C. 39-46.
2. Алибеков Х. А., Соболевский П. Е. Об одном способе построения и исследования схем класса Паде // Дифференц. уравнения и их применения. - 1982. - Вып. 32. - С. 9-29.
3. Hersh R., Kato T. High-accuracy stable difference schemes for well-posed initial value problem // SIAM J. Numer. Anal. - 1979. - 16, № 4. - P. 670-682.
4. Brenner Ph., Thomee V. On rational approximations of semigroups // Ibid. - P. 683-694.
5. Brenner Ph., Grouzeix M., Thomee V. Single step methods for inhomogeneous linear differential equations in Banach space // PAIRO J. Numer. Anal. - 1982. - 16, № 1. - P. 5-26.
6. Бакаев Н. Ю. Оценки устойчивости разностных схем для дифференциального уравнения с постоянным оператором. I // Дифференциальные уравнения с частными производными. Новосибирск: Наука, 1989. - С. 3-14.
7. Крейн С. Г. Линейные дифференциальные уравнения в банаховом пространстве. - М.: Наука, 1966. - 464 с.
8. Соболевский П. Е., Тиунчук М. Ф. О разностном методе приближенного решения квазилинейных эллиптических и параболических уравнений // Тр. мат. ф-та Воронеж. ун-та. 1970. - Вып. 1. - С. 82-106.
9. Андреев В. Б. Об устойчивости по начальным данным разностных схем для параболических уравнений // Журн. вычислит. математики и мат. физики.- 1971.- 11, №6.- С. 1462 1475.
10. Гриф А. Г. Об устойчивости в $W_{2}^{2.1}$ разностных схем для параболических уравнений // Исследования по теории разностных схем для эллиптических и параболических уравнений. - М.: Изд-во Моск. ун-та, 1973. - С. 88-112.
11. Ионкин Н. И., Мокин Ю. И. О параболичности разностных схем // Журн. вычислит. математики и мат. физики. - 1974. - 14, № 2. - С. 402-417.
12 Соболевский П. Е. О коэрцитивной разрешимости разностных уравнений // Докл. АН CCCP. - 1971. - 201, № 5. - C. 1063 - 1066.
12. Соболевский П. Е. Теория полугрупп и устойчивость разностных схем // Теория операторов в функциональных пространствах. - Новосибирск: Наука, 1977. - С. 304.- 337.
13. Поличка А. Е., Соболевский П. Е. О корректной разрешимости разностных параболических уравнений в пространствах Бохнера // Тр. Моск. мат. о-ва. - 1978. - 36. - С. 29-57.
14. Поличка А. Е., Соболевский П. Е. Новые L_{p}-оценки для разностных параболических задач // Журн. вычислит. математики и мат. физики. - 1963. - 3, № 2. - С. 266-298.
15. Ашыралыев А. О., Соболевский П. Е. Корректная разрешимость разностной схемы Кранка-Николсон для параболических уравнений // Изв. АН Туркм. ССР. Сер. физ. - техн., хим. и геолог. наук. - 1981. - № 6. - С. 10-16.
16. Ашыралыев А. О., Соболевский П. Е. О коэрцитивной устойчивости разностной схемы Кранка-Николсон в пространствах // Приближенные методы исследования дифференциальных уравнений и их применение. - Куйбышев: Куйбышев. ун-т, 1982. - С. 16-24.
17. Ашыралыев А. О. Об одной чисто неявной разностной схеме второго порядка аппроксимации для параболических уравнений // Изв. АН Туркм. ССР. Сер. физ. - техн., хим. и геолог. наук. - 1987. - № 4. - С. 3-13.
18. Бейкер Дж., Грейвс-Морис П. Аппроксимация Паде. - М.: Мир, 1986. - 504 с.
19. Ашыралыев А. О., Соболевский П. Е. Разностные схемы для параболических уравнений // Дифференциальные уравнения и их приложения: Тез. докл. Всесоюз. конф. - Ашхабад, 1985. - C. 39-40.
20. Соболевский П. Е. Неравенства коэрцитивности для абстрактных параболических уравнений //Докл. АН СССР. - 1964. - 157, Nํ 1. - С. 52-56.

Получено 23.04.91

