Д. Д. Илмурадов. асп. (Ин-т математики АН Украины, Киев)

ТЕОРЕМА О КОНТИНГЕНЦИЯХ ГИПЕРПОВЕРХНОСТЕЙ ЕВКЛИДОВОГО ПРОСТРАНСТВА

Рассматриваются проблемы углубленного изучения характеристики контингенции произвольного множества евклидового пространства \mathbb{R}^{m+1} .

Розглядаються проблеми поглибленого вивчення характеристики контингенції довільної множини евклідового простору \mathbb{R}^{m+1} .

Пусть E — произвольное множество в m+1—мерном евклидовом пространстве \mathbb{R}^{m+1} . Луч l, выходящий из точки $A(x) \in E \subset \mathbb{R}^{m+1}$, где $x=(x_1,x_2,\ldots,x_{m+1})$ (точка A — неизолированная точка множества E), называется промежуточной полукасательной множества E в точке A, если существует последовательность точек $\{A_n\} \subset E$, сходящаяся к A, таких, что последовательность лучей

 $\{AA_n\}$ сходится к l.

Множество всех промежуточных полукасательных множества E в точке A называется контингенцией множества E в точке A и обозначается $\operatorname{contg}_{E}A$ [1].

Пусть $A \in E$ — предельная точка множества E. Возьмем единичную сферу $S^m(A)$ в этой точке. Пересечение контингенции $\operatorname{contg}_E A$ с единичной сферой $S^m(A)$ называется сферической контингенцией и обозначается через

$$\operatorname{contg}_E^s A = \operatorname{contg}_E A \cap S^m(A).$$

Пусть $V_{\varepsilon}^{n}(A)$ — ε -окрестность точки A, где $\varepsilon > 0$. Спроектируем все точки множества $E \cap V_{\varepsilon}^{n}(A) \setminus \{A\}$ лучами, выходящими из точки A, на сферу $S^{m}(A)$. Полученное множество обозначим через $M_{\varepsilon}(A)$.

Можно доказать, что пересечение замыканий множеств $M_{\varepsilon}(A)$ по всем значениям $\varepsilon > 0$ есть сферическая контингенция

$$\operatorname{contg}_{E}^{s} A = \operatorname{contg}_{E} A \cap S^{m}(A) = \bigcap_{\varepsilon > 0} \overline{M}_{\varepsilon}(A).$$

Вопрос о структуре контингенции произвольного множества в \mathbb{R}^{m+1} в смысле меры решен в [1].

Что касается характеристики контингенции на множестве второй категории, даже для случая графика непрерывной функции u = f(x), где $x = (x_1, x_2, \dots, x_m)$, вопрос не решен до конца, хотя здесь и получены некоторые результаты [2]. Доказано, что для любого локально-компактного множества $E \subset \mathbb{R}^{m+1}$ в точках его подмножества второй категории контингенция $\operatorname{contg}_E^s A$ есть центрально-симметричное замкнутое множество лучей. Настоящая статья посвящается дальнейшему уточнению характеристики контингенции на произвольном множестве именно для случая графика Γ непрерывной функции u = f(x), где $x = (x_1, x_2, \dots, x_m)$ в некоторой области $D \subset \mathbb{R}^m$. Определим теперь для случая графика Γ однозначной функции u = f(x) так называемую цилиндрическую контингенцию в произвольной ее точке $A_0 \in \Gamma$. Пусть $S^{m-1}(x_0)$

будем обозначать через ф и иногда будем их называть направлениями в точке x_0 . Цилиндр $C^m(A_0) = S^{m-1}(x_0) \times \mathbb{R}^1(u)$ с образующими $\mathbb{R}^1(u)$, параллельными оси Ou, компактифицируем, добавив к каждой образующей $\mathbb{R}^1(u)$ две бесконечно удаленные точки ±∞, и полученный компактифицированный цилиндр

обозначим через $C^m(A_0) = S^{m-1}(x_0) \times \overline{\mathbb{R}}^1(u)$. Точка $\overline{A}_0 = (\varphi_0, \overline{u})$ цилиндра $C^{m}(A_{0})$ принадлежит цилиндрической контингенции графика Γ , если найдет-

1) последовательность лучей A_0A_i сходится к некоторому лучу $\vec{l} \subset \mathbb{R}^{m+1}$ и при этом: a) \vec{l} не параллелен оси Ou; тогда пересечение $\vec{l} \cap C^m$ над лучом

— граница единичного шара $V^m(x_0) \subset \mathbb{R}^m$, $x_0 = \operatorname{np}_{\mathbb{R}^m} A_0 \in D$; точки на $S^{m-1}(x_0)$

 ϕ_0 обозначим через \overline{u} ; б) если \overline{l} параллелен оси Ou, то \overline{u} — несобственные точки $\pm \infty$ из C^m над лучом ϕ_{0} ; 2) луч $\phi = \phi_0$ является полукасательной для последовательности точек $np_{\nu}A_{\nu}$.

Множество всех таких точек назовем цилиндрической контингенцией графика Γ в точке A_0 и обозначим ее через $\operatorname{contg}_r^c A_0$.

Следует заметить, что цилиндрическая контингенция определяется только

Рассмотрим произвольную точку $A_0(x_0, u_0), x_0 \in D$, графика Γ непрерывной функции f. Точки этого графика над проколотой δ_{a} – окрестностью

для однозначной функции f.

ся последовательность точек $A_{\nu} \in \Gamma$ таких, что:

 $U_a(x_0)\setminus\{x_0\}\subset D$ обозначим через Γ_a ; очевидно, Γ_a связно. Проекцию Γ_a из точки A_0 на цилиндр $C^m(A_0)$ обозначим через M_a ; M_a также связно, причем

$$M_q \supset M_{q+1}$$
. Легко видеть, что
$$\mathrm{contg}_r^c A_0 = \bigcap_q \overline{M}_q \,.$$
 Отсюда следует, что $\mathrm{contg}_r^c A_0 \subseteq C^m$ — континуум. Докажем, что и пересе-

чение этого континуума с произвольной образующей $\phi = \phi_0$ также связно. Для этого возьмем луч $\vec{l} \subset D$, выходящий из точки $x_0 \in D$, пересекающий сферу $S^{m-1}(x_0)$ в точке ϕ_0 , и рассмотрим коническую окрестность $\Omega_q \subset D$ этого луча, состоящего из всех лучей, образующих с \vec{l} угол, меньший δ_a ; при

этом снова будем предполагать, что $\delta_a \searrow 0$. Точки графика $\Gamma \setminus \{A_0\}$ над Ω_a , принадлежащие 1/q-окрестности точки A_0 , обозначим через $\Gamma_q(\varphi_0)$. Очевидно, $\Gamma_q(\varphi_0)$ связно. Проекцию $\Gamma_q(\varphi_0)$ из точки A_0 на цилиндр C^m обозначим через $M_q(\phi_0)$; $M_q(\phi_0)$ также связно, причем $M_q(\phi_0) \supset M_{q+1}(\phi_0)$. Легко пока-

зать, что пересечение $\operatorname{contg}_{\Gamma}^c A_0$ с образующей $(\phi_0, \overline{\mathbb{R}}^1)$ цилиндра C^m есть $\bigcap_{a} \overline{M}_{q}(\phi_{0})$. Отсюда следует, что это пересечение связно.

Назовем число a (возможно $a=\pm\infty$) производным числом функции f в направлении ϕ , если существует последовательность точек $B_{\nu}(x_{\nu}) \in D$, k = 1,

 $2, \ldots$, сходящаяся к B_0 таким образом, что последовательность направлений

векторов $\vec{B_0} \vec{B_k}$ сходится по направлению к ϕ , причем

$$(f(B_k) - f(B_0))|B_0B_k|^{-1} \rightarrow a.$$

Будем рассматривать цилиндр $C^m(A_0)$ относительно системы декартовых

координат $\{X, U\}$ параллельно перенесенной в точку A_0 графика Γ функции $f: X = x - x_0$, $U = u - u_0$. Тогда нетрудно будет показать, что если a — производное число функции f в направлении ϕ , то точка с координатами (ϕ, a) принадлежит contg A_0 и наоборот, т. е. каждая точка этой контингенции

есть производное число функции f в соответствующем направлении. Определение. Континуум K на цилиндре C^m (и на S^m , когда K не

Определение. Континуум K на цилиндре C^m (и на S^m , когда K не содержит бесконечно удаленных точек $\pm \infty$) назовем регулярным, если каждая образующая цилиндра (полумеридиан сферы) пересекает его по связному множеству.

Если $K \subset C^m$ — регулярный континуум, то естественным образом возникают две функции: $\mathcal{P}(\phi)$ и $Q(\phi)$, $\phi \in S^{m-1}$. Именно точки $(\phi, \mathcal{P}(\phi))$ и $(\phi, Q(\phi))$ континуума K суть, соответственно, самая верхняя и самая нижняя точка из K на образующей $\phi = \mathrm{const}$ цилиндра C^m . Легко видеть, что функции $\mathcal{P}(\phi)$ и $Q(\phi)$ (которые могут принимать и бесконечные значения) полунепрерывны, соответственно, сверху и снизу; конечно, при этом для каждого $\phi \in S^{m-1}$

Мы доказали, что цилиндрическая контингенция графика непрерывной функции $u = f(x), x \in D \subset \mathbb{R}^m$, в каждой точке $A \in \Gamma \subset \mathbb{R}^{m+1}$ есть регулярный континуум. Покажем теперь, что и обратно, каков бы ни был регулярный континуум K на C^m , найдется непрерывная функция u = f(x), график которой в некоторой точке имеет контингенцию, совпадающую с K. Прежде чем доказать это утверждение, приведем следующую лемму.

Лемма. Пусть $\mathcal{P}(\phi)$ и $Q(\phi)$ — полунепрерывные соответственно сверху и снизу функции на S^{m-1} , причем $\mathcal{P}(\phi) \geq Q(\phi)$ для всех $\phi \in S^{m-1}$. Тогда множество точек

$$K = \bigcup_{\varphi \in S} [Q(\varphi), \mathcal{P}(\varphi)]$$

есть регулярный континуум на цилиндре $C^m = S^{m-1} \times \overline{\mathbb{R}}^{-1}$.

Доказательство. Сначала докажем, что K замкнут в C^m . Пусть $x_p \in K$, $x_p \to x_0 \in C^m$; докажем, что $x_0 \in K$.

 $x_p \in K, \ x_p \to x_0 \in C^m$; докажем, что $x_0 \in K$. Рассмотрим проекции ϕ_p точек x_p на S^{m-1} . Очевидно, $\lim \phi_p = \phi_0 = \operatorname{np} x_0$.

Можем считать, что существуют (конечные или бесконечные) пределы $\lim_{p\to\infty} \mathcal{P}(\phi_p)$, $\lim_{p\to\infty} Q(\phi_p)$. В силу полунепрерывности $\mathcal{P}(\phi)$ и $Q(\phi)$ получим $\mathcal{P}(\phi_0) \geq \lim \mathcal{P}(\phi_p)$ и $Q(\phi_0) \leq \lim Q(\phi_p)$. Следовательно, предел отрезков $[Q(\phi_p), Q(\phi_p)]$

 $\mathcal{P}(\phi_p)$] принадлежит отрезку $[Q(\phi_0), \mathcal{P}(\phi_0)] \subset K$. Поэтому x_0 есть точка этого отрезка, и значит, $x_0 \in K$. Итак, K — компакт в C^m .

Теперь докажем связность K; предположим, что K не связен; тогда $K = K_1 \cup K_2$, где K_1, K_2 — непустые компакты, которые находятся на положительном растоянии один от другого: $\rho(K_1, K_2) > 0$. Так как над каждым $\phi \in$

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11

 $P(\varphi) \ge O(\varphi)$.

 $\in S^{m-1}$ точки компакта K образуют связное множество $[Q(\varphi), \mathcal{P}(\varphi)]$, то каждое такое множество принадлежит либо K_1 , либо K_2 . Проекции компактов K_1 и K_2 на S^{m-1} обозначим через A и B; тогда A, B — также не пустые компакты и $A \cup B = S^{m-1}$. Из связности S^{m-1} следует, что $A \cap B \neq 0$, но тогда образующая $\varphi = \varphi_0$, где $\varphi_0 \in A \cap B$, содержит отрезок $[Q(\varphi_0), \mathcal{P}(\varphi_0)]$, принад-

нию, не пересекаются. Это противоречие доказывает связность компакта К. Значит, К — континуум. Регулярность вытекает из того, что каждой точке $\varphi \in S^{m-1}$ соответствует отрезок $[Q(\varphi), \mathcal{P}(\varphi)]$ — связное множество. Тем самым лемма доказана. Пусть теперь К - произвольный ограниченный регулярный континуум в

лежащий как K_1 , так и K_2 , что противоречит тому, что они, по предположе-

 C^m , т. е. $K \subseteq S^{m-1} \times [-M, M]$, где M > 0 — некоторое конечное число. Введем функции $\mathcal{P}(\varphi), Q(\varphi)$ следующим образом. Берем для $\forall \varphi \in S^{m-1}$

самую верхнюю и самую нижнюю точки континуума К. Верхние точки образуют полунепрерывную сверху функцию $\mathcal{P}(\phi)$, а нижние — полунепрерывную снизу функцию $Q(\phi)$. Рассмотрим сначала функцию $\mathcal{P}(\phi)$. Известно, что существует монотонно

невозрастающая последовательность непрерывных функций $\{p_n(\phi)\}$, сходя-

щаяся к функции $\mathcal{P}(\varphi)$. Пусть $U_{\varepsilon}(K)$, $\varepsilon > 0$, — некоторая окрестность K; покажем, что, начиная с некоторого номера, все графики функций $p_n(\varphi)$ попадут в эту окрестность. Предположим противное; пусть найдется подпоследовательность функций

 $\{p_{n_k}(\phi)\}$ такая, что все графики их $B(p_{n_k}) = B_k$ содержат точки, не принадлежащие $U_{\varepsilon}(K)$. Выбрав какие-либо точки из них, получим последовательность точек $x_k \in B_k$ для $\forall k$, которую можем считать сходящейся: $x_k \to x_0 \in C^m$. По

построению $x_0 \notin U_e(K)$. Пусть $\varphi_0 = \operatorname{np} x_0$. По условию последовательность $\{p_n(\varphi_0)\}$, а потому и $\{p_{n_k}(\phi_0)\}$ сходится. Поэтому точки $\xi_k = (\phi_0, p_{n_k}(\phi_0))$ графиков B_k сходятся к

некоторой точке $\xi_0 = (\phi_0, \mathcal{P}(\phi_0))$ континуума K. Очевидно, для всех n будет выполняться $p_n(\phi) \ge \mathcal{P}(\phi)$ для каждого значения $\phi \in S^{m-1}$. Пусть $\lim p_{n_k}(\varphi_k) = p_0$. По условию точка $x_0 = (\varphi_0, p_0) \notin K$, поэтому легко

видеть, что $p_0 > \mathcal{P}(\phi_0)$, более того, $p_0 \ge \mathcal{P}(\phi_0) + \varepsilon$. При $k \ge k_0$ для всех k и некотором $\varepsilon > 0$ $p_{n_k}(\varphi_k) > p_0 - \varepsilon/3$; начиная с некоторого k выполняется неравенство $p_{n_{\epsilon}}(\phi_0) < \mathbf{2}(\phi_0) + \epsilon/3$. Из монотонности последовательности $\{p_n(\phi)\}$ имеем $p_{n_k}(\phi_k) \ge p_{n_k}(\phi_k) > p_0 - \varepsilon / 3$, $k > k_0$. Из непрерывности функции $p_n(\phi)$

вытекает
$$\lim p_{n_{k_0}}(\varphi_k) = p_{n_{k_0}}(\varphi_0)$$
. Тогда

$$\begin{split} p_0 - \varepsilon/3 &\leq p_{n_{k_0}}(\varphi_0) < \mathcal{P}(\varphi_0) + \varepsilon/3, \\ p_0 - \varepsilon/3 &< \mathcal{P}(\varphi_0) + \varepsilon/3, \ p_0 - \mathcal{P}(\varphi_0) < 2\varepsilon/3. \end{split}$$

В результате имеем $p_0 < \mathcal{P}(\phi_0) + 2\varepsilon/3$. Это противоречит тому, что $p_0 \ge \mathcal{P}(\phi_0) + \varepsilon$. Противоречие доказывает утверждение о том, что, начиная с некоторого номера, все графики функций $p_n(\phi)$ попадают в $U_\varepsilon(K)$. Аналогичным образом можно доказать, что найдется возрастающая последовательность $\{q_n(\phi)\}$ непрерывных функций, сходящаяся к $Q(\phi)$ и, начиная с некоторого

Пусть K — регулярный континуум на C^m . Как было указано, функции $\mathcal{P}(\phi)$ и $Q(\phi)$, соответствующие регулярному континууму, полунепрерывны. Следует заметить, что этот континуум K может содержать и точки $\pm \infty$. Поэтому значения $\mathcal{P}(\phi)$ и $Q(\phi)$ тоже могут обращаться в $\pm \infty$.

значения n > N, все графики функций $q_n(\phi)$ попадают в $U_{\epsilon}(K)$.

Построим следующие усеченные функции

$$u = \mathcal{P}_n(\varphi) = \begin{cases} \sqrt{n}, & \mathcal{P}(\varphi) > \sqrt{n}, \\ \mathcal{P}(\varphi), & -\sqrt{n} \leq p(\varphi) \leq \sqrt{n}, \\ -\sqrt{n}, & \mathcal{P}(\varphi) < -\sqrt{n}, \end{cases}$$

И

$$v = Q_n(\varphi) = \begin{cases} \sqrt{n}\,, & Q(\varphi) > \sqrt{n}\,, \\ Q(\varphi), & -\sqrt{n} \leq Q(\varphi) \leq \sqrt{n}\,, \\ -\sqrt{n}\,, & Q(\varphi) < -\sqrt{n}\,. \end{cases}$$

Легко показать, что $\mathcal{P}_n(\varphi)$ и $Q_n(\varphi)$ — полунепрерывные соответственно сверху и снизу функции. Этим функциям ввиду леммы соответствует некоторый регулярный континуум K_n , причем $K_n \subset K_{n+1}$ для $\forall n$. Кроме того, очевидно, все K_n содержатся в K. Тогда регулярный континуум K можно представить следующим образом: $K = \overline{\bigcup K_n}$; $\operatorname{lt} K_n = K$ при $n \to \infty$.

Действительно, пусть $U_{1/n}(K_n)$ — некоторая 1/n-окрестность ограниченного регулярного континуума K_n .

Тогда справедливо следующее соотношение:

зя сказать), сходящиеся, соответственно, к $\mathcal{P}(\varphi)$ и $\mathcal{Q}(\varphi)$.

$$K_n = K(Q_n, \mathcal{P}_n) \subset U_{1/n}(K_n).$$

Так как $\lim_n P_n(\varphi) = K$, то, очевидно, $\lim_n P_n(K_n) = K$. Поэтому легко видеть, что $\lim_n P_n(\varphi) = P(\varphi)$ и $\lim_n P_n(\varphi) = Q(\varphi)$. В 1/n-окрестности $U_{1/n}(K_n)$ найдутся графики непрерывных функций $p_n(\varphi)$ и $q_n(\varphi)$, которые также сходятся, соответственно, к $P(\varphi)$ и $Q(\varphi)$ и, очевидно, $P_n(\varphi) \leq \sqrt{n} + 1/n$ и $P_n(\varphi) \geq -(\sqrt{n} + 1/n)$, т. е. $\lim_n P_n(\varphi) = P(\varphi)$ и $\lim_n P_n(\varphi) = Q(\varphi)$. Значит, мы построили последовательности непрерывных функций $P_n(\varphi)$ и $P_n(\varphi)$

Рассмотрим функцию вида

$$f(r, \varphi) = r \left(A \sin^2(\pi/2r) + B \right)$$

и подберем $A = A(\phi)$ и $B = B(\phi)$ так, чтобы максимальное значение отношения

Для отрезка [1/(2n+1), 1/2n] потребуем, чтобы $\max f/r$ равнялся $p_{n+1}(\varphi)$,

 $A = p_n(\varphi) - q_n(\varphi),$

 $f(r, \varphi) = r(p_n(\varphi) - q_n(\varphi))\sin^2(\pi/2r) + q_n(\varphi)r.$

f/r на отрезке [1/2n, 1/(2n-1)] равнялось $p_n(\varphi)$, а минимальное — $q_n(\varphi)$.

 $B = q_n(\varphi)$.

 $a \min f/r - q_n(\varphi)$; тогда

Легко видеть, что для этого должно быть

 $f(r, \varphi) = r(p_{n+1}(\varphi) - q_n(\varphi))\sin^2(\pi/2r) + q_n(\varphi)r.$

Тогда

$$f(r,\varphi) = \begin{cases} r(p_n(\varphi) - q_n(\varphi))\sin^2(\pi/2r) + q_n(\varphi)r, & r \in [1/2n, 1/(2n-1)], \\ r(p_{n+1}(\varphi) - q_n(\varphi))\sin^2(\pi/2r) + q_n(\varphi)r, & r \in [1/(2n+1), 1/2n], \end{cases}$$

причем полагаем f(0, 0) = 0. Покажем, что для построенной функции контингенция ее графика в на-

чале координат совпадает с данным регулярным континуумом К. Выберем произвольное направление $\phi_0 \in S^{m-1}(0)$; покажем, что максималь-

ным и минимальным производным числом функции $f(r, \phi_0)$ будет соответственно $\mathcal{P}(\varphi_0)$ и $Q(\varphi_0)$. Действительно, на отрезке вида [1/(2n+1), 1/(2n-1)]имеем

 $\max \frac{f(r, \varphi_0)}{r} = p_n(\varphi_0), \quad \min \frac{f(r, \varphi_0)}{r} = q_n(\varphi_0),$ а поэтому $\overline{\lim_{r\to 0}} \ \frac{f(r,\varphi_0)}{r} = \lim p_n(\varphi_0) = \mathcal{P}(\varphi_0)$

$$\lim_{r\to 0} \frac{f(r,\varphi_0)}{r} = \lim_{r\to 0} q_n(\varphi_0) = Q(\varphi_0).$$

Докажем теперь, что для любой последовательности направлений {ф,,,}, сходящейся к ϕ_0 , и любой последовательности точек (r_m, ϕ_m) выполняются неравенства

$$\underline{\lim} \frac{f(r_m, \varphi_m)}{r_m} \ge Q(\varphi_0),$$

 $\overline{\lim} \frac{f(r_m, \varphi_m)}{r} \leq \mathcal{P}(\varphi_0),$

из чего будет следовать, что все производные числа f в направлении ϕ_0 в точности совпадают с отрезком $[Q(\phi_0), \mathcal{P}(\phi_0)]$. Будем доказывать первое нера-

венство; второе доказывается аналогично.

Обозначим через $[1/(2n_m+1), 1/(2n_m-1)]$ отрезок, содержащий r_m , и предположим, что последовательности $\{p_{n_m}(\phi_m)\}, \{q_{n_m}(\phi_m)\}$ сходятся.

ISSN 0041-6053. Укр. мат. журн., 1992, т. 44, № 11

 $\frac{f(r_m, \varphi_m)}{r_m} = \begin{cases} \left(p_{n_m}(\varphi_m) - q_{n_m}(\varphi_m)\right) \sin^2 \pi/2r_m + q_{n_m}(\varphi_m), & r_m' \in [1/2n_m, 1/(2n_m - 1)], \\ \left(p_{n_m + 1}(\varphi_m) - q_{n_m}(\varphi_m)\right) \sin^2 \pi/2r_m + q_{n_m}(\varphi_m), & r_m \in [1/(2n_m + 1), 1/2n_m]. \end{cases}$

Отсюда

$$q_{n_m}(\varphi_m) \le \frac{f(r_m, \varphi_m)}{r_m} \le p_{n_m}(\varphi_m).$$

Возможны следующие случаи: 1)

$$\mathcal{P}(\varphi_0) \neq +\infty, \ Q(\varphi_0) \neq -\infty.$$

Тогда найдется окрестность $U(\phi_0) \subset S^{m-1}$ такая, что для $\forall \phi \in U$ будет выполняться $\mathcal{P}(\phi) < N$, а для всех $n_m > N$ \mathcal{P}_n $(\phi) = \mathcal{P}(\phi)$.

Отсюда следует, что в этой окрестности $U(\phi_0)$ $p_{n_m}(\phi) \searrow \mathcal{P}(\phi)$. Или

 $\max \frac{f(r, \varphi)}{r} \le p_{n_m}(\varphi)$. Тогда $\overline{\lim} \frac{f(r, \varphi)}{r} \le \mathcal{P}(\varphi)$. 2) $\mathcal{P}(\varphi_0) = +\infty$. В этом случае $p_n(\varphi_0) \nearrow \infty$, и первое неравенство выпол-

- 2) $P(\phi_0) = +\infty$. В этом случае $P_n(\phi_0) > \infty$, и первое неравенство выполняется; $Q(\phi_0) = -\infty$; второе неравенство тоже справедливо.
- · Теперь рассмотрим случай, когда $\mathcal{P}(\phi_0) = -\infty$. Тогда найдется окрестность $U(\phi_0)$ такая, что для $\forall \ \phi \in U \ \mathcal{P}(\phi) < -N$ для достаточно больших N и $p_n(\phi) < -N + 1/n$. Тогда

$$\lim \frac{f(r_m, \varphi_m)}{r_m} = -\infty = \mathcal{P}(\varphi_0).$$

Тем самым доказана следующая теорема,

Теорема. Цилиндрическая контингенция графика непрерывной функции $u = f(x), x \in D \subset \mathbb{R}^m$, в каждой точке $A \in \Gamma \subset \mathbb{R}^{m+1}$ есть регулярный континуум; и наоборот, для всякого регулярного континуума K на C^m найдется непрерывная функция u = f(x), график которой в некоторой его точке имеет цилиндрическую контингенцию, совпадающую с этим континуумом K.

- Сакс С. Теория интеграла. М.: Изд-во иностр. лит., 1949. 494 с.
- Трохимчук Ю. Ю. О дифференциальных свойствах вещественных и комплексных функций // Десятая математическая школа.— Киев: Ин-т математики АН УССР, 1974.— С. 330–360.

Получено 19.12.91