УДК 519.21

Л. В. Ковальчук, асп. (Ин-т математики АН Украины, Киев)

ПОСТРОЕНИЕ ЛОГАРИФМА ОТ ПРОЦЕССА НА МАТРИЧНОЙ ГРУППЕ ЛИ

Для процесса, принимающего значения в матричной группе Ли, строится его логарифм процесс со значениями в соответствующей алгебре Ли. При этом сохраняются некоторые свойства процесса (стохастическая непрерывность, независимость приращений и т. д.).

Для процесу, що набуває значень у матричній групі Лі, будується иого логарифм - процес зі значеннями у відповідній алгебрі Лі. При цьому зберігаються деякі властивості процесу (стохастична неперервність, незалежність приростів і т. д.).

В настоящей статье исследуются семимартингалы, принимающие значения в матричной группе Ли G. Таким процессам посвящены работы многих авторов. Например, в ([1], гл. V) изучаются стохастически непрерывные мультипликативные процессы на произвольных топологических группах, в [2] описывается инфинитезимальный оператор броуновского движения на экспоненциальной группе Ли.

Настоящая работа примыкает к работам [3, 4]. В [3] изучается так называемое вложение - построение броуновского движения на экспоненциальной группе Ли с помощью мультипликативного интеграла, в [4] по стохастической матричной полугруппе строится процесс с независимыми приращениями, принимающий значения в алгебре всех матриц.

Так как группа Ли локально связана со своей алгеброй экспоненциальным соответствием, то для изучения структуры процесса в группе в работе строится его "логарифм" - процесс в алгебре - таким образом, что при этом наследуются его основные вероятностные свойства (независимость приращений, стохастическая непрерывность и т. д.). При этом в определении независимости приращений у процесса на группе рассматриваются мультипликативные приращения.

Хотя в работе изучаются только матричные группы, большая часть полученных результатов справедлива для произвольной группы Ли вследствие того, что она локально изоморфна матричной.

Статья состоит из двух пунктов. П. 1 содержит вспомогательные утверждения. В п. 2 приведена основная теорема.

1. Пусть $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, P\right)$ - вероятностное пространство с фильтрацией. Обозначим через M_{N} пространство вещественных матриц размерности $N \times N$, G - подгруппа $\mathrm{GL}(N), g$ - ее алгебра Ли. Процессы, которые встречаются в этой работе, отображают $[0,1] \times \Omega$ в M_{N}, G или g. Пусть S - класс стохастически непрерывных матричнозначных $\left(\mathcal{F}_{t}\right)_{t} \geq 0$-семимартингалов, $\mathbb{D}([0,1])$ пространство матричнозначных случайных функций на [0,1 , непрерывных справа, имеющих пределы слева, $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-согласованных. Приращение процесса $X(t), X((k+1) / n)-X(k / n), k=\overline{0, n-1}$, будем обозначать $\Delta_{n} X(k / n)$.

Лемма 1. Пусть $F(t) \in \mathscr{D}([0,1]) ; X(t), Z(t) \in S$. Тогда

$$
\mathrm{P} \underset{n \rightarrow \infty}{-\lim _{k=0}} \sum_{k=0}^{n-1}\left(F\left(\frac{k}{n}\right) \Delta_{n} X\left(\frac{k}{n}\right) \Delta_{n} Z\left(\frac{k}{n}\right)\right)=\int_{0}^{1} F(\tau) d[X, Z]_{\tau} .
$$

Доказательство этой леммы аналогично доказательству теоремы 1 из [5].
Лемма 2. Пусть $F(t) \in \mathscr{D}([0,1]) ; X(t) \in S . Т о г д а$

$$
\begin{equation*}
\mathrm{P}-\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1}\left(F\left(\frac{k}{n}\right) \Delta_{n} X\left(\frac{k}{n}\right)\right)^{2}=[Y, Y]_{1}, \tag{1}
\end{equation*}
$$

где

$$
Y(t)=\int_{0}^{t} F(\tau) d X(\tau)
$$

Доказательство. Обозначим

$$
X(t)=\left(x_{i j}(t)\right)_{i, j=1}^{N} ; F(t)=\left(f_{i j}(t)\right)_{i, j=1}^{N}
$$

Матричные элементы $x_{i j}(t), f_{i j}(t), i, j=\overline{1, N}$, являются стохастически непрерывными процессами без разрывов II-го рода; кроме того, $x_{i j}(t)$ - семимартингалы. Поэтому существует

$$
\int_{0}^{t} f_{i l}(\tau) d x_{l j}(\tau), i, l, j=\overline{1, N}
$$

являющийся семимартингалом. Тогда процесс $Y(t)$ из условия леммы будет матрицей с элементами

$$
y_{i j}(t)=\sum_{l=1}^{N} \int_{0}^{t} f_{i l}(\tau) d x_{l j}(\tau), \quad i, j=\overline{1, N}
$$

Так как $y_{i j}(t), i, j=\overline{1, N}$, - семимартингалы, то семимартингалом будет и $Y(t)$; следовательно, существует $[Y, Y]_{t}$, и по свойству квадратичной ковариации для матричных семимартингалов (теорема 1 из [5])

$$
[Y, Y]_{1}=\mathrm{P}-\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1}\left(\Delta_{n} Y\left(\frac{k}{n}\right)\right)^{2}=\mathrm{P}-\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1}\left(\int_{k / n}^{(k+1) / n} F(\tau) d X(\tau)\right)^{2}
$$

Поэтому выполнение равенства (1) равносильно выполнению следующего требования:

$$
\sum_{k=0}^{n-1}\left(F\left(\frac{k}{n}\right) \Delta_{n} X\left(\frac{k}{n}\right)\right)^{2}-\sum_{k=0}^{n-1}\left(\int_{k / n}^{(k+1) / n} F(\tau) d X(\tau)\right)^{2} \xrightarrow{P} 0, n \rightarrow \infty
$$

Пространство матриц конечномерно, поэтому достаточно доказать поэлементную сходимость. Элементы матриц

$$
\sum_{k=0}^{n-1}\left(F\left(\frac{k}{n}\right) \Delta_{n} X\left(\frac{k}{n}\right)\right)^{2} \text { и } \sum_{k=0}^{n-1}\left(\int_{k / n}^{(k+1) / n} F(\tau) d X(\tau)\right)^{2}
$$

имеют вид

$$
a_{i j}^{(n)}=\sum_{s, l, p=1}^{N} \sum_{k=0}^{n-1} f_{i l}\left(\frac{k}{n}\right) f_{s p}\left(\frac{k}{n}\right) \Delta x_{s p}\left(\frac{k}{n}\right) \Delta x_{p j}\left(\frac{k}{n}\right)
$$

и

$$
b_{i j}^{(n)}=\sum_{s, l, p=1}^{N} \sum_{k=0}^{n-1}\left(\int_{k / n}^{(k+1) / n} f_{i l}(\tau) d x_{l s}(\tau)\right)\left(\int_{k / n}^{(k+1) / n} f_{s p}(\tau) d x_{p j}(\tau)\right)
$$

соответственно.

Покажем, что $a_{i j}^{(n)}-b_{i j}^{(n)} \xrightarrow{P} 0, n \rightarrow \infty, i, j=\overline{1, N}$. Из леммы 1 получаем

$$
P \underset{n \rightarrow \infty}{-\lim } a_{i j}^{(n)}=\sum_{s, l, p=1}^{N} \int_{0}^{1} f_{i l}(\tau) f_{s p}(\tau) d\left[x_{l s}, x_{p j}\right]_{\tau}
$$

Кроме того, в силу свойства совместной квадратичной ковариации скалярных семимартингалов и интегралов по ним [6] получаем

$$
\begin{aligned}
P_{n \rightarrow \infty}^{-\lim } b_{i j}^{(n)} & =\sum_{s, l, p=1}^{N}\left[\int_{0}^{1} f_{i l}(\tau) d x_{l s}(\tau), \int_{0}^{1} f_{s p}(\tau) d x_{p j}(\tau)\right]_{1}= \\
& =\sum_{s, l, p=1}^{N} \int_{0}^{1} f_{i l}(\tau) f_{s p}(\tau) d\left[x_{l s}, x_{p j}\right]_{\tau}
\end{aligned}
$$

что и доказывает лемму.
Следствие. Существует предел по вероятности

$$
P \underset{n \rightarrow \infty}{-\lim _{*}} \sum_{k=0}^{n-1}\left\|F\left(\frac{k}{n}\right) \Delta_{n} X\left(\frac{k}{n}\right)\right\|^{2}
$$

Лемма 3. Пусть $h(z), h(1)=0$, - вещественнозначная функция, аналитическая в некоторой окрестности единицы $(1-\alpha, 1+\alpha), \alpha \in(0 ; 1)$. Предположим, что существует такая константа $L>0$, что $h^{(m)}(1) \leq L m!, m \geq 3$. Если все мультипликативные скачки процесса $X(t)$ удовлетворяют условию $\|X(\tau-) X(\tau)-I\|<\alpha$ с вероятностью 1 , то

$$
\begin{align*}
& P-\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} \sum_{m=3}^{\infty} \frac{h^{(m)}(1)}{m!}\left(X\left(\frac{k}{n}\right)^{-1} \Delta_{n} X\left(\frac{k}{n}\right)\right)^{m}=\sum_{\tau \in[0,1]}\left(h\left(X(\tau-)^{-1} X(\tau)\right)-\right. \\
& \left.-h^{\prime}(t)\left(X(\tau-)^{-1} X(\tau)-I\right)-\frac{h^{\prime \prime}(1)}{2}\left(X(\tau-)^{-1} X(\tau)-I\right)^{2}\right), \tag{2}
\end{align*}
$$

где $h(A), A \in G$, понимается как сумма соответствующего ряда Тейлора.
Замечание. Поскольку все мультипликативные скачки процесса $X(t)$ принадлежит по условию леммы области аналитичности функции $h(z)$ с вероятностью 1 , то для каждого $\omega \in \Omega$, начиная с некоторого разбиения, все приращения процесса $X(t)$ вида $X(k / n)^{-1} X((k+1) / n)$ будут принадлежать области аналитичности $h(z)$; для этого и последующих разбиений определено выражение $h\left(X(k / n)^{-1} X((k+1) / n)\right), k=\overline{0, n-1}$, т. е. сходится соответствующий ряд Тейлора функции $h(z)$.

Доказательстволеммы 3. Поскольку $X(t)$ - стохастически непрерывный семимартингал, то для любого $\varepsilon>0$ на отрезке $[0 ; 1] X(t)$ имеет с вероятностью 1 конечное число ε-колебаний.

Для каждого $\in=1 / l, l \geq 1$, определим набор моментов остановки τ_{i}^{l} следующим образом:

$$
\tau_{i}^{l}=0, \tau_{i+1}^{l}=\inf \left\{t:\left\|X(t)-X\left(\tau_{i}^{l}\right)\right\| \geq \frac{\varepsilon_{l}}{2}\right\}
$$

Таких моментов с вероятностью 1 конечное число $r^{l}=r^{l}(\omega)$. Поэтому для каждого $\omega \in \Omega$ существует такое достаточно большое $N^{l}=N^{l}(\omega)$, что для любого $n>N^{l}$ на каждом интервале $(k / n,(k+1) / n], k=\overline{0, n-1}$, будет не более одной

точки $\tau_{i}^{l}, i=\overline{1, r(\omega)}$.
Обозначим через $k_{i}^{l}, i=\overline{1, r^{l}(\omega)}$, те индексы, для которых $\tau_{i}^{l} \in\left(k_{i}^{l} / n\right.$; $\left.\left(k_{i}^{l}+1\right) / n\right]$. Тогда для всех остальных $k=\overline{0, n-1}, k \neq k_{i}^{l}, i=\overline{1, r^{l}(\omega)}$, выполнено следующее: если $t_{1}, t_{2} \in(k / n,(k+1) / n]$, то

$$
\left\|X\left(t_{1}\right)-X\left(t_{2}\right)\right\| \leq\left\|X\left(t_{1}\right)-X\left(\tau_{i}^{l}\right)\right\|+\left\|X\left(t_{2}\right)-X\left(\tau_{i}^{l}\right)\right\|<\varepsilon_{l}
$$

с вероятностью 1 , где $\tau_{i}^{l}<k / n<t_{1}, t_{2} \leq(k+1) / n<\tau_{i+1}^{l}$.
Для каждого $\varepsilon_{l}, l \geq 1$, разобьем сумму в левой части (2) на два слагаемых:

$$
\begin{aligned}
& \sum_{k=0}^{n-1} \sum_{m=3}^{\infty} \frac{h^{(m)}(1)}{m!}\left(X\left(\frac{k}{n}\right)^{-1} \Delta_{n} X\left(\frac{k}{n}\right)\right)^{m}=\sum_{i=1}^{r^{l}(\omega)} \sum_{m=3}^{\infty} \frac{h^{(m)}(1)}{m!}\left(X\left(\frac{k_{i}^{l}}{n}\right)^{-1} \Delta_{n} X\left(\frac{k_{i}^{l}}{n}\right)\right)^{m}+ \\
& +\sum_{\substack{k=0 \\
k \neq k_{i}^{l}, i=1, r^{l}(\omega)}}^{n-1} \sum_{m=3}^{\infty} \frac{h^{(m)}(1)}{m!}\left(X\left(\frac{k_{i}^{l}}{n}\right)^{-1} \Delta_{n} X\left(\frac{k_{i}^{l}}{n}\right)\right)^{m}=I_{1}^{n, l}(\omega)+I_{2}^{n, l}(\omega) .
\end{aligned}
$$

При $n \rightarrow \infty$

$$
\begin{aligned}
I_{1}^{n, l}(\omega) & \rightarrow \sum_{\{\tau: \| X(\tau)-X(\tau-) \mid \geq 1 / l\}}\left(h\left(X(\tau-)^{-1} X(\tau)\right)-h^{\prime}(1)\left(X(\tau-)^{-1} X(\tau)-I\right)-\right. \\
& \left.-\frac{h^{\prime \prime}(1)}{2}\left(X(\tau-)^{-1} X(\tau)-I\right)^{2}\right) .
\end{aligned}
$$

Оценим $\left\|I_{2}^{n, l}(\omega)\right\|$. Поскольку $X(t)^{-1}, t \in[0 ; 1]$, не имеет разрывов II-го рода, то для каждого $\omega \in \Omega$ существует такая константа $C=C(\omega)$, что

$$
\left\|X(t)^{-1}\right\| \leq C(\omega), t \in[0 ; 1] .
$$

Тогда

$$
\left\|I_{2}^{n, l}(\omega)\right\| \leq \sum_{\substack{k=0 \\ k \neq k_{i}^{\prime}, i=1, r^{l}(\omega)}}^{n-1} L \sum_{m=1}^{\infty}\left(\frac{C(\omega)}{l}\right)^{m-2}\left\|X\left(\frac{k}{n}\right)^{-1} \Delta_{n} X\left(\frac{k}{n}\right)\right\|^{2}
$$

Для каждого $\omega \in \Omega$ при $l>C(\omega)$: $|C(\omega) / l|<1$; для таких l

$$
\left\|I_{2}^{n, l}(\omega)\right\| \leq L \frac{C(\omega)}{l-C(\omega)} \sum_{k=0}^{n-1}\left\|X\left(\frac{k}{n}\right)^{-1} \Delta_{n} X\left(\frac{k}{n}\right)\right\|^{2} .
$$

В силу следствия из леммы 2 последовательность

$$
\sum_{k=0}^{n-1}\left\|X\left(\frac{k}{n}\right)^{-1} \Delta_{n} X\left(\frac{k}{n}\right)\right\|^{2}, n \geq 1
$$

имеет предел по вероятности; значит, из любой ее подпоследовательности можно выделить подпоследовательность

$$
\begin{equation*}
\sum_{k=0}^{n_{j}-1}\left\|x\left(\frac{k}{n_{j}}\right)^{-1} \Delta_{n} X\left(\frac{k}{n_{j}}\right)\right\|^{2}, j \geq 1, \tag{*}
\end{equation*}
$$

с неслучайными и не зависящими от $\varepsilon_{l}, l \geq 1$, индексами $n_{j}, j \geq 1$, сходящуюся с

вероятностью 1 к тому же самому пределу. Тогда при любом $n_{j}, j \geq 1$, последовательность

$$
\sum_{k=0}^{n_{j}-1}\left\|X\left(\frac{k}{n_{j}}\right)^{-1} \Delta_{n} X\left(\frac{k}{n_{j}}\right)\right\|^{2}, j \geq 1
$$

ограничена некоторой константой $M(\omega)$. Поэтому

$$
\left\|I_{2}^{n_{j}, l}(\omega)\right\| \leq \frac{L C(\omega) M(\omega)}{l-C(\omega)}
$$

при $l \rightarrow \infty$

$$
\left\|I_{2}^{n_{j}, l}(\omega)\right\| \rightarrow 0, \text { с вероятностью } 1, j \geq 1
$$

Все предельные точки подпоследовательности $I_{1}^{n_{j}, l}(\omega)+I_{2}^{n_{j}, l}(\omega), j \geq 1$, будут лежать в шаре с центром $I_{1}^{n_{j}, l}(\omega)$ и радиусом, не превышающим $L C(\omega) \times$ $\times M(\omega) /(l-C(\omega))$. При $l \rightarrow \infty$ радиус стремится к нулю с вероятностью 1 , и поэтому предельная точка последовательности единственная:

$$
\sum_{\tau \in[0 ; 1]}\left(h\left(X(\tau-)^{-1} X(\tau)\right)-h^{\prime}(1)\left(X(\tau-)^{-1} X(\tau)-I\right)-\frac{h^{\prime \prime}(1)}{2}\left(X(\tau-)^{-1} X(\tau)-I\right)^{2}\right) .
$$

Таким образом, из любой подпоследовательности последовательности

$$
\sum_{k=0}^{n-1} \sum_{m=3}^{\infty} \frac{h^{(m)}(1)}{m!}\left(X\left(\frac{k}{n}\right)^{-1} \Delta_{n} X\left(\frac{k}{n}\right)\right)^{m} ; n \geq 1,
$$

можно выбрать сходящуюся с вероятностью 1 подпоследовательность, и все такие подпоследовательности будут сходиться к одному пределу. Поэтому сама последовательность будет сходиться к тому же пределу по вероятности.

Теорема 1. Пусть выполнены условия леммы 3. Тогда

$$
\begin{gather*}
P-\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} h\left(X\left(\frac{k}{n}\right)^{-1} \Delta_{n} X\left(\frac{k+1}{n}\right)\right)= \\
=P \lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} \sum_{m=0}^{\infty} \frac{h^{(m)}(1)}{m!}\left(X\left(\frac{k}{n}\right)^{-1} \Delta_{n} X\left(\frac{k}{n}\right)\right)^{m}= \\
=h^{\prime}(1) Y(1)+\frac{h^{\prime \prime}(1)}{2}[Y, Y]_{1}+\sum_{\tau \in[0 ; 1]}\left(h\left(X(\tau-)^{-1} X(\tau)\right)-\right. \\
\left.-h^{\prime}(1)\left(X(\tau-)^{-1} X(\tau)-I\right)-\frac{h^{\prime \prime}(1)}{2}\left(X(\tau-)^{-1} X(\tau)-I\right)^{2}\right), \tag{3}
\end{gather*}
$$

где

$$
Y(t)=\int_{0}^{t} X(\tau)^{-1} d X(\tau)
$$

Доказательство. Разобьем левую частьв (3) на четыре слагаемых:

$$
\sum_{k=0}^{n-1} h(1)+\sum_{k=0}^{n-1} \frac{h^{\prime}(1)}{1!}\left(X\left(\frac{k}{n}\right)^{-1} X\left(\frac{k+1}{n}\right)-I\right)+
$$

$$
\begin{aligned}
& +\sum_{k=0}^{n-1} \frac{h^{\prime \prime}(1)}{2}\left(X\left(\frac{k}{n}\right)^{-1} X\left(\frac{k+1}{n}\right)-I\right)^{2}+ \\
& +\sum_{k=0}^{n-1} \sum_{m=3}^{\infty} \frac{h^{(m)}(1)}{m!}\left(X\left(\frac{k}{n}\right)^{-1} X\left(\frac{k+1}{n}\right)-I\right)^{m}
\end{aligned}
$$

Первое слагаемое - это $\sum_{k=0}^{n-1} 0=0$. Второе слагаемое стремится по вероятности к

$$
h^{\prime}(1) \int_{0}^{1} X(\tau)^{-1} d X(\tau) .
$$

Третъе слагаемое согласно лемме 2 стремится по вероятности к $\frac{h^{\prime \prime}(1)}{2}[Y, Y]_{1}$, а четвертое в силу леммы 3 - к правой части равенства (2).

Замечание. До сих пор для простоты рассматривались равномерные разбиения отрезка $[0 ; 1]$. Однако полученные результаты справедливы для любого разбиения $0=t_{0}<t_{1}<\ldots<t_{n}=t$ отрезка $[0 ; t], t \in[0 ; 1]$, т. е.

$$
\begin{align*}
\underset{\max \Delta t_{k} \rightarrow 0}{P} & \lim _{k=0}^{n-1} \sum_{k}^{n} h\left(X\left(t_{k}\right)^{-1} X\left(t_{k+1}\right)\right)=\underset{\max \Delta t_{k} \rightarrow 0}{P}-\lim _{k=0}^{n-1} \sum_{m=0}^{\infty} \frac{h^{(m)}(1)}{m!} \times \\
& \times\left(X\left(t_{k}\right)^{-1} X\left(t_{k+1}\right)-I\right)^{m}=h^{\prime}(1) Y(t)+\frac{h^{\prime \prime}(1)}{2}[Y, Y]_{t}+ \\
& +\sum_{\tau \in[0 ; 1]}\left(h\left(X(\tau-)^{-1} X(\tau)\right)-h^{\prime}(1)\left(X(\tau-)^{-1} X(\tau)-I\right)-\right. \\
& \left.-\frac{h^{\prime \prime}(1)}{2}\left(X(\tau-)^{-1} X(\tau)-I\right)^{2}\right) . \tag{4}
\end{align*}
$$

Процесс, стоящий в правой части (4), построенный по исходному процессу $X(t)$, будем обозначать $h(X)(t), t \in[0 ; 1]$. Этот процесс также является семимартингалом, поскольку $h(X)(t)-h^{\prime}(1) Y(t)$ будет иметь ограниченную вариацию.

Следствие 1. Пусть процесс $X(t)$ непрерывен с вероятностью 1. Тогда nроцесс

$$
h(X)(t)=h^{\prime}(1) Y(t)-\frac{h^{\prime \prime}(1)}{2}\langle Y, Y\rangle_{t}
$$

также непрерывен с вероятностью 1.
Следствие 2. Если процесс $X(t)$ имеет независимые мультипликативные приращения, то процесс $h(X)(t)$ имеет независимые аддитивные приращения.

Доказательство. Поопределению

$$
h(X)(t)=\underset{\max \Delta t_{k} \rightarrow 0}{P}-\lim _{k=0} \sum_{k=0}^{n-1} h\left(X\left(t_{k}\right)^{-1} X\left(t_{k+1}\right)\right)
$$

Тогда для $s, t \in[0 ; 1], s<t$:

$$
h(X)(t)-h(X)(s)=\underset{\max \Delta u_{k} \rightarrow 0}{P-\sum_{k=0}^{l-1} h\left(X\left(u_{k}\right)^{-1} X\left(u_{k+1}\right)\right), \text {, } n(x)}
$$

где $s=u_{0}<u_{1}<\ldots<u_{l}=t$.
При $k=\overline{0, l-1}$ слагаемые $h\left(X\left(u_{k}\right)^{-1} X\left(u_{k+1}\right)\right)$ не зависят от мультипли-

кативных приращений процесса $X(t)$ до момента s включительно, а значит, и от $h(X)(s)$. Следовательно, разность $h(X)(t)-h(X)(s)$ также не зависит от $h(X)(s), 0 \leq s<t \leq 1$.
2. Рассмотрим случай, когда в теореме $1 h(z)=\ln z$. Тогда если $\| X(\tau-)^{-1} \times$ $\times X(\tau)-I \|<1$, с вероятностью $1, \tau \in[0 ; 1]$, то существует $\ln (X)(t)$, и выполняется равенство

$$
\begin{align*}
\ln (X)(t) & =Y(t)-\frac{1}{2}[Y, Y]_{1}+\sum_{\tau \in[0 ; 1]}\left(\ln \left(X(\tau-)^{-1} X(\tau)\right)-\right. \\
& \left.-\left(X(\tau-)^{-1} X(\tau)-I\right)+\frac{1}{2}\left(X(\tau-)^{-1} X(\tau)-I\right)^{2}\right) \tag{5}
\end{align*}
$$

Пусть $G<G L(N), g$ - ее алгебра Ли (касательное пространство в единице). Тогда в окрестности U_{I} единицы I в группе G такой, что $U_{I}=\{A \in G$: \|A-$-I \| \leq \alpha<1\}$, действует отображение $U_{I} \rightarrow V$, где V - некоторая окрестность нуля в алгебре g. В этой окрестности матричная функция \ln является аналитической, и для нее справедлива теорема 1. Кроме того, процесс $\ln (X)(t)$ будет принимать значения в алгебре g. Итак, доказана следующая теорема.

Теорема. Пусть $X(t), t \in[0 ; 1]$, - стохастически непрерывный процесс, принимающий значения в группе Ли G, являющийся семимартингалом. Предположим, что его мультипликативные скачки такие, что

$$
\left\|X(\tau-)^{-1} X(\tau)-I\right\|<1 \quad \text { с вероятностью } 1, \tau \in[0 ; 1]
$$

Тогда существует процесс $x(t), t \in[0 ; 1]$, на ее алгебре Ли g, определенный равенством (5), который будем называть логарифмом процесса $X(t)$. Этот процесс также будет стохастически непрерывным семимартингалом. При этом:

1) если $X(t)$ непрерывен с вероятностью 1 , то $\quad x(t)=Y(t)-\frac{1}{2}\langle Y, Y\rangle_{t}$ также непрерывен с вероятностью 1 ;
2) если τ - точка скачка процесса $X(t)$, то процесс $x(t)$ также будет иметь скачок в этой точке и $x(\tau)-x(\tau-)=\ln \left(X(\tau-)^{-1} X(\tau)\right)$, где логарифм определен как соответствующий ряд Тейлора;
3) если $X(t)$ имеет независимые мультипликативные приращения, то $x(t)$ имеет независимые аддитивные приращения.

Замечание. Если не стремиться к тому, чтобы процесс $x(t)$ принимал значения именно в алгебре Ли g группы Ли G, то достаточно положить

$$
x(t)=\int_{0}^{t} X(\tau)^{-1} d X(\tau)
$$

как это сделано в [4].

1. Скороход А. В. Случайные процессы с независимыми приращениямми. - М.: Наука, 1986. 320 c.
2. Feinsilver P. An operator approach to processes on Lie groups // Probl. theory on vect. spaces. 1987. - 1391, №6. - P. 59-65.
3. Маккин Г. Стохастические интегралы. - М.: Мир, 1972. - 182 с.
4. Скороход A. B. Операторные стохастические дифференциальные уравнения // Успехи мат. наук. -1982 . 34 , №6. - С. $157-185$.
5. Ковальчук Л. В. Некоторые свойства матричных мартингалов // Стохастические уравнения и граничные теоремы. - Киев: Ин-т математики АН Украины. - 1991. - С. 91 - 101.
6. Липиер Р. Ш., Ширяев А. Н. Теория мартингалов: - М.: Наука, 1986. - 512 с.

Получено 20.06. 91

